
Seeking Time-Composable Partitions of Tasks for
COTS Multicore Processors

Gabriel Fernandez∗†, Jaume Abella†, Eduardo Quiñones†,
Luca Fossati§, Marco Zulianello§, Tullio Vardanega¶, Francisco J. Cazorla†‡

∗ Universitat Politècnica de Catalunya, Spain
†Barcelona Supercomputing Center, Spain

‡Spanish National Research Council (IIIA-CSIC), Spain
§European Space Agency, The Netherlands

¶University of Padova, Italy

Abstract—The timing verification of real-time singlecore sys-
tems involves a timing analysis step that yields an Execution Time
Bound (ETB) for each task, followed by a schedulability analysis
step, where the scheduling attributes of the individual tasks,
including the ETB, are studied from the system level perspective.
The transition between those two steps involves accounting for
the interference effects that arise when tasks contend for access
to shared resource. The advent of multicore processors challenges
the viability of this two-step approach because several complex
contention effects at the processor level arise that cause tasks
to be unable to make progress while actually holding the CPU,
which are very difficult to tightly capture by simply inflating the
tasks’ ETB. In this paper we show how contention on access to
hardware shared resources creates a circular dependence between
the determination of tasks’ ETB and their scheduling at run
time. To help loosen this knot we present an approach that
acknowledges different flavors of time composability, examining
in detail the variant intended for partitioned scheduling, which we
evaluate on two real processor boards used in the space domain.

I. INTRODUCTION

Research on timing analysis for multicore processors is
still in its infancy. This is particularly the case for COTS
hardware, which to date, to the best of our knowledge, has
been addressed with some success only for well-behaved –
hence not especially realistic – variants. The difficulty with
the timing analysis of software programs running on multicore
processors thus is a serious impediment to their adoption in
real-time systems industry. As asserting a single, tight, safe
and absolute worst-case execution-time (WCET) bound for
COTS multicore processors is still an open problem, which
far exceeds the state of the art in timing analysis, in this paper
we use the term Execution Time Boud, or ETB, in place of
the more common WCET.

Transposing to multicore processors the practice in place
for traditional singlecore processors, we note that the timing
analysis of a real-time system involves essentially two steps.
The first step derives for each application program an ETB,
computed assuming that the program runs in isolation. In the
second step, all system-level overheads such as interrupts,
blocking times when arbitrating access to shared resources in
the program, and the preemptions that result from dynamic

scheduling are taken into account, compositionally (that is to
say, by capturing holistically all interference effects that result
from composing software programs into the final system).
Response-time analysis [19], [7] is one of the techniques
typically used in the latter step, which is fed with the ETB of
individual tasks, which is assumed given. In that two-step
process, the ETB computed considering tasks in isolation is
augmented with the time duration in which the task, though
notionally holding the CPU, cannot actually progress. This
timing approach in which ETB is inflated to account for
system-level effects has been shown to work sufficiently well
in singlecore architectures.

Task scheduling is one of the system functions that affects
the mosts tasks’ timing behavior. This is so because task
scheduling determines when and how tasks may pre-emptively
interleave, hence the extent of pre-emption effects that each
task may suffer. In COTS multicore systems, task scheduling
affects task pre-emption much like in singlecore systems.
Unlike singlecore systems, however, scheduling in multicore
systems also determines the tasks that may potentially run at
the same time in the processor and hence, can conflict in the
access to hardware shared resources. The latter factor, which
has a massive impact on the tasks’ timing behavior, creates
a nasty circular dependence between task scheduling and
ETB determination in the timing analysis for COTS multicores.

Attempting to compositionally extend in response-time
analysis the magnitude of the ETB obtained for individual
programs in isolation, with the effects of inter-task conflicts
on access to processor resources is impractical in the general
case. This is so because tasks may conflict so frequently
(e.g. on every access to the on-chip bus) and for so many
resources (caches, buses, queuing buffers, etc.) that the amount
of knowledge to characterize the application usage of hardware
resources required rapidly gets out of control. This calls for
an alternative solution, in which on-chip contention effects are
accounted for as part of the ETB determination.

The much-sought property of time composability [28],
[15], when transposed to a multicore processor, stipulates that
the timing behavior of an individual task is not affected by
the activity of its co-runners. Time composability is generally



considered as an all-or-nothing metric: if the ETB of a task
varies depending on the tasks’ actual co-runners, then that
ETB is non-time-composable. This full extent of time com-
posability (in force of which we have fully time composable,
fTC, ETB) can be obtained by forcing the timing analysis tool
to contemplate a-priori all sources of worst-case contention
that a task may possibly experience on access to hardware
shared resources. As we discuss in this paper, however, this
provision may be overly pessimistic and defeat the purpose
of transitioning the system from singlecore to a multicore
processor architecture.

This paper aims to break the circular dependence between
the timing analysis and scheduling while ensuring effective
containment of pessimism. To that end, this paper makes a
threefold contribution, as follows:

1) We show that the traditional fTC-centric approach is accept-
able only if the interference effects of contention for processor
resource sharing are low, which typically is the case when
the core count is low (≤ 4) and the hardware resources
being shared cause modest contention impacts. We present
realistic scenarios where these conditions do not hold and the
provisions of fTC ETB are exceedingly pessimistic.

2) We consider the flavors of time composability first in-
troduced in [12]. We develop the notion of sufficient time
composability, and of partially time-composable (pTC) ETB,
which proceeds from it and solely considers the contention
conditions that the task of interest can effectively incur at run
time as a result of actual scheduling decisions. In that respect,
pTC trades tightness in the resulting upper bounds for ease
of determination. In particular we introduce two variants of
pTC , called allocation-aware time-composability (aTC) and
task set-aware time-composability (tsTC), respectively devised
for partitioned and global scheduling.

3) We develop an aTC-aware allocation algorithm, called
aTC-allocator, which performs timing analysis in an iterative
fashion, integrated with reasoning on task scheduling. For
an m-core processor, aTC-allocator starts by assuming that
any given set of m tasks in the task set of interest can
simultaneously run. aTC-allocator considers all the contention
conditions that may occur among those m co-runners. As
the allocation progresses, at every step of task-to-core as-
signment, aTC-allocator discards the contention conditions
generated by the tasks that have been assigned to the same
core, since they no longer can be co-runners of each other.
This procedure progressively reduces the inflation effects in
the ETB computed for each individual task, and culminates
with finding a feasible assignment, if one exists. We compare
aTC and fTC on two real COTS processors used in the space
domain, a dual-core LEON3-based GR712RC board, and a
quad-core LEON4 ML510 board. Our results show that for
the GR712RC fTC ETB incur acceptable pessimism, which
makes fTC ETB usable on that processor. Conversely, we show
that, while the fTC ETB on the ML510 are too pessimistically
inflated, aTC considerably reduces the pessimism by tuning

the ETB of individual tasks to the contention conditions
determined by the chosen task-to-core assignment.

The remainder of this paper is organized as follows:
Section II discusses some related work. Section III presents
our approaches based on pTC to break the circular depen-
dence between timing analysis and task scheduling in COTS
multicores. We present our aTC-aware allocator in Section IV.
Section V presents the difficulties in deriving ETB under each
pTC approach. Section VI presents results for two real COTS
multicore processors: the GR712RC and the NGMP; Finally,
Section VII summarizes the main conclusions of this study.

II. RELATED WORK

Contention on access to hardware shared resources at the
processor level is a much studied topic in the state of the art.
[10] provides a taxonomic summary of relevant works.

Contention for off-chip resources such as the bus is ad-
dressed predominantly with TDMA buses [32], for which the
worst case of interest for timing analysis is the worst possible
alignment of task requests to their TDMA slots. The works
that assume dynamic arbiters instead (cf. e.g., [31]) consider
the particular pattern of accesses that each contending task
may make to the bus. Notably however, several of the latter
type of works [33], [32] make assumptions that prevent their
use in the two COTS processors considered in this paper.
In particular, they model just one off-chip shared resource
that can process one request at a time only and in which
requests are synchronous (so that the contending task is stalled)
and cannot be split into several asynchronous requests. They
further assume that on-chip shared resources (e.g. core-to-
cache bus, caches, etc.) are replicated per core or partitioned
across tasks, so that tasks incur no contention effects when
accessing on-chip resources. These works study specific task
models in which programs can be divided into superblocks
for which both maximum and minimum access bounds and
ETB can be derived.

Hardware support has been proposed to either eliminate
or control contention on access to hardware resources, e.g.:
TDMA or UBD in buses [23]; partitioning for caches [23];
real-time aware controllers for memory [3], [25]. Those solu-
tions simplify timing analysis as contention effects are nullified
when the hardware design eliminates contention interference
by construction or easily determined when hardware features
bound contention interference [22]. Solutions of this kind
ultimately enable the use of the two-step analysis process
inherited from the singlecore practice. However, to the best
of our knowledge, no current commercial multicore processor
provides complete isolation from contention interference or
full control of it. Although some multicore processors do
implement cache partitioning [2], [5], the above techniques can
only be sensibly used if all hardware shared resources (which,
in the case of the NGMP, means on-chip interconnection,
shared cache, and core to memory bus) are suitably controlled.
It is worth noting in this regard that several works [26], [25]



show how, in real processors, contention on access to memory
alone may more than double the execution time of tasks
considered in isolation. It therefore follows that controlling
contention interference from cache effects alone in real-world
multicore processors is most evidently not enough to attain
isolation in the time domain among tasks. The problem is
that the execution time of a software program running on
COTS multicore processors may be inordinately affected by
the contention effects that the co-runners of that task may cause
on the hardware shared resources.

One solution to this predicament might be to use an
analysis approach that, for all the tasks that may run in parallel,
studies statically, at a very fine grain of detail on an abstract
model of the processor, the accesses that they may make to
hardware shared resources and how they might contend with
one another [18], [16]. This technique may lead to determine
ETB that are considerably tighter than what we can arrive at,
but at the cost of a much more onerous and complex effort,
which trades time composability for tightness, since its results
can only apply to a given task configuration that cannot be
varied without invalidating the analysis results.

Finally, the authors of [9] propose design principles to
make multicore processors more predictable in the time dimen-
sion. For as interesting as it may be, however, this approach
cannot be applied to existing COTS technology and therefore
does not have the same goals as we do.

III. BREAKING THE TIMING ANALYSIS - SCHEDULING

DEPENDENCE

Time composability is generally regarded as all-or-nothing
binary metric. When applied to the ETB for a task, therefore,
any variability in the computed bound that results from the
determination of the actual co-runners of the task of inter-
est, is deemed a fatal disruption of time composability. The
implication is that the ETB for a task can be said to be
fTC if it accounts for the worst-case contention conditions
that can be generated by any other potential co-runner of that
task in the system. As we show in this work, although using
fTC ETB does indeed break the circular dependence between
timing analysis and scheduling, in many cases the resulting
values are too pessimistic to be of any practical use.

A. Generalizing Time Composability

Our proposal to attack this dependence consists in deter-
mining Partially Time Composable (pTC) ETB for each task.
The idea behind this approach is to reduce the search space
for the contention conditions to consider in the computation
of pTC ETB. The resulting set of pTC ETB remains valid
as long as the contention conditions for which they have
been derived are maintained throughout system operation. The
contention conditions for a task are meant to cover all hardware
factors of influence on its timing behavior. In the case of
multicore processors, the contention conditions for task τi are
determined by the load that the task’s co-runners may place

on the hardware shared resources, which ultimately determines
the extent of hardware contention that τi may incur at run time.

Under our pTC approach, each task τi is associated mul-
tiple ETB, one for each of the possible set of contention
conditions that need to be considered. For that approach to
be usable, the scheduling of tasks at run time must ensure
that the contention conditions that every task encounters at run
time stay within the boundary of those that were considered
when the corresponding ETB was derived, so that the results
of schedulability analysis can be safely asserted.

We assume a task set T = {τ1, τ2, ..., τn}. For parti-
tioned scheduling, which is the main focus of this paper,
individual tasks are statically assigned to one of m groups1,
Φ = (ϕ1, ϕ2, · · · , ϕm), where m stands for the number of
cores in the processor. In presenting our approach we use the
following terms, which are specific to partitioned scheduling.

• We call group mates (gmi) of a given task τi, those tasks
allocated to the same core that τi is assigned to, called ϕi.
That is, gmi = {τj}, τj ∈ ϕi ∧ τj 6= τi.

• Similarly, we call siblings (sbi) of a given task τi, those
tasks allocated to a different group from the one to which τi
is assigned. That is, sbi = {τk}, τk /∈ ϕi. It follows that the
union of a task, its group-mates and its siblings forms the
whole task set T = {τi ∪ gmi ∪ sbi},∀τi ∈ T .

We also use other terms that equally apply to partitioned
and global scheduling:

• We call co-runner tasks (cri) of a given task τi at a given
instant t in which task τi is being executed, the set of m− 1
tasks running in parallel with τi at t.

• We call workload at time t, the set of tasks that simultane-
ously run at t. Hence, the co-runners of a task τi at t, together
with τi itself form the workload at time t. With partitioned
scheduling the group mates and siblings of any task τi are
determined by the task-to-core assignment algorithm, while
τi’s co-runners are determined by the scheduling algorithm
used on individual cores.

• The potential co-runners of τi are all the tasks that may run
in parallel with τi at any point in time during system execution.
With partitioned scheduling, the potential co-runners of τi’s are
only its siblings sbi. With global scheduling the potential co-
runners of τi are all the tasks in the task set since any subset
of m − 1 of them can run simultaneously at a given point in
time with τi.

In this work we consider four flavors of time composability
with decreasing resilience of the computed ETB to variations
in the contention conditions captured by the analysis. We
introduce them next and develop them in the subsequent
sections.

1We use the term group, allocation and core indistinctly to refer to the
partition of interest.



• Full TC (fTC) ETB. fTC considers the worst possible
contention effects that a task may suffer, in the general case
(thus owing to the nature of the hardware, not contingent on
the particular activity of the tasks in the task set), when at-
tempting to access hardware shared resources. This definition,
which may sound inflationary, serves the purpose of allowing
fTC ETB values to be independent of the nature of the task’s
co-runners as well as of their scheduling at run time.

• Task-set TC (tsTC) ETB apply to global scheduling when
no task-to-core assignment is predetermined. With tsTC, the
ETB estimate Ci derived for τi has to be time-composable
with respect to the contention conditions that can occur at run
time for any potential workload of tasks in the task set.

• Allocation-based TC (aTC) ETB. This formulation, which
applies to partitioned scheduling when some task-to-core as-
signment Φ is given, has the ETB estimate Ci, derived for τi
to be time-composable for the contention conditions that can
occur for Φ, is guaranteed to be higher than execution time
that τi’s may incur under any scheduling of its siblings in Φ.
That is to say, Ci covers all the contention conditions that τi’s
siblings may generate.

• Non time composable (nTC) ETB. This is the weakest
form of time composability, and we report it here only for
the sake of taxonomic completeness, without discussing it
further in this paper. An nTC ETB computed for task τi, in
fact, is determined for the specific contention conditions that
can be generated from a given set of co-runners with given
characteristics (for execution time, access to hardware shared
resources, and competing alignments at run time), and it is
only valid for that particular case. This variant is too feeble
to be used in practice because any, however minor, variation
in the assumed characteristics varies the contention conditions
for which the ETB was determined and invalidates it.

On the basis of the above notions, we can now study the
degree of pessimism incurred by each TC approach of interest,
and how that affects incremental verification.

Fully Time-Composable ETB. The use of fTC ETB in
the development of multicore real-time systems presents obvi-
ous benefits since the bounds computed in that manner for
a task always upper bound the contention effects that the
task’s co-runners may cause on hardware shared resources
present on the target processor. The primary benefit is that
individual subsystems can be independently developed and
incrementally integrated and qualified without risks of timing-
related regression at system level. Furthermore, the use of
fTC ETB breaks the circular dependence between timing
analysis and scheduling caused by the contention effects
arising upon system integration and therefore allows using
the Execution Time Analysis and the Response Time Analysis
techniques much like done for singlecore systems.

Section V discusses how to determine the fTC ETB for a
given task τi for the COTS processors considered this work.

The dark side of fTC ETB is that the upper-bound values

computed with it may be overly pessimistic. The fTC ETB we
obtained for some EEMBC benchmarks [27] on the NGMP
processor (cf. Section VI for details) are up to 5.8x higher
than the ETB obtained in configurations where no contention
arises. The main corollary of this result is that the price in
overestimation paid to enable incremental verification – which
is the common way to approximate time composability – may
defy the whole point of using multicores in real-time systems.

Task-set Time Composable ETB. Under task-set time
composability the contention conditions of interest for each
task are narrowed down to those that can actually occur con-
sidering the execution of the specific task set and its specific
scheduling regime. Task-set time composability is designed for
use with global scheduling in that when partitioned scheduling
is used, further reductions in pessimism can easily be obtained
by canceling contention effects ruled out by the task-to-core
assignment decisions.

Once tsTC ETB are derived for each task, the scheduler
has full freedom to schedule tasks on any core, similarly to
the case of fTC ETB. However, unlike for fTC, any change in
the workload invalidates all results and requires a full repeat
of the timing analysis stage for all tasks in the task set.

The challenge is to determine, for every individual task, an
ETB that upper bounds its execution time for any scheduling
scenario across all cores. In this regard, in the general case, for
any task τi in the task set T , all tasks τj{j 6=i} are siblings of
τi and its potential co-runners. To attain tsTC the contention
conditions of interest must therefore cover all possible schedul-
ing scenarios that may occur for T across all cores, with
tsTC ETB for τi capturing the resulting worst-case contention
situation. Section V discusses how to compute tsTC ETB.

Allocation-based Time Composable ETB. This variant
of time composability is designed for use with partitioned
scheduling. Below we identify two partition scheduling sce-
narios in which aTC may be applied.

Task-to-core assignment is given. In this case, which
transposes to multicore processors the practice in use with
singlecore processor systems in several application domains,
where the system integrator assigns individual scheduling
partitions to individual subsystem suppliers. For the purposes
of this paper and equally applicable to singlecore and multicore
processors, a scheduling partition corresponds to a slice of
CPU time, regardless of whether statically or dynamically
assigned. The supplier develops the contracted software, nor-
mally organized in a schedule of tasks, to fit in the assigned
partition. As in the multicore processor scenario the partition
is pre-allocated to a core, the task-to-core assignment is given.
From the timing analysis perspective, the problem reduces to
determining an ETB for each task in each partition, knowing
their respective assignment.

Task-to-core allocation is not given. In this case the prob-
lem is to determine how to assign tasks to cores and then derive
a ETB for each task such that the final allocation is feasible.



TABLE I. TAXONOMY OF TIME COMPOSABILITY APPROACHES.
LEGEND: +++ (HIGH), ++ (MODERATE), + (LOW) AND - VERY LOW.

global partit. overes- increment. Execution
sched. sched. timation verific. Conditions

fTC 3 3 +++ +++ All possible tasks
tsTC 3 3 ++ ++ Tasks in the task set
aTC 3 + + Sibling tasks
nTC - none Particular workload

We need an approach that associates several ETB to each task
τi, one for every possible task-to-core assignment, such that
the task’s aTC ETBai is time composable for a particular
allocation ai, of the task set. In Section IV we develop an
allocation algorithm that is aware of time composability.

B. Putting it all together

Table I presents the time composability approaches dis-
cussed in this work. fTC can be used with global and par-
titioned scheduling. It cleanly breaks the dependence among
timing analysis and scheduling. Hence, at the cost of some
pessimism in the computation of ETB, it allows good control
of feasibility in the face of incremental system integration.
tsTC works with global scheduling but is vulnerable to changes
in the behavior and characteristics of the tasks in the system.
This drawback makes this approach less apt for incremental
development. aTC is fit for partitioned scheduling and, in
general, arrives at tighter ETB than tsTC, although only for
the contention conditions determined for the considered task-
to-core assignment and for the assumed per-core scheduling.

It is worth noting that the contention conditions captured
for fTC are more conservative than those considered in tsTC,
which in turn, are more pessimistic than those accounted
for aTC. Owing to their conservatism, the ETBs derived for
fTC and for tsTC can in principle be used with any schedul-
ing regime. In that manner, theoretically greater schedulable
utilization may possibly be sought (as offered for example by
certain global scheduling algorithms [30], [8]) to compensate
for the increase in pessimism in the assumed ETB load.

The particular time composability approach to use ulti-
mately depends on the development needs and constraints.

IV. ATC-AWARE ALLOCATION ALGORITHM

From the taxonomy of Time Composability approaches
presented in the previous section, we focus on aTC for the
more general case in which the task-to-core allocation is
not given. To support aTC we have developed an allocation
algorithm, called aTC-allocator, that is aware of aTC ETB. In
particular, the goal of an aTC-based allocation algorithm is to
reduce the wasted capacity in the task set (tswc) as a way to
tighten the ETB derived for each task.

Our aTC allocator associates several ETB to each task
τi, one for every possible task-to-core assignment, such that
the task’s aTC ETBai is time composable for a particular
allocation ai, of the task set. For every task τi in the system,
this requires: (1) understanding which tasks are group-mates

to τi, as they are assigned to the same partition as τi; (2)
understanding which tasks are siblings to τi, as they are
assigned to other partitions than that of τi; and (3) obtaining
an aTC ETB that upper bounds τi’s execution time against a
specific set of co-runners. This limits the scope of the analysis
to consider that particular set of co-runners and the load
that they can place on hardware shared resources. Section V
discusses how to compute aTC ETB.

We use the following terms in defining aTC allocator.

• Task wasted (CPU) capacity (twc). We define twc for a task
τi that runs in a workload, as the CPU time budget allocated to
τi to account for the contention interference it can suffer from
the contention caused by tasks running on other cores. Let
Cisoli denote the ETB for τi when run in total isolation, hence
suffering no contention interference. Let Cwldji denote the
ETB estimate for τi when run as part of workload wldj . The
latter bound accounts for the CPU budget inflation incurred
by τi owing to the suffered contention interference. The task
wasted capacity is defined as: twcwldji = C

wldj
i − Cisoli .

• Workload wasted (CPU) capacity (wwc). We define wwc as
the addition of the twc of all tasks in a workload. That is,
wwcj =

∑i=kj
i=1 twc

wldj
i , where kj is the number of tasks in

workload wldj .

• Allocated task wasted capacity (atwc). Under partitioned
scheduling, for a given τi in a partition Φ, we define atwci
as the maximum twci in any of the workloads that can be
constructed that include τi: atwci = max

wldj∈combs(Φ)
twc

wldj
i ,

where combs(Φ) stands for all potential schedules wldj of
the task set containing τi, given partition Φ.

• Task-set wasted CPU (tswc). Finally, once a feasible assign-
ment has been set for each individual task in the task set, we
define task set wasted capacity as the sum of atwci for all
tasks in the task set ∀τi ∈ T .

aTC-allocator accounts as wasted capacity all duration of
CPU time that a task is stalled due to contention interference.
Hence, the zero-waste case occurs when all forms of contention
interference that stem from contention on access to hardware
shared resources are avoided. While this is not achievable in
practice in a real-world multicore processor, using the zero-
waste case as the ideal target for algorithm 1 helps reducing
the wasted capacity per task (atwci ∀τi ∈ T ) which in
turn reduces the tasks’ ETB and increases the useful CPU
utilization attained by the system.

Interestingly, before any task τi is allocated, the ETB as-
sumed for every task in the task set is the tsTC ETB. That
is, given that initially (when no partition yet exists) the task
under study can be grouped with any other task, it must be
assumed that all other tasks in the workload can be siblings
and hence potential co-runners of τi. In subsequent iterations
this approach progressively assigns tasks to cores. If a new
task τj is assigned to a group where τi is, then τj cannot be
a co-runner of τi, which causes a potential reduction in the



Algorithm 1 aTC allocator (T , W , lscht(), C)
Input: The task set(T ), the ETB for each task under any
configuration of siblings(W), local schedulability test lscht()
and the list of cores C)
Output: A task allocation (Φ).

1: W ← sort by wwc(W)
2: while W not empty do
3: C ← sort by spare capacity(C)
4: cj ← first(C)
5: while cj ∈ C do
6: tuplei ← find tuple(W, lscht(), cj)
7: if tuplei 6= ∅ then
8: break
9: end if

10: end while
11: if cj /∈ C then
12: return nonschedulable
13: end if
14: alloc(tuplei, cj)
15: update capacity(cj)
16: remove overlapping tuples(W)
17: end while
18: return C

ETB estimate for τi. At any given step therefore, the ETB of
any task τi is time composable with its siblings and with the
not-yet assigned tasks assumed to be siblings of tasks in all
groups. In this way, at every step when a task is assigned to
a group ϕj , the ETB of all tasks in ϕj is reduced since the
just-assigned task cannot be co-runners of the tasks in ϕj .

The aTC-allocator receives as input all possible permu-
tations of task tuples, denoted W , where each tuple contains
between 1 and m tasks (m stands for the number of cores).
Those tuple represent all potential workloads that can occur
at any point in time. The workload wasted capacity (wwc) for
each tuple, i.e. the addition of the twc for all tasks in a tuple, is
derived by running the tuple on the target platform as described
in Section V. wwc represents the CPU capacity that would be
wasted if the tasks in the tuple were co-runners.

The algorithm starts by sorting tuples by their wwc (line 1)
from higher to lower, and it also sorts cores by spare capacity
(line 3), from lowest to highest. The algorithm then seeks the
tuple with highest wwc such that it fits in the core with lowest
spare capacity (line 6). A single-core (local) schedulability test
(lscht()) is used to that end. If a tuple, tuplei, is found it is
assigned to that core, corej (line 14), preventing the tasks
in that tuple from being co-runners and suffer that wwc. The
capacity of corej is updated by recomputing and then adding
the utilization of all the tasks that were already in corej plus
those in tuplei. The re-computation is necessary because now
it is certain that the tasks already assigned to corej will not
be co-runners to the tasks in tuplei, so the ETB of all of them
will monotonically decrease (line 15). Next, tuplei and every
other tuple containing any of the tasks in tuplei are removed
from W (line 16).

If no tuple fits in the core with the lowest capacity, the
process starts with the second core with lowest spare capacity
(lines 5 – 10). If no tuple is found to fit in any of the cores,
the task set is not schedulable (lines 7 – 9). Conversely, if all
tasks are assigned and the schedule is feasible, the algorithm
returns the task set partition.

aTC requires deriving for each task an ETB that covers
certain contention conditions. In this case, at each step of
the algorithm, the timing analysis stage requires providing
a ETB computed considering all the siblings of the task of
interest as its co-runners at this time. Only tasks that are group
mates of that task are not considered. The next section details
how to obtain those ETB.

V. DERIVING ETB UNDER DIFFERENT

CONTENTION CONDITIONS

As we mentioned earlier, the research on timing analysis
for COTS multicore is not mature yet. The difficulty essentially
lies in getting an accurate appreciation of the impact that
contention in the use of processor shared resources can have
on task execution time and on their ETB. To the best of our
knowledge, state-of-the-art timing analysis techniques cannot
assert a tight, safe and absolute worst-case value for COTS
multicore processors.

In this paper we use pure measurements to determine ETB.
Measurement-based timing analysis is a common practice for
timing analysis on real processors in industrial domains that
include space, automotive and elements of avionics [34], [17],
[20]. End-to-end measurements are collected in controlled
conditions and the ETB is derived by adding an engineering
margin to the Longest Observed Execution Time (LOET) [20].
We acknowledge the uncertainty generated by measurements
and the requirements their use places on the user to provide
input vectors capable of reducing this uncertainty. Various
approaches have been proposed to build confidence arguments
in conformance with the requirements and practices of the spe-
cific application domain (e.g. automotive, space or avionics).
The work in [14] reviews how safety assurance guarantees
relate to stipulating bounds on execution time.

Deriving fTC ETB. Given a task set, T , in order to
provide fully time-composable ETB CfTCi for each task, we
employ a recent approach based on microbenchmarks, also
known as resource stressing kernels (RSK) [29], [21], [13],
[11]. RSK are specialized, single-phase user-level programs
designed to stress each of the hardware shared resources in
the processor. Running task τi against a RSK represents a very
pessimistic scenario of the inter-task interference that τi may
experience during operation.

In [29], [13], the authors show that RSK produce greater
contention interference on access to hardware shared resources
than any real application or other benchmark that they could
compare with. We therefore maintain that τi’s fTC ETB can
be determined when τi runs in parallel with that RSK.



During analysis, we run each task against the particular set
of RSK designed for the target platform of interest. While τi
runs we make sure that in the other cores the chosen RSK
(rski) runs at all times. With this method, the fTC ETB for
τi is computed as: CfTC

i = maxrski∈RSK(ET rskii ), where
ET rskii is the execution time of τi when running against rski.

Challenges in deriving tsTC ETB and aTC ETB. We
identify three main factors affecting the contention conditions
of a given running task: its contention for access to hardware
shared resources with its co-runners, its execution phases (with
respect to the profile of use of hardware shared resources)
and its input vectors. To enable partially Time Composable
approaches it is necessary to understand all these factors and
cover their timing effect to a sufficient level of confidence.
In this regard, the use of COTS multicores and measurement-
based analysis techniques introduces some uncertainty that has
to be offset when building confidence arguments in accordance
with the requirements and practices of the application domain.

In the absence of hardware support to contain or control
contention interference, there is no established practice to
derive tsTC and aTC ETB, which we can relate to. Our
current solution is to perform experiments in which we tweak
the sources of interference as can be done from the input
vectors and the interleaving of tasks’ execution phases. This
technique is obviously sub-optimal in that it does not deliver
full certainty, but it does nonetheless help appreciate the system
resilience (respectively, vulnerability) to contention effects.

In order to account for the contention conditions generated
on task τi by a given set of co-runners we make successive runs
of the workload in which we shift the time at which we start
the execution of each task in the workload with respect to τi.
Figure 1 provides a schematic view of the case for a dual core
arrangement. τi runs on core 0, c0. At each run we shift the
release offset of each task by a shifting factor, which leads to
different shifting points. The granularity of the shifting factor
and the number of cores in the processor determine the number
of experiments to carry out (which ultimately is limited by the
time that can be afforded for timing analysis during system
development). This process is repeated for different input data
vectors if the program’s execution is sensitive to them. In our
experimental setting, the EEMBC Automotive benchmarks we
used present a stable single behavior so we observed negligible
difference for different release offsets.

The challenge with global scheduling, which is the as-
sumed scheduling regime for tsTC, is that, in theory, all tasks
(grouped in workloads of m, where m is the number of cores)
can run in parallel at any given point in time. This means
that every task in the task set is a potential co-runner of
any other task, in a great variety of actual schedules, which
obviously leads to high ETB values to upper bound the many
different contention conditions that may arise. Meanwhile, with
partitioned scheduling, the choice for aTC, the schedules of
interest are a much smaller set, limited to the interleaving of
τi’s siblings.

Fig. 1. Schematic view of experimental methodology to compute ETB esti-
mates (dual core case). τj in Core 1 is shifted in each run.

VI. EXPERIMENTAL EVALUATION

In the following we evaluate one possible realization of the
fTC ETB and aTC ETB approaches for two industrial-quality
COTS processors used in the space domain: a GR712RC
platform implementing a dual-core LEON3; and a ML510
platform implementing a quad-core LEON4.

A. Experimental Setup

The GR712RC platform has 2 LEON3 processors (see
Figure 2(a)), each comprising private first-level 16KB data and
16KB instruction caches. Cores are connected to the on-chip
SRAM and the memory controller through an AMBA AHB
bus [1]. The memory controller connects both cores to the
off-chip SDRAM and SRAM devices. In the GR712RC the
effect of the slowdown that a task suffers is mainly due to
contention interference on accessing to the on-chip bus.

The ML510 platform contains a Virtex 5 FPGA that
implements a prototype design of the NGMP, a SPARC V8
quad-core processor, developed by Aeroflex Gaisler and the
European Space Agency, featuring the latest LEON core
design, called LEON4 [4], [2]. Owing to FPGA space limi-
tation, the ML510 platform does not have an on-core floating
point unit. The LEON4 is a 32-bit 7-stage pipeline processor,
comprising an always-taken branch predictor and private data
and instruction caches of 16KB each. Both the instruction and
the data caches have 32-byte lines and are 4-way associative.
The data cache employs a write-through with no-write-allocate
miss policy. Each LEON4-core connects to a shared 256KB L2
cache through an AMBA AHB processor bus with 128-bit data
width and round-robin arbitration policy. The L2 cache uses
the LRU replacement algorithm implementing a write-back,
write-allocate policy. The L2 cache connects to the memory
controller through a single memory channel shared by all cores
(see Figure 2(b)). In the NGMP, the effect of the slowdown that
a task (benchmark) suffers is due to contention interference in
accessing the on-chip bus, the on-chip shared L2 cache and
the memory bandwidth [13].

Benchmarks. In this work, for application load we used the
EEMBC Autobench benchmark suite [27], which is deemed to
capture well some elements of real-world real-time application
behavior and for this reason is widely used in academic
research. We chose benchmark programs that make use of



(a) GR712RC (LEON3) (b) ML510 (LEON4)

Fig. 2. Block diagram of the part of the NGMP and GR712RC architectures
analyzed in this paper

caches at various levels of intensity, from low to high: aifirf
(AI), bitmnp (BI), cacheb (CA), canddr (CN), pntrch
(PN), puwmod (PU), rspeed (RS) and ttkprk (TT). We
further used a space-specific synthetic program known as Next
Generation DSP Benchmark (nDSP)2.

We developed a random task set generator based on [24].
The generated task sets all implement the equivalent of a
sporadic task model, in which the arrival times of jobs of
the same task are separated by a minimum inter-arrival time,
referred to as the task period, and the tasks are independent.
The task sets are generated such that the total utilization of
every task set equals Uisol =

∑n
i=1

Cisol
i

Pi
, with n > m where

m is the number of cores, n in the number of tasks, and Cisoli

is the ETB of τi when run in isolation. In the first step of
our procedure Uisol is ‘divided’ between the n tasks. For the
experiments discussed in this paper, we assigned 40% of Uisol
to 20% of the n tasks, and 60% of the remaining Uisol to
the remaining 80% of the tasks (similar results are obtained
with other proportions). In the second step, each of the n tasks
is then assigned timing load of a randomly chosen EEMBC
executed on the real hardware. For each Uisol utilization we
randomly generated 1,000 workloads.

B. Results with fTC ETB

Figure 3 shows the fTC ETB computed for EEMBC and
nDSP for the GR712RC and the NGMP, plotted against the
ETB obtained in isolation, i.e. CfTCi /Cisoli , which reveals a
wide range of variations.

For the GR712RC, the fTC ETB appear to be only
marginally higher than Cisoli , with a maximum increase of
55% and an average of 23%. For this board we may therefore
use fTC ETB with acceptable pessimism in the determination
of the schedulable utilization, for this choice breaks the circular
dependence between ETB estimation and task scheduling and
consequently simplifies the overall analysis process. For the
NGMP instead, the fTC ETB, i.e. CfTCi , are significantly
higher than Cisoli , with a maximum increase of 5.8x and an
average of 3.65x. This inflation is the consequence of larger
contention interference arising from the use of more cores and
more hardware shared resources. For the NGMP therefore,
using fTC ETB would result in a significant loss of CPU
capacity, which calls for the use of aTC.

2http://www.esa.int/TEC/OBDP/SEMFOU1VW3H 0.html

(a) GR712RC (LEON3) (b) ML510 (LEON4)

Fig. 3. Effect of contention interference on EEMBC and nDSP when running
on the NGMP and the GR712RC

C. Results with aTC ETB

In order to gauge the efficacy of the algorithm presented
in this work, we compared it against an alternative approach,
called DSE or Design Space Exploration, which exhaustively
explores all possible feasible allocations for every generated
task set. The DSE approach is very time consuming and only
serves the purpose of showing a challenging comparison here;
e.g. for the case of 20 tasks DSE execution time can be up to 3
orders of magnitude higher than aTC. No such heavy approach
would really be needed to apply the proposed method. As
we mentioned before, for every selected task set utilization
in isolation (Uisol) we generate 1,000 random workloads, all
formed with EEMBC programs. For each such workload, DSE
generates all potentially feasible allocations. For a task set
with n tasks and a multicore processor with m cores, the total
number of possible allocations is n!

m!(n−m)! .

In Figure 4 the X-axis shows the Uisol of each task set
and the Y-axis shows the success rate, i.e. the ratio of feasible
partitions among all possible task-to-core assignments per
task set. Diamonds show the success ratio obtained using the
aTC-allocator while the squares for the DSE. Interestingly,
the aTC-allocator success ratio appears to be quite close to
that of DSE, which allows concluding that our algorithm is
sufficiently good at finding feasible partitions. Notably, the
success ratio decreases when the total utilization in isolation
reaches 2.4 − 2.5 out of 4, which is consistent with state-of-
the-art results in the analysis of schedulable utilization with
partitioned scheduling [6]. In the next section we analyze in
detail why aTC-allocator does not reach good success rates
for higher utilizations.

D. Schedulable utilization

In singlecore systems, the total utilization of a task set
is determined by the simple addition of the utilization of
individual tasks considered in isolation. Specific scheduling
algorithms for singlecore processors have specific schedula-
ble utilization thresholds, which determine necessary but not
sufficient conditions for the feasibility of the task set. Task
sets whose utilization falls below the applicable threshold
are deemed feasible, with no feasibility guarantees provided
otherwise. The efficacy of a given scheduling algorithm can
thus be assessed by looking at the ratio of task sets that are
feasibly scheduled from those deemed feasible.



(a) 15 tasks

(b) 20 tasks

Fig. 4. Success ratio in finding feasible partitions of task sets with aTC-
allocator and with the DSE on the NGMP

In multicores, to compute the utilization of a task we can
either use its ETB in isolation, Cisoli or its fTC ETB (CfTCi ).
The utilization associated to a task set varies in each case. It is
Uτi∈Tisol =

∑n
i=1 C

isol
i and Uτi∈TfTC =

∑n
i=1 C

fTC
i . Those two

ETB are, respectively, a lower bound and an upper bound to
the effective task utilization whose actual value will depend on
the contention interference incurred in operation for the chosen
task-to-core assignment. The source of the complexity lies in
the fact that ETB of a task in a multicore conceptually com-
bines two elements which are difficult to determine exactly:
the time the task actually uses the CPU to progress, and the
time during which the task holds the CPU but is stalled while
suffering contention interference. When partitioned scheduling
is used, for example, the task-to-core assignment determines
which tasks can run in parallel and consequently interfere with
each other. This in turn allows determining the ETB for all
tasks under that particular allocation (Cacti ). It follows that, in
that case, the actual CPU utilization of the task set cannot be
determined until the task-to-core assignment is fixed.

To overcome this difficulty, we use the DSE algorithm to
find the feasible (partitioned) task sets and the resulting total
utilization. At that point, we can apply our method to determine
the actual effective utilization (Uτi∈Tact =

∑n
i=1 C

act
i ) of the

task sets that DSE deems feasible and see which of them stay
feasible after using the aTC-allocator.

Figure 5(a) shows, for every feasible assignment found
with the DSE algorithm, the total utilization of the task set
considering the contention effects arising after the partitioning
(Uact, Y axis) found with aTC-allocator, in relation to the total
utilization computed considering tasks running in isolation

(a) Relation between Uisol and Uact

(b) Execution time overheads

Fig. 5. Other metrics for evaluating the performance of aTC-allocator

(Uisol, X axis). We can see that, at Uτi∈Tisol values around 2.4
and 2.5, where aTC-allocator and DSE stop finding feasible
assignments (cf. figure 4), the Uτi∈Tact values reach 3.65-3.75
and 3.8-3.9 respectively. This shows that aTC-allocator nearly
fills all the cores.

E. Other considerations with aTC ETB

Run time in the offline analysis. aTC-allocator takes
considerable time to run in the analysis phase for a real COTS
multicore processor. We identify three main contributors to this
need: the generation of all possible tuples, i.e.W , the execution
of those tuples on the target multicore for determining the
ETB, and the time required by the aTC-allocator itself to
compute feasible assignments. The generation of all tuples
comprising all potential combinations (tuples) of {m,m −
1, ..., 1} tasks in T takes less than 2 minutes for any task set
size, (see Figure 5(b)), on a Dell Latitude E6420 embedding
an Intel Core i7 processor at 2.40GHz. The execution of all
tuples in our ML510 board takes around 3 hours. Of course
the duration of this step depends on the frequency of the board
– 70 Mhz in our case – and the size of the applications under
analysis. The execution of aTC-allocator for the problem at
hand takes little less than 13 minutes.

Computational complexity. It is clear that our ap-
proach moves complexity into timing analysis to derive those
aTC ETB. Most of the experimentation time is expected to
be consumed in determining the aTC ETB. In the absence of
hardware support for controlling contention interference, the
evidence about the impact of such interference is obtained by
exposing the task under different configurations of its potential



co-runners. The experimentation time required may be larger if
the tasks have release offsets and operation modes which need
to be co-executed to capture their effect. Moreover, the cost
may grow exponentially with the number of tasks and cores.
Whereas reducing that overhead is part of our future work, to
the best of our knowledge, there currently is no other viable
proposal for the timing analysis of real-time tasks running on
a COTS multicore processor that does not provide full support
for contention control or removal.

VII. CONCLUSIONS

The advent of multicore processors challenges the viability
of the two-step timing analysis approach followed for sin-
glecore systems: contention interference effects in a multicore
are much more complex in nature and fine in grain than what
can be captured in compositional response time analysis by
simply widening the tasks’ ETB with the time intervals during
which tasks cannot progress due to inter-task interference. This
creates a dependence between the ETB derived for a task and
its scheduling at run time. If fTC ETB estimates can be derived
with low impact on pessimism this dependence is broken. If
they cannot be derived we sketch a solution based on the new
concept of pTC ETB for partitioned scheduling. We regard
the problem for global scheduling to be harder to solve in a
tractable manner.

We show two real processors representative of both cases:
while in the dual-core LEON3-based GR712RC it is possible
to use for each task its fTC ETB without incurring high
overheads, this is not so for the quad-core NGMP as the
fTC ETB may be 5.8x higher than in isolation (i.e. assuming
no inter-task interference).

ACKNOWLEDGMENTS

The research leading to this work has received funding
from: the European Union’s Horizon 2020 research and in-
novation programme under grant agreement No 644080(SA-
FURE); the European Space Agency under Contract 789.2013;
and COST Action IC1202, Timing Analysis On Code-Level
(TACLe). This work has also been partially supported by
the Spanish Ministry of Science and Innovation under grant
TIN2012-34557. Jaume Abella has been partially supported by
the Ministry of Economy and Competitiveness under Ramon
y Cajal postdoctoral fellowship number RYC-2013-14717.

REFERENCES

[1] AMBA Bus Specification. http://www.arm.com/products-/system-
ip/amba/amba-open-specifications.php.

[2] NGMP Preliminary Datasheet. http://microelectronics-
.esa.int/ngmp/LEON4-NGMP-DRAFT-1-6.pdf.

[3] B. Akesson et al. Predator: a predictable SDRAM memory controller.
In CODES+ISSS, 2007.

[4] J. Andersson et al. Next generation multipurpose microprocessor. In
DASIA, 2010.

[5] ARM Ltd. The ARM Cortex-A9 processors (white paper).
http://www.arm.com/files/pdf/armcortexa-9processors.pdf, 2009.

[6] A. Bastoni et al. An empirical comparison of global, partitioned, and
clustered multiprocessor EDF schedulers. In RTSS 2010.

[7] A. Burns. Preemptive priority-based scheduling: An appropriate en-
gineering approach. In Advances in Real-Time Systems, chapter 10.
Prentice Hall, 1994.

[8] D. Compagnin et al. Putting RUN into practice: Implementation and
evaluation. In ECRTS 2014.

[9] C. Cullmann et al. Predictability considerations in the design of multi-
core embedded systems. In ERTS, 2010.

[10] G. Fernandez et al. Contention in multicore hardware shared. resources:
Understanding of the state of the art. In WCET Workshop, 2014.

[11] G. Fernandez et al. Increasing confidence on measurement-based
contention bounds for real-time round-robin buses. In DAC, 2015.

[12] G. Fernandez et al. Introduction to partial time composability for COTS
multicores. In ACMS SAC, 2015.

[13] M. Fernández et al. Assessing the suitability of the NGMP multi-core
processor in the space domain. EMSOFT, 2012.

[14] P. Graydon and I. Bate. Safety assurance driven problem formulation
for mixed-criticality scheduling. In MCS Workshop, 2013.

[15] S. Hahn et al. Towards compositionality in execution time analysis –
definition and challenges. In CRTS, December 2013.

[16] T. Kelter et al. Static analysis of multi-core TDMA resource arbitration
delays. Real-Time Systems, 2013.

[17] R. Kirner and P. Puschner. Obstacles in worst-case execution time
analysis. In ISORC, 2008.

[18] Y. Li et al. Timing analysis of concurrent programs running on shared
cache multi-cores. In RTSS, 2009.

[19] J. Mathai et al. Comput. J., 29(5), 1986.

[20] E. Mezzetti and T. Vardanega. On the industrial fitness of WCET
analysis. WCET Workshop, 2011.

[21] J. Nowotsch and M. Paulitsch. Leveraging multi-core computing
architectures in avionics. In EDCC, 2012.

[22] M. Panić et al. Parallel many-core avionics systems. EMSOFT ’14,
2014.

[23] M. Paolieri et al. Hardware support for WCET analysis of hard real-
time multicore systems. In ISCA’09.

[24] M. Paolieri et al. IA3: An interference aware allocation algorithm for
multicore hard real-time systems. In RTAS’11.

[25] M. Paolieri et al. Timing effects of DDR memory systems in hard
real-time multicore. ACM TECS, 2013.

[26] R. Pellizzoni et al. Worst case delay analysis for memory interference
in multicore systems. In DATE, 2010.

[27] J. Poovey. Characterization of the EEMBC Benchmark Suite. North
Carolina State University, 2007.

[28] P. Puschner et al. Towards composable timing for real-time software.
In 1st International Workshop on Software Technologies for Future
Dependable Distributed Systems. 2009.

[29] P. Radojković et al. On the evaluation of the impact of shared resources
in multithreaded cots processors in time-critical environments. In ACM
TACO 2012.

[30] P. Regnier et al. RUN: optimal multiprocessor real-time scheduling via
reduction to uniprocessor. In RTSS 2011.

[31] S. Schliecker et al. Bounding the shared resource load for the
performance analysis of multiprocessor systems. In DATE, 2010.

[32] A. Schranzhofer et al. Timing analysis for TDMA arbitration in resource
sharing systems. In RTAS, 2010.

[33] A. Schranzhofer et al. Timing analysis for resource access interference
on adaptive resource arbiters. In RTAS, 2011.

[34] I. Wenzel et al. Measurement-based timing analysis. In ISoLA, 2008.


