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ABSTRACT

Underspecification and fairness in machine learning (ML) applica-
tions have recently become two prominent issues in the ML com-
munity. Acoustic scene classification (ASC) applications have so
far remained unaffected by this discussion, but are now becoming
increasingly used in real-world systems where fairness and reliabil-
ity are critical aspects. In this work, we argue for the need of a more
holistic evaluation process for ASC models through disaggregated
evaluations. This entails taking into account performance differ-
ences across several factors, such as city, location, and recording de-
vice. Although these factors play a well-understood role in the per-
formance of ASC models, most works report single evaluation met-
rics taking into account all different strata of a particular dataset. We
argue that metrics computed on specific sub-populations of the un-
derlying data contain valuable information about the expected real-
world behaviour of proposed systems, and their reporting could im-
prove the transparency and trustability of such systems. We demon-
strate the effectiveness of the proposed evaluation process in uncov-
ering underspecification and fairness problems exhibited by several
standard ML architectures when trained on two widely-used ASC
datasets. Our evaluation shows that all examined architectures ex-
hibit large biases across all factors taken into consideration, and
in particular with respect to the recording location. Additionally,
different architectures exhibit different biases even though they are
trained with the same experimental configurations.

Index Terms— acoustic scene classification, evaluation, fair-
ness, ethics, transparency

1. INTRODUCTION

Acoustic scene classification (ASC) has been established as a cen-
tral task of artificial auditory intelligence, as exemplified by its
prominent place in the DCASE challenge and workshop series [1,
2] and a generally broad accumulation of literature [3, 4, 5, 6, 7].
Overall, model performance has substantially improved through the
years, and datasets have accordingly evolved to accommodate new
challenges by incorporating factors shown to impact model perfor-
mance. For example, the exact geographical location of the record-
ings was identified as an important factor early on, with datasets
accordingly adapted by keeping data from the same location in the
same partitions [1, 2]. The TUT Urban Acoustic Scenes 2018 Mo-
bile dataset additionally introduced the recording device as a sep-
arate factor [8], with the development set consisting of multiple

recording devices, and the evaluation set including an extra, un-
seen device. Finally, the TAU Urban Acoustic Scenes 2019 dataset
highlighted the importance that the city of origin has by introducing
data from two additional cities in the evaluation set [8].

In general, the community is aware of the influence that record-
ing devices and location have on model performance [9, 10]. Most
works approach these factors from the perspective of domain mis-
match [11]: different cities, locations, and devices, result in slightly
different input representations, and the difference needs to be ac-
counted for to improve overall performance. Several approaches
have been proposed to mitigate the problem, largely drawing from
the wide literature of domain adaptation techniques [11] adapted
for the ASC problem [12, 13, 14], or specifically taking steps to
mitigate the effects of city and device [15, 16].

In this work, we adopt a different perspective: we argue that
those factors deserve a prominent place in the evaluation of ASC
systems as they reveal important insights about the behaviour of
trained models. To do that, we adopt the language of recent works in
the machine learning (ML) fairness literature. In particular, we pro-
pose disaggregated evaluations, a concept highlighted by Mitchell
et al. [17] as a means to expose the effects that these underlying
factors have on system performance. Disaggregation, which corre-
sponds to breaking down an evaluation to more fine-grained levels
of analysis, can be done both in a unitary (how performance is af-
fected by each factor independently) and in an intersectional way
(how performance is affected by combination of factors). For the
task of ASC, we consider the three aforementioned factors, namely
location, city, and device, as warranting a closer investigation. This
choice is primarily motivated by availability (the existing metadata
is already there) and community awareness (past works take them
into account).

The rest of this document is organised as follows. In Section 2,
we formulate our research question by discussing fairness and un-
derspecification for ASC. Our methodological approach, including
a description of the data and deep learning (DL) architectures used
in our experiments, is outlined in Section 3. The results and a dis-
cussion of our disaggregated evaluations are presented in Section 4.
Finally, we summarise our findings in Section 5.

2. FAIRNESS AND UNDERSPECIFICATION IN ASC

The success and increased usage of ML, and in particular DL, sys-
tems in commercial applications has led to rising concerns towards
discriminating biases exhibited by ML applications, for instance
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based on race [18]. Especially in the case of DL, a lack of inter-
pretability can often be observed [19], thus posing additional chal-
lenges to discover and mitigate said biases. Even though ASC mod-
els are not widely considered high risk applications, their increas-
ing usage in smart city [20], security [21], elderly monitoring [22],
and autonomous driving [23] applications means they may soon (or
already) be part of critical decision making systems, thus making
fairness a critical consideration for those algorithms.

Of the three factors, the recording device is perhaps the most
benign; it is hard to justify why an ASC system that only works for
specific devices should raise ethics concerns, although low-income
groups could be excluded if data are only collected with high-end
equipment. On the other hand, city and location (which corresponds
e. g. to specific neighbourhoods) pose potentially bigger problems;
a security application should work equally well for all citizens ir-
respective of where they reside, and autonomous driving systems
should maintain a standard of performance irrespective of where the
vehicle currently is. There is a already a rich body of work in so-
cial sciences discussing inequality across different neighbourhoods
on income, health, and other socioeconomic factors [24], which an
unreliable system may inadvertently exacerbate. This could have
adverse effects against people living in those neighbourhoods, and
may disproportionately affect minorities in demographically segre-
gated communities. Therefore, we anticipate that explicitly commu-
nicating disaggregated performance with respect to all three factors
would enhance trustability in ASC systems used in real-life envi-
ronmental sensing applications.

Disaggregated evaluations can also be viewed under the per-
spective of recent research on the underspecification of ML ar-
chitectures [25], which corresponds to the fact that several archi-
tectures yielding similar in-domain performance nevertheless ex-
hibit different behaviour during system deployment. This unde-
sired property may have negative consequences on the reliability
and trustability of ASC systems. For example, if a person using
an ASC system observed substantially different performance when
visiting different neighbourhoods of the same city, they might even-
tually lose their trust in system performance and stop using it. As
ASC architectures increasingly find their way into more real-life
applications, the need to address this issue becomes more pressing.
Our evaluation reveals that different architectures yielding almost
equivalent performance in standard aggregated evaluations exhibit
different behaviour across different sub-populations of the herein
examined datasets, thus illustrating that underspecification is also
a problem for ASC applications. This shows that disaggregated
evaluations can be a useful tool for practitioners that need to select
among a pool of candidate models.

3. METHODOLOGICAL APPROACH

Our approach consists of the following steps. First, we train several
deep neural network (DNN) models on the training set of each of
the datasets examined here. Each model is trained for 60 epochs
using stochastic gradient descent (SGD) with a Nesterov momen-
tum of 0.9, a learning rate of 0.001, and a batch size of 64. For
all experiments, we use log Mel spectrograms with 64-bins as input
features, extracted with a window size of 32ms and a hop size of
10ms. These hyper-parameters were fixed a priori for all models
and not optimised during our experiments. Each model is trained
with 5 random seeds to mitigate the effect of randomness.

Our experiments are conducted on the TUT Urban Acoustic
Scenes 2018 and TUT Urban Acoustic Scenes 2018 Mobile data

sets [8], which will be henceforth referred to as TUT-Urban and
TUT-Mobile for brevity. Both datasets contain data from 10 acous-
tic scenes recorded across several locations of 6 different European
cities. TUT-Urban contains 8640 stereo samples recorded at 48 kHz
with a single high-quality recording device (Soundman OKM II
Klassik/studio A3), whereas TUT-Mobile additionally contains 720
samples from each of two additional low-quality recording devices
(Samsung Galaxy S7 and iPhone SE). In the case of TUT-Mobile
all data are stored as mono recordings at 16 kHz.

All models are first evaluated in the standard, aggregated way
by computing a single accuracy value, and subsequently assessed
using unitary and intersectional evaluations as described below. We
begin with unitary evaluations, where each factor is considered in
isolation. For city and device, where we have only 6 and 3 different
groups, respectively, we simply report the accuracy for each group.
The location factor is more complicated, as we have 83 different lo-
cations in the test set, thus making it hard to visualise results. More-
over, whereas for each city and device we have all classes available,
each location corresponds to exactly one class, thus making accu-
racy an inappropriate metric for that evaluation. To overcome these
problems, we compute the F1 score, which is the harmonic mean
of precision and recall, for the class corresponding to each location
and further normalise the per location F1 score, F l

1, by the overall
F1 score for that architecture.

Intersectional evaluations are in turn conducted by taking into
account two, or more, factors. Due to space limitations, we only
consider results for two pairs of factors: the variation of cities
across different devices and the variation across locations in differ-
ent cities. For the first case, we report the accuracy for each combi-
nation of factors. For the latter case, we compute the F l

1 score for
each location as in the unitary case, but now normalise over the F1

score for each city, F c
1 .

As DL architectures, we use 5 standard DNN models that be-
long to different architecture families. FFNN: as the most simple
architecture we choose a feed-forward neural network with three
hidden layers of decreasing sizes, 300, 200, and 100 units with a
rectified linear unit (ReLU) activation function. The inputs of of the
network are the flattened log Mel spectrograms. TDNN: we further
employ a time-delay neural network (TDNN) architecture. First
introduced by [26] with the aim of learning temporal relationships,
TDNNs have recently seen great success in the field of speaker iden-
tification [27]. Our TDNN architecture is identical to the DNN ar-
chitecture described as the x-vector system in [27]. CNN6, CNN10,
CNN14: the final architectures considered in our experiments are
CNN-based and were recently introduced by Kong et al. [28] in the
context of audio pattern recognition. The three architectures have a
total of 6, 10, and 14 layers, respectively, excluding pooling layers
after convolutional layers, and take Mel-spetrograms as inputs. The
final two layers of each network are fully connected.

4. RESULTS AND DISCUSSION

Our unitary evaluation results for different cities are presented in Ta-
ble 1, along with the standard aggregated metrics. We show model
accuracy for each factor in isolation, and also report the standard
deviation over all factors. F1 results for different locations in TUT-
Urban are shown in Figure 1, where we show box-and-whisker plots
of the normalised F1 scores. We omit unitary results for different
devices as they can be inferred from the intersectional results in Ta-
ble 2; as expected, all architectures perform best on the high-quality
device A, for which we also have the most data, while doing worse
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Table 1: Aggregated and unitary disaggregated evaluations considering different cities in isolation. For the aggregated evaluation, we show
accuracy[%] for all test data for TUT-Urban and TUT-Mobile. For the unitary disaggregated evaluations, we show accuracy[%] on different
cities for each architecture, as well as its standard deviation (σ) over the different cities. Results are averaged across 5 different runs.

TUT-Urban TUT-Mobile

FFNN TDNN CNN6 CNN10 CNN14 FFNN TDNN CNN6 CNN10 CNN14

Aggregated 52.8 57.2 68.7 67.7 66.3 53.1 54.7 66.8 66.3 63.6

City Disaggregated evaluations

Barcelona 52.9 61.7 64.8 60.9 58.9 55.9 56.4 61.3 57.9 57.6

Helsinki 56.1 61.3 70.2 67.3 63.5 50.8 57.1 67.9 66.7 58.3

London 51.1 61.7 71.6 74.2 71.5 52.7 59.2 70.1 72.0 70.8

Paris 45.5 53.8 62.0 61.0 62.4 45.8 54.1 60.1 59.7 60.8

Stockholm 53.0 47.4 73.1 68.4 68.2 56.2 46.9 72.5 68.3 67.3

Vienna 59.8 57.9 69.9 74.0 73.0 58.8 54.3 68.0 72.4 65.7

σ 4.4 5.2 3.9 5.4 5.1 4.3 3.9 4.5 5.6 4.9

Table 2: Intersectional evaluations considering recording device and city in combination for the TUT-Mobile dataset. We show accuracy[%]
for each combination of city and device. Cites are Barcelona (B), Helsinki (H), London (L), Paris (P), Stockholm (S), and Vienna (V). The
best performing architecture value per city and device is marked by boldface. Results are averaged across 5 different runs.

Device A Device B Device C

Model B H L P S V σ B H L P S V σ B H L P S V σ

FFNN 56.1 53.1 53.0 46.9 56.5 60.5 4.2 54.8 38.1 54.8 29.0 56.7 48.7 10.2 54.1 31.0 45.2 46.5 52.0 48.7 7.5

TDNN 57.9 60.4 62.9 57.0 47.5 56.3 4.8 44.4 38.1 26.5 34.8 53.3 41.3 8.3 46.7 30.3 34.2 32.9 31.3 43.3 6.2

CNN6 61.9 70.2 71.2 63.1 73.4 69.7 4.2 55.6 58.7 67.7 38.1 65.3 61.3 9.7 57.8 44.5 56.8 39.4 66.0 54.7 8.8

CNN10 58.8 68.9 73.7 62.2 69.1 74.2 5.6 53.3 56.1 64.5 41.9 68.0 61.3 8.5 49.6 46.5 53.5 42.6 56.7 62.7 6.6

CNN14 58.7 60.5 71.9 62.4 68.5 67.2 4.7 48.1 47.1 64.5 43.2 61.3 58.0 7.9 51.9 38.1 60.0 55.5 55.3 56.0 7.0

on the lower quality and less populous B and C devices. Location
results on TUT-Mobile are also omitted due to space limitations but
exhibit the same trend as those on TUT-Urban.

Table 1 can be read both horizontally, thus emphasising which
model works best for a specific factor, and vertically, where we are
interested in how a specific model performs across different factors.
Overall, CNN6 is showing the strongest performance, followed by
CNN10 and CNN14, with TDNN and FFNN performing substan-
tially worse. Furthermore, CNN6 exhibits relative stability across
both cities and devices. However, it is not the best choice for all
cities; in both datasets, CNN10 is outperforming it for London and
Vienna, and CNN14 for Paris, though the latter only marginally.

Of more interest is the vertical interpretation of Table 1. We ob-
serve that different architectures exhibit a different ordering when
it comes to performance per city. In TUT-Urban for example, dif-
ferent architectures yield their best performance on different cities:
FFNN on Vienna, TDNN on Barcelona and London, CNN6 on
Stockholm, CNN10 on London and Vienna, and CNN14 on Vi-
enna. Another interesting case is Stockholm, where CNN6 shows

its best performance and TDNN its worst. Conversely, Vienna,
where FFNN, CNN10, and CNN14 show (near-)best performance
for TUT-Urban, is showing mediocre results for CNN6 and TDNN.

For TUT-Mobile, these results are better visualised in Figure 3
which shows the range of F1 scores per location for the different
cities. Notable differences exist; TDNN shows worse performance
on Stockholm than Paris, whereas all other architectures show the
opposite trend. CNN6 and CNN10, which are almost equivalent in
terms of aggregated performance, also exhibit differences, in par-
ticular for Stockholm and Vienna. Interestingly, TDNN and FFNN
deviate substantially from the other three architectures, which are
more closely clustered together, indicating that models from the
same family exhibit more similar behaviour. These observations
illustrate that the inductive biases introduced by each architecture
manifest themselves as different behaviours on different strata of
each dataset, which is in line with recent research on inductive bi-
ases [29, 30].

Figure 1 additionally shows that location is a very important
factor when it comes to system performance, with some locations
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Figure 1: Distribution of relative F1 score on different locations of
TUT-Urban for all architectures. Box plots show median and inter-
quartile range of relative F1 score.
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Figure 2: Intersectional analysis of model performance with respect
to both city and location for TUT-Urban. For each architecture,
cities are (from left to right): Barcelona, Helsinki, London, Paris,
Stockholm, Vienna. Box plots show median and inter-quartile range
of relative F1 score with respect to different locations within each
city.

exhibiting almost half the aggregated system performance. Such
behaviour is highly undesirable because an ASC system deployed
across different locations will consistently exhibit subpar perfor-
mance for some of them, with the risk to equal and fair access to
service that this entails. We note that most locations seem to ex-
hibit better than average performance (the F1 ratio is bigger than
1). This is caused by the fact that the worst performing locations
happen to have more samples, thus having a bigger influence on
aggregate performance.

Intersectional results are shown in Table 2 for the combination
of city and device, and in Figure 2 for the combination of city and
location. The differences amongst all cities and all devices were
found significant for all architectures using Kruskal-Wallis omnibus
H-tests for each factor and architecture, respectively. This shows
that, in general, both factors have a large effect on model perfor-
mance. In addition, Table 2 and Figure 2 both show that different ar-
chitectures exhibit different behaviour on different strata of the two
datasets, even though they were trained on identical settings. Over-
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Figure 3: Accuracy for each city and architecture on TUT-Mobile.

all, CNN6 is again showing the strongest performance for most,
though not all, combinations, followed by CNN10. In terms of in-
dividual factors, Paris is showing the biggest drop in performance
when switching from device A to device B for all architectures, indi-
cating that the domain shift introduced by different devices is more
adversely impacting this city.

The most interesting case is TDNN, which is showing its best
and worst performance on London and Stockholm for device A, re-
spectively, but shows the exact opposite for device B, where the
best performance is obtained for Stockholm and the worst for Lon-
don. In fact, the performance of TDNN on Stockholm is far better
for device B than for device A, even though the latter has far more
samples and should thus lead to better performance.

5. CONCLUSION

In this work, we argue for the need of disaggregated unitary and
intersectional evaluations for the task of ASC. Our proposed eval-
uation methodology reveals that several baseline architectures ex-
hibit different behaviour even though they are trained with similar
settings. This illustrates that ASC models trained on the examined
datasets suffer from the underspecification problem, which heavily
impacts the development of reliable and trustworthy systems. In the
future, we intend to further investigate this problem under the per-
spective of inductive biases introduced by each architecture [30].

Moreover, our work raises interesting questions on the fairness
of ASC applications. The architectures examined here exhibit a bias
with respect to different cities, locations, and devices. If these archi-
tectures were deployed in a real-world setting, this would translate
to non-uniform behaviour over these different factors. This poses
a risk to fair and equitable use of ML resources. We believe this
important point needs to be addressed as ASC models are being
increasingly integrated in intelligent decision making systems.
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