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Featured Application: Rapid seismic assessment of historic masonry structures.

Abstract: This paper presents a user-friendly, CAD-interfaced methodology for the rapid seismic
assessment of historic masonry structures. The proposed multi-level procedure consists of a two-
step analysis that combines upper bound limit analysis with non-linear dynamic (rocking) analysis
to solve for seismic collapse in a computationally-efficient manner. In the first step, the failure
mechanisms are defined by means of parameterization of the failure surfaces. Hence, the upper
bound limit theorem of the limit analysis, coupled with a heuristic solver, is subsequently adopted to
search for the load multiplier’s minimum value and the macro-block geometry. In the second step,
the kinematic constants defining the rocking equation of motion are automatically computed for the
refined macro-block model, which can be solved for representative time-histories. The proposed
methodology has been entirely integrated in the user-friendly visual programming environment
offered by Rhinoceros3D + Grasshopper, allowing it to be used by students, researchers and practicing
structural engineers. Unlike time-consuming advanced methods of analysis, the proposed method
allows users to perform a seismic assessment of masonry buildings in a rapid and computationally-
efficient manner. Such an approach is particularly useful for territorial scale vulnerability analysis
(e.g., for risk assessment and mitigation historic city centres) or as post-seismic event response (when
the safety and stability of a large number of buildings need to be assessed with limited resources).
The capabilities of the tool are demonstrated by comparing its predictions with those arising from
the literature as well as from code-based assessment methods for three case studies.

Keywords: nelder-mead method; upper bound limit analysis; visual programming; rocking dynam-
ics; nonlinear dynamic analysis

1. Introduction

In the last decade, impressive advancements have been made with respect to the
preservation of the structural integrity of historic masonry structures [1].

In the literature, there are several advanced methods of analysis that can be imple-
mented in both numerical methods or analytical tools [2]. The majority of such studies
address the structural analysis and safety problem of masonry structures by using numer-
ical models based either on the Finite Element Method (FEM) [3–5] or Discrete Element
Method (DEM) [6].

In the case of FE models, the masonry is typically modelled following either a contin-
uum approach (designated as macro-modelling) [7] or discretizing explicitly both units
and joints (designated as micro-modelling). In the case of DE models, the masonry is
typically modelled as the assemblage of rigid blocks inter-connected through interfaces
of a given stiffness, which makes it possible to capture their large displacement response
and the opening and closing of joints [6]. It is worth noting that both of these methods
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require a large set of input parameters [8] and can be time-consuming and computationally
expensive in the case of modelling failure, which becomes even more relevant in the case
of dynamic analysis.

Hence, powerful analytical tools based on the theorems of limit analysis can be an ap-
propriate alternative. The main advantage of limit analysis approaches is that they require
less knowledge of the mechanical behavior of materials and are, therefore, more practical.

Specifically, the Upper Bound theorem of limit analysis is a useful tool for the rapid
assessment of historic masonry structures [9]. However, the computation of the load
multiplier depends on the macroblocks’ geometry that strongly influences the assessment
of their structural integrity. Therefore, multiple (theoretically infinite) failure mechanisms
need to be considered to evaluate the minimum of the kinematically compatible load
multipliers [10]. Some researchers proposed using optimization routines that solve the
minimization problem that is constrained under specific hypotheses [11].

Casapulla et al. [12,13] proposed a macro-block model coupled with a simplified
procedure for predicting the collapse load and the failure mechanism of in-plane loaded
masonry walls with non-associative frictional contact interfaces. The same authors [14]
have recently revisited the previous macro-block approach implementing the frictional
resistance computation.

Funari et al. [14] implemented a novel two-step analysis method in a visual program-
ming environment, which can manage the data arising from both non-linear static or
dynamic analysis to detect the most likely collapse mechanism through the Control Surface
Method (CSM). In this framework, the macro-block geometry’s parameterization allows
for the exploration of the domain of possible solutions using the upper bound method of
limit analysis coupled with an optimization tool based on Genetic Algorithms.

Due to their relatively low computational cost, upper bound limit-analysis procedures
have been implemented in building codes [15,16] in order to provide rapid verifications
of the stability of masonry structures subjected to earthquakes. Such approaches include
both strength and displacement based procedures, which, while rapid, tend to incorpo-
rate limited dynamic effects and thus yield predictions that are generally on the more
conservative side [17] and that can consequently result in expensive, and occasionally un-
necessary, retrofitting solutions. As an alternative, non-linear dynamic analysis, whereby
the equations of motion of the macro-blocks are directly integrated, could be used to
more accurately model the dynamic behaviour of these masonry structural assemblies.
Specifically, by modelling the macro-block as a SDOF system undergoing rocking motion,
better agreement has been found with experimental results, with substantially less scatter
presented as compared to the corresponding code-based predictions [17].

Equations of the motion for single rigid prismatic blocks rocking on rigid interfaces
(assuming no bouncing or sliding) were first derived by Housner [18]. Since then, equations
of motion have been derived for more complex geometries such as masonry spires [19]
and for more complex mechanisms such as facades subjected to additional masses due
to floors and roofs, thrusts from vaults, and the restraining influence of tie-rods [20–23].
Equations have also been derived for mechanisms with two and three elements in the
kinematic chain, including cracked wall sections [23], arches [22], and symmetric [23,24]
and asymmetric [25] portal frames. Furthermore, through linearization of the equations of
motion about the point of unstable equilibrium, local dynamic equivalence can be derived
between more complex rocking systems and the single rocking block [25]. Consequently,
the dynamic response of the different mechanisms (single, two and multi-block) can be
approximated using the same general linearized equation of motion.

Still, derivation of these equations of motion can be challenging, especially for struc-
tures with complex geometries, or mechanisms involving more than one element in the
kinematic chain. To that end, a CAD-interfaced analytical tool for the non-linear dynamic
analysis of masonry collapse mechanisms was developed by Mehrotra and DeJong [26].
The tool can directly derive and solve the equation of the motion for any user-defined struc-
tural geometry. The broad applicability of this tool was demonstrated by the analysis of a
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variety of masonry structures such as churches [26] and monumental houses [27]. However,
to perform the dynamic rocking analysis following this methodology, the exact collapse
mechanism needs to be defined a priori, which requires in-field surveys/site inspections
and ultimately, depends extensively on user experience and engineering judgment.

The main aim of this paper is to develop a novel, multi-level integrated modelling
procedure that uses a combination of upper bound limit analysis [14,28] and non-linear
dynamic (rocking) analysis [26] for the seismic collapse assessment of any user-defined
structural configuration. In the first step, parametric modelling of the macro-block geome-
try is conducted, enabling exploration of the domain of possible solutions using the upper
bound method of limit analysis. A heuristic solver based on the Nelder-Mead method [29]
is then used to refine the geometry of the macro-blocks and search for the minimum value
of the load multiplier. Once the macro-block (i.e., collapse mechanism) has been defined,
the digital tool then computes the kinematic constants defining the corresponding (rock-
ing) equation of motion, which can be solved for full time-histories. The response of the
structure is provided both in terms of the full time-history response as well as in the form
of the maximum predicted rotation. An overview of the proposed analysis procedure can
be found in Figure 1.
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Figure 1. Overview of the proposed multi-level analysis procedure.

The proposed methodology has been entirely integrated into a user-friendly visual
programming environment that allows the user to easily connect data from different
sources while keeping a clear understanding of the relationships between them thanks to
the flowchart-like representation of the different components of the code. The procedure
is made available using the environment offered by Rhinoceros3D + Grasshopper [30],
which is well known by students, researchers, and practicing structural engineers. Un-
like other more time-consuming advanced methods of analysis, the proposed method
allows the users to perform a seismic assessment of masonry buildings in a rapid and
computationally-efficient manner, while simultaneously providing more accurate predic-
tions than simplified/code-based methods. Such an approach is particularly useful for
territorial scale vulnerability analysis (e.g., for risk assessment and mitigation in historic
city centres) or as post-seismic event response (when the safety and stability of a large
number of buildings need to be assessed with limited resources).

The paper is organized as follows. The theoretical background of the proposed
methodology is described in Section 2, while Section 3 reports its numerical implemen-
tation. The three benchmark case studies conducted using the proposed methodology,
including the code-based assessment according to the Italian building code are presented
in Sections 4 and 5. The relevant conclusions are finally discussed in Section 6.
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2. Methodology

In this section, the theoretical background of the proposed multi-level approach is
described. First, the geometry of the collapsed macro-block is obtained by using a heuristic
solver coupled with the Upper Bound theorem of limit analysis. Subsequently, the macro-
block is considered as geometry data input to compute the kinematic constants defining
the corresponding rocking equation of motion.

2.1. Upper-Bound Limit Analysis

The Upper bound limit analysis proposed is theoretically based on the mechanical
model developed in Reference [31], which has been implemented into a visual environment
in Reference [14]. According to Heyman’s no-tension model, masonry is considered to have
an infinite compression strength and no capability to resist tension [9]. Load multipliers
are computed, taking into account the friction at contact interfaces. The load multiplier λ,
leading to the collapsed macro-brock, is obtained by using the principle of virtual work:

λ
n

∑
i=1

Wiδ(x,y),i −
n

∑
i=1

Wiδ(z),i −
n

∑
s=1

Freal,sδ(x,y),s = 0 (1)

where Wi are the inertia forces arising from floors and roofs as well as the self-weight of
the masonry walls, δ(x,y,z) are the virtual displacements of the point in which the forces are
applied, Freal,s are the real frictional forces computed as a weighted value as a function of
the inclinations of the crack line [32], i.e.,:

Freal,s = Fmax,s

(
1− αc

αb

)
(2)

where αc is the actual crack inclination αb is the crack inclination upper threshold (which
depends by the geometry of the block [31]) and Fmax,s is the frictional force computed under
the hypothesis of maximum frictional i.e.,:

Fmax,s = Wi,s(αb) fc (3)

where Wi,s(αb) is the weight of the macroblock OAB (Figure 2) and fc is the friction coefficient.
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The minimum load factor capable of activating the failure mechanism is computed
through an optimization routine that varies the inclination of the lines that simulate the
cracked surfaces. As reported in Reference [31], the crack inclination, which represents
the variable of the optimization procedure, must respect the conditions of geometric
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compatibility depending on the dimensions of the blocks. Hence, λ is obtained by solving
the following constrained minimization problem.{

min λ :
l

2nh
≤ tan αc ≤ tan αc (4)

where l, h, n are the brick length, the brick height and the number of vertical brick rows,
respectively.

2.2. Non-Linear Dynamic (Rocking) Analysis

Once the geometry of the collapsing macro-block is defined, the rocking dynamic
analysis can be performed. Following the approach presented in Reference [20], the rocking
equation of motion assumes the following general linearised form:

Ĩ
..
φ− K̃(φ− φcr) = −B̃

..
ug + M̃ (5)

where Ĩ is the moment of inertia of the macro-block computed about the axis of rotation
(hinge), K̃ is the rotational stiffness of the structure, φ is the rotation, while φcr is the
critical (unstable equilibrium) rotation of the macro-block, about which the equation of
motion is linearised in order to obtain dynamic equivalence with the single rocking block.
Additionally, M̃ is the moment due to external static forces (if any), while B̃

..
ug is the

moment provided by the ground motion.
Through the following transformation of variables (where g is the acceleration due

to gravity):

θ = φ
K̃
gB̃

(6)

Equation (5) can be re-written as:

..
θ = p2

eq

(
θ − λ̃−

..
ug

g

)
(7)

where peq is the equivalent rocking frequency parameter and λ̃ is an approximation of
the load multiplier that activates the mechanism (i.e., not explicitly taking into account
frictional forces) as opposed to the minimum frictional load multiplier λ as defined in the
previous sub-section. In this work, rocking is defined to initiate when

..
ug > gλ̃.

Note that both peq and λ̃ are the equivalent rocking parameters defining the rocking
equation of motion, and depend on the kinematic constants Ĩ, K̃, B̃, M̃ and φcr, which
in turn are dependent on the geometry of the macro-block(s) and the type of mechanism
taking place (i.e., single/two/multiple block). For more detailed (i.e., mechanism-specific)
expressions of these terms, the reader is directed to Reference [26].

Furthermore, the rotation θov upon the exceedance of which the macro-block will
overturn and collapse also needs to be computed. As in the case of peq and λ̃, this rotation
depends only on the kinematic constants:

θov =
(

φcrK̃− M̃
) 1

gB̃
(8)

Numerical integration of the equation of motion is then conducted using the explicit
Runge-Kutta method of order 5(4), whereby the error is controlled assuming the accuracy
of the fourth-order method, while steps are taken using the formula with fifth-order
accuracy. The solution procedure is iterative: starting from a given set of initial conditions,
the algorithm computes the rotation and angular velocity at each time-step, which are
subsequently used as input (i.e., the initial conditions) for the following time-step. In the
case of impact, the energy dissipated by the block(s), which results in a reduction in angular
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velocity, is accounted for through the coefficient of restitution ηCOR, which depends both
on the block geometry as well as on the type of rocking (i.e., one-sided or two-sided). More
detailed expressions for this term can also be found in Reference [26].

3. Numerical Implementation

The multi-level analysis described above is implemented within the visual program-
ming environment offered by Rhinoceros3D + Grasshopper. The proposed method is
compartmentalised into clusters, where each group performs logical functions.

The first step of the visual script is devoted to importing the geometry of the structure
that the user wants to investigate (BLOCK 1, Figure 3). This step of the procedure may be
performed by following different approaches, i.e., parametric modelling of the structure,
importing of the NURBS geometry previously modelled in Rhino3D or importing of the
geometry directly using laser scanning. The same group of the visual script contains a
series of components devoted to the setting of parameters required: friction coefficient,
dimensions of the blocks, specific weight and the position of the rotational hinge (whereas
its height with respect to the ground is assumed as a variable). In the same group, the user
has to define the geometry of the openings, if present.
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The second group is formed by a series of Grasshopper components able to split
the structure by means of crack lines which define the geometry of the collapsing macro-
block (BLOCK 2, Figure 3). This group contains a series of sliders that allow the visual
program to cover a broad range of macro-block geometries according to the geometrical
constraints defined in Equation (3). These sliders correspond to unknown variables in the
optimization procedure.

The subsequent group (BLOCK 3, Figure 3) contains an ad-hoc programmed C#
component, which formulates the principle of virtual work of the problem. The output of
this cluster is the calculated load multiplier (BLOCK 4, Figure 3). In this work, to solve the
minimisation problem reported in Equation (4), the Nelder–Mead method is adopted [33].
The Nelder-Mead method (NMM) is a commonly applied numerical method used to find
the minimum or maximum of an objective function in a multidimensional space. The
NMM component (BLOCK 5, Figure 3) is linked to the parameters that define the geometry
of the collapsing macroblocks (inclination of the cracks) and the load multiplier that has to
be optimised.

Once the geometry of the macro-block (i.e., the collapse mechanism) and its associated
minimum load multiplier λ have been obtained using the optimisation procedure described,
a GhPython script (the Python interpreter component for Grasshopper) follows (BLOCK 6,
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Figure 3). This component takes as input the macro-block geometry and hinge location,
and automatically extracts the required geometric properties (such as volume, centroid and
moment of inertia) defining the kinematic constants, which, in turn, are used to compute
the parameters defining the rocking equation of motion. For a more detailed description of
how the script works, the readers are directed to References [14,26].

The rocking equation of motion can then be solved for full time-histories, (BLOCK 7,
Figure 3) for both harmonic and random, i.e., earthquake, ground motions. Note that in
the case of the latter, the corresponding ground motion records would need to be provided
as user-defined input (BLOCK 8, Figure 2).

The solution of the equation of motion requires additional Python packages such as
NumPy [34] and SciPy [35], which are not available in IronPython, which is the imple-
mentation of Python used by Rhino and by extension, Grasshopper. Thus, to make the
proposed modelling strategy work within the Grasshopper environment, a GH Python
Remote component [36] was added to the cluster (BLOCK 7), as it provides a connection to
an external instance of Python through which the required NumPy and SciPy functions
can be executed.

4. Validation of the Upper-Bound Limit Analysis Procedure

In this section, the proposed methodology is evaluated using three case studies. The
first case study, which involves a masonry wall without openings [31], is used to validate
the upper bound limit analysis procedure implemented in the visual program-interface.
The second and third case studies involve a masonry wall with openings and a church
geometry inspired by that of San Nicolò di Capodimonte (Camogli, Genova, Italy).

4.1. Solid Masonry Wall Loaded In-Plane

A masonry wall loaded in its plane is first considered to validate the suitability of
the proposed procedure. The geometry of the wall, as well as the loading configuration,
are taken in agreement with those reported in Reference [31]. In the present example,
two kinds of blocks are considered. Figure 4a,b show the masonry pattern for m = 1
and m = 0.5, respectively (where m is the unit aspect ratio of the blocks [31]). A friction
coefficient equal to 0.75 is considered. Figure 5a shows the optimisation process, which is
based on 20 iterations of the Nelder- Method-Optimisation component [37]. During the
first generation of the solution, the solver starts randomly. At each succeeding generation,
the result tends to converge to the value that minimises the load multiplier under the
constraints imposed in Equation (3).
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Considering a numerical approximation of two digits, the solver converges, after few
iterations, in 2 s with an Intel® Core™ i7–6700HQ processor. In the case of m = 1, the
proposed solution scheme computes a load multiplier equal to 0.25, whereas the micro-
model approach [38] computed a value of 0.27. When m = 0.5, the NMM solver converges
to a value of the multiplier equal to 0.47, which is slightly lower than the one arising
from [38] (0.49). It is worth noting that in both the analysed cases, the load multipliers
computed using the proposed macro-block approach are slightly lower than those arising
from the micro-block approach. These conservative results are in agreement with the
concept of the macro-block approach, which allows users to get an estimation of the seismic
safety of the structures while significantly reducing the computational cost.

The same considerations can be made from the point of view of the geometry of the
failure mechanism, see Figure 5b. In particular, when m = 1, the collapsed macro-block is
unable to mobilise any friction forces ( Freal,s → 0). Instead, when m = 0.5, the collapsed
macro-block is characterised by an angle placed at an intermediate position among the
three different cracks detected within the micro-block model [31,38].

4.2. Masonry Wall with Openings Loaded in-Plane

The second case study aims to investigate the capabilities of the proposed model on a
masonry wall with openings. The geometry, the boundary conditions, and the mechanical
parameters are taken in agreement with Reference [39], which integrated a computer
procedure to determine the collapse using a non-standard limit analysis where the masonry
was modelled as a discrete system of rigid blocks. The masonry wall is subjected to a
gravity load and a horizontal uniform lateral load as a factor of the unit weight. The
structural model, as well as the failure mechanism obtained by using the non-associative
friction solution in Reference [39], are reported in Figure 6. As shown in Figure 6b, the
crack pattern is mainly featured by the overturning of an assemblage of rigid blocks which
assume the structural behavior of a macro-block.

Based on both engineering judgment and in-situ observations after earthquake
events [40], cracks follow openings as they are the weakest part in a wall. Under seismic
action, the stresses on the openings’ corners assume the highest values and the corners are
usually attractors for crack initiation.
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In literature, there are few research works, based on the macro-block approach [32,40],
analysing cases in which there are openings in the masonry wall. Casapulla et al. [32]
investigated the role of the openings in the rocking mechanism of masonry wall ends.
Their model constrains the lower crack fixed a priori as strictly related to the width of the
pier and height of the lower spandrel. For instance, the analytical model developed in
Reference [32], considers only the inclination of the crack above the openings as a variable
of the failure mechanism. Realistic collapse mechanisms include that the crack crossing the
lower spandrel (below the opening) may change its inclination, as well as the possibility
that the crack, concerning to the considered opening, involves the upper spandrel varying
its starting point. Despite other analytical models [31,32], the proposed formulation is
able to cover these cases by managing a larger set of variables and improving the research
panorama in which the cracks could propagate. For that purpose, the proposed visual
program is implemented by a C# component, which is adopted to take into account the
constraints that the cracks inclinations must respect.

Figure 7a shows the optimisation process, which is based on 20 iterations of the
Nelder- Method-Optimisation component [37]. The solver converges to a value of 0.21,
after less than 10 iterations, in 3 s with an Intel® Core™ i7-6700HQ processor. As shown in
Figure 7b, the geometry of the obtained failure mechanism is in good agreement with those
arising from the micro-block approach (see Figure 5b) [39]. The load multiplier obtained
at the end of the optimisation procedure is 20% more conservative than that computed in
Reference [39], which is reasonable given the level of simplification and the large size of
the masonry units when compared to the size of the piers and spandrels.

To clarify the advancements brought by the proposed approach, a comparison between
the limit analysis model (Model*) developed in Reference [20] and the one proposed here
(Model) is reported in Figure 8. The main difference between Model* and Model are the
constraints about the position of the lower and upper cracks, which, in the present case,
are removed by allowing the optimization problem to cover a larger set of kinematically
compatible solutions. The results reveal how the proposed Model can obtain a lower value
of λ, whereas Model* computes a load multiplier which is not conservative if compared
with that arising from the micro-block approach.
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4.3. Church Loaded Out-of-Plane

The third case study is a masonry church characterised by a plan having the form of
the Latin Cross. The 3D model of the church, and the mechanical parameters, are taken in
agreement with those reported in Reference [41] (Figure 9a). In particular, the *.dwg 3D
model has been downloaded from the following link https://data.mendeley.com/datasets/
ycxvmj77x5/1.

In the present work, the failure mechanism generated by the seismic action activated
along the direction perpendicular to the façade (i.e., out of plane) is considered. Figure 9b
shows the reference failure mechanism obtained by using a non-associative friction solution
and micro-block modelling [41].

Figure 10a shows the results of the optimisation process. Considering a numerical
approximation of two digits, the solver converges to a value of 0.21, after less than 10 it-
erations, in 5 s with an Intel® Core™ i7–6700HQ processor. It is worth noting how the
geometry of the failure mechanism is in agreement with that obtained by adopting a
micro-block model and a non-associative friction flow rule (Figure 10b). The proposed
macro-block model also shows excellent prediction in terms of the load multiplier, which is
5% more conservative than the one obtained using the micro-block approach.

https://data.mendeley.com/datasets/ycxvmj77x5/1
https://data.mendeley.com/datasets/ycxvmj77x5/1
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5. The Step towards Full Dynamic Seismic Assessment Tools

In this section, the results of the proposed upper-bound limit analysis tool for the
masonry wall with openings and the church presented in the previous section are evaluated
towards full dynamic seismic assessment procedures through comparisons with predictions
of the equivalent static displacement-based procedure of the Italian building code [15,16],
while the influence of ground motion characteristics (pulse vs. non-pulse-type) on dynamic
response is also investigated.

5.1. Code Based Assessment According to the Italian Building Code

Once the load multipliers and mechanisms of the case studies have been computed, a
force-based and equivalent static displacement-based assessment was conducted, using
the procedure defined in the Italian building code [16,17]. The code-based assessments
were performed for the so-called life-safety limit state (SLV) in the code, which typically
corresponds to a return period of 475 years.

Regarding the force-based assessment, the code defines the acceleration capacity as
the spectral acceleration of mechanism activation a∗0 , which is computed by using the
following equation:

a∗0 =
λ̃g

e∗CF
(9)
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where λ̃ is the load multiplier that activates the rocking mechanism (Section 2.2), g is the
acceleration due to gravity, CF is the confidence factor (which is here assumed equal to
1.00) and e∗ is the participating mass fraction related to the effective participating mass M*.
The latter two parameters are computed using the following equations:

M∗ =
(∑n

i=1 Wiδx,i)
2

g ∑n
i=1 Wiδ

2
x,i

(10)

e∗ =
gM∗

∑n+m
i=1 Wi

(11)

where Wi and δx,i are defined in Section 2.1.
The corresponding acceleration demand is equal to the PGA ag multiplied by the soil

factor S, in order to get the maximum acceleration expected on the site, divided by the
behavior factor q, which is typically equal to 2 for masonry buildings. Here, the objective is
to determine the PGA ag,FB for which this safety criterion is violated, which is found by
setting the demand and capacity equal to each other, resulting in:

ag,FB =
qa∗0
S

=
qλ̃g

Se∗CF
(12)

In the case of the displacement-based procedure, the ultimate displacement capacity
dSLV

∗ is defined as 40% of the displacement d0
∗, which would cause the structure to

overturn. Specifically, d0
∗ is computed as the spectral displacement, which corresponds to

the null value of the spectral acceleration. Thus:

dSLV
∗ = 0.4d0

∗ (13)

The corresponding displacement demand ∆d is then computed by evaluating the
elastic spectral response acceleration Se at the equivalent secant period of the mechanism
TSLV with the latter calculated at dSLV

∗. The acceleration aSLV
∗, corresponding to this

displacement, is obtained from the capacity curve generated for each mechanism (see
Figure 11). The control points adopted to generate these curves were selected to coincide
with the centroid of the macro-blocks. As Figure 11 illustrates, the curves are linear for
both mechanisms and are defined by a∗0 and d∗0 , where d∗0 is the overturning displacement
of the structure, as defined above. The displacement demand ∆d can thus be calculated as:

∆d =
T2

s
4π2 gSe(Ts) (14)

where:

Ts = 1.68π

√
dSLV

∗

aSLV
∗ (15)

In the present study, the displacement demand is computed by means of the 5%
damped elastic response spectrum, as defined in Eurocode8 [42]. Note that Eurocode8
recommends two different design spectrums–Type 1 for high and moderate seismicity
regions and Type 2 for low seismicity regions and near field earthquakes. The Type 1
spectrum was used for these analyses as the church is located in Italy, which is a zone
more prone to moderate magnitude earthquakes at closer distances. The most common,
intermediate, ground type B, was assumed (very dense sand or gravel or very stiff clay,
with a soil factor S that increases the PGA by 20% with respect to the rock base). Moreover,
as 5% damping is assumed, the damping correction factor η is set to 1. The parameters
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defining the spectrum are summarized in Table 1, while the equations describing the
spectrum are given by:

Se(T) = ag ∗ S
[

1 +
T
TB

(η ∗ 2.5− 1)
]

0 ≤ T ≤ TB (16)

Se(T) = ag ∗ S ∗ η ∗ 2.5 TB ≤ T ≤ TC (17)

Se(T) = ag ∗ S ∗ η ∗ 2.5 ∗ TC
T

TC ≤ T ≤ TD (18)

Se(T) = ag ∗ S ∗ η ∗ 2.5 ∗ TCTC
T2 TD ≤ T (19)
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Table 1. Parameters used to define the Eurocode8 response spectrum.

Parameter S TB (s) TC (s) TD (s) η

Value 1.2 0.15 0.5 2.0 1.0

The PGA ag,DB, for which the displacement-based safety criteria is violated, is then
found by setting the displacement demand ∆d equal to the displacement capacity dSLV

∗

and solving for ag. Table 2 reports the PGAs for which the safety check of the Italian
building code is violated, using both linear kinematic analysis (force-based assessment)
and non-linear kinematic analysis (displacement-based assessment). For the masonry wall
with openings, the PGAs obtained from both the force-based and displacement-based
methods compare reasonably well. However, for the church mechanism, the displacement-
based procedure predicts a PGA which is almost double that obtained from the force-based
approach. This is most likely due to the larger scale of the church, which makes it less
vulnerable to collapse than the smaller scale masonry wall. This scale effect is partly
accounted for by the displacement-based procedure, but not by the force-based approach,
which instead relies only on the slenderness of the mechanism.

Table 2. Comparison of peak ground accelerations (PGAs) for which the Italian code safety check is
violated using both the force-based and displacement-based procedures.

Mechanism ag,FB (g) ag,DB (g)

Masonry wall with openings 0.33 0.35
Church 0.27 0.48
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In order to further evaluate the building scale effects, a parametric analysis in terms
of scale factor (SF) was performed for the church. To this end, the following values of the
scale factors are considered: SF = 1; SF = 1/2; and SF = 1/3. From a comparison of the
capacity curves, as illustrated by Figure 12, it can be seen that the displacement capacity is
significantly influenced by the scale of the macro-block, whereas the value of a∗0 remains
constant for all the macro-block configurations. It is also noted that the displacement
capacity is rather large when the scale increases, which raises some doubts over the
capacity of the structure to withstand such a displacement level before disintegration.
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Table 3 reports the PGAs for which the safety check of the Italian building code is
violated using the non-linear kinematic analysis for all the three idealized configurations.
This result further illustrates how the seismic safety evaluation, performed following the
displacement-based assessment, is influenced by the building scale, whereas the force-
based method is independent of the scale and instead depends entirely on the slenderness
of the macro-block.

Table 3. Comparison in terms of PGAs—SF for witch the Italian building code is violated using both
the force-based and displacement-based procedures.

SF ag,FB (g) ag,DB (g)

1
0.27

0.48
1/2 0.24
1/3 0.17

5.2. Comparison of Rocking Analysis Results with Code-Based Assessment Procedures

In this section, dynamic analyses are conducted on the collapse mechanisms to provide
a preliminary demonstration of the ability of the proposed tool to address safety and to
compare the same with code-based procedures. To that end, full time-history analyses
are performed for a set of both artificial and recorded accelerograms. In the case of the
former, the program SIMQKE_GR [43], which provides a graphical interface to the program
SIMQKE-1 [44], was used to generate a set of ten code-compatible artificial accelerograms
(Figure 13), using as input the 5% damped Eurocode8 elastic response spectrum, as defined
in the previous sub-section. Each record has a total duration of 20 s, while the average
duration of the intense phase of the ground motion is 14 s. In the case of the recorded
accelerograms, a set of 100 ground motions were obtained from the PEER NGA-West2
Ground Motion Database [45] (Figure 14), also scaled to the 5% damped response spectrum
as defined above. The set of analysed ground motions comprise 50 different pulse-type
and 50 different non-pulse type records, with an average close to the code spectrum and
average durations of the intense phase of 13 s and 20 s, respectively. Additionally, as both
mechanisms are assumed to undergo one-sided rocking, each accelerogram is run with
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reversed polarity as well, resulting in a total of 20 (artificial accelerogram) + 200 (recorded
accelerogram) analyses being conducted for each mechanism.
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In order to evaluate the predictions of the tool, an equivalent static displacement-based
analysis is also conducted for each ground motion record, using, in this case, the actual
response spectrum for each accelerogram. Additionally, to better compare the demand-
capacity ratios obtained from the code-based results to those from the non-linear dynamic
(rocking) analyses, the maximum rotations θmax predicted by the tool were normalised by
the equivalent code-mandated maximum allowable rotation θov,c, which is simply equal to
40% of θov (where θov is defined in Equation (8)).

5.2.1. Masonry Wall Loaded in Its Plane with Openings

In the case of the in-plane loaded masonry wall with openings, the kinematic constants
of the mechanism are first calculated using the Python script in Grasshopper [30]. The
kinematic constants are then used to determine the equivalent rocking parameters peq, λ̃
and ηCOR defining the rocking equation of motion, which are listed in Table 4. Note that
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the coefficient of restitution ηCOR is negative due to one-sided rocking being assumed for
this mechanism.

Table 4. Masonry wall with openings. Equivalent rocking parameters calculated by the GhPython script.

peq (s−1) λ̃ (rad) ηCOR

1.55 0.20 −0.61

In the first set of analyses, the rocking equation of motion was solved by scaling the
suite of ground motions to ag = 0.35 g for both the artificial and recorded accelerograms, as
this was the PGA predicted to cause collapse by the displacement-based code approach. In
the case of the artificial accelerograms, a comparison between the code-based predictions
and those obtained from the rocking analyses revealed the code to consistently be the
more conservative of the two (Figure 15, positive polarity indicated in black, negative
in white). Specifically, using the actual response spectra for each accelerogram, the code
predicted collapse in 70% of the cases (points lying above the solid horizontal line), while
the maximum response predicted by the rocking model never exceeded 7.5% of θov,c or
3% of θov.
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Figure 15. Masonry wall with openings. Comparison of the code-based (equivalent static) and
rocking (non-linear dynamic) demand-capacity ratios for the different artificial accelerograms (scaled
to ag = 0.35 g).

Similar trends were also observed in the case of the recorded accelerograms. Specif-
ically, in the case of both pulse and non-pulse type motions, the code predicted larger
demands than the rocking model in 100% of cases (i.e., all points lying above the dashed
line in Figure 16). In the case of pulse-type motions in particular, the code predicted
collapse in 54% of the cases, while the maximum response predicted by the rocking model
never exceeded 66% of θov,c or 26% of θov. However, in the case of the non-pulse-type
motions, the code only predicted collapse in 26% of the cases, while the maximum response
predicted by the rocking model never exceeded 38% of θov,c or 15% of θov. Nevertheless, in
both cases, it can be seen that the code is much more conservative than the rocking model,
and that the PGA of 0.35 g is insufficient to cause rocking collapse.

Thus, in a second set of analyses, the scaling of the ground motion was progressively
increased until complete rocking collapse occurred, with collapse in this case being defined
as θ = π/2. As the recorded ground motions are less conservative than the artificial ground
motions, only the former are considered. From these analyses, it was found that for the
masonry wall with openings, a minimum PGA of 0.50 g is required for at least one record
to cause collapse, with the PGA having to be increased to 1.30 g for 50% of the recorded
accelerograms (average of pulse and non-pulse type records) to cause complete overturning
of the structure (Figure 17), which is 3.7 times higher than the code-based prediction of
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0.35 g. These results clearly indicate the need for sounder code-base safety approaches
such as the one proposed here. Additionally, the pulse-type ground motions were found to
have more of a destructive effect on the rocking response (which was also illustrated by
Figure 16), thus highlighting the sensitivity of the rocking model (as well as the code-based
model to an extent) to ground motion characteristics.
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The solution time for each of these rocking analyses was also recorded, and it was
found that, when using an Intel® Core™ i7-6700HQ processor, solutions are obtained in an
average of 9 s.

5.2.2. Church Loaded Out-of-Plane

In the case of the church, the collapse mechanism found through the upper bound limit
analysis was that of out-of-plane (OOP) failure of the façade with the partial overturning
of the side walls as well. The equivalent rocking parameters computed for this mechanism
by the GhPython script are listed in Table 5. Note that the coefficient of restitution ηCOR is
again negative due to one-sided rocking being assumed for this mechanism as well.
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Table 5. Church. Equivalent rocking parameters calculated by the GhPython script.

peq (s−1) λ̃ (rad) ηCOR

1.19 0.16 −0.46

In the first set of analyses, the rocking equation of motion was solved by scaling the
suite of ground motions to ag = 0.48 g for both the artificial and recorded accelerograms,
which was the PGA predicted to cause collapse by the code’s displacement-based approach.

In the case of the artificial accelerograms, a comparison between the code-based predic-
tions and those obtained from the rocking analyses again revealed the code to consistently
be the more conservative of the two (Figure 18, positive polarity indicated in black, negative
in white). Specifically, using the actual response spectra for each accelerogram, the code
predicted collapse in 60% of the cases (points lying above the solid horizontal line), while
the maximum response predicted by the rocking model never exceeded 21% of θov,c or
8.4% of θov.
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demand-capacity ratios for the different artificial accelerograms, for the church (scaled to ag = 0.48 g).

In the case of the recorded accelerograms, the rocking model actually predicted larger
demands than the code in 4% of the cases for pulse-type ground motions (Figure 19), which
could be due, in part, to the higher level of scaling employed as well as the increased
slenderness of the church mechanism, as compared to the wall with openings. More
specifically, from these analyses, it was found that the code predicted collapse in 64%
of the cases, while the rocking model predicted collapse (according to the code and not
according to equilibrium) in 2% of the cases (i.e., points lying to the left of the vertical line
in Figure 19). However, the maximum rocking response never exceeded 51% of θov. In the
case of non-pulse type motions, the code predicted larger demands than the rocking model
in 100% of cases, but only predicted collapse in 44% of cases, while the maximum response
predicted by the rocking model never exceeded 58% of θov,c or 23% of θov. Nevertheless,
for both types of ground motions (artificial and recorded, pulse and non-pulse type), it can
be seen that the code is much more conservative than the rocking model, and that the PGA
of 0.48 g is insufficient to cause rocking collapse.

Again, in a second set of analyses using recorded ground motion, the scaling of the
ground motion was again progressively increased until complete rocking collapse occurred
(i.e., θ = π/2). From these analyses, it was found that for the church, a minimum PGA
of 0.63 g is required for at least one record to cause collapse, with the PGA having to
be increased to 1.40 g for 50% of the recorded accelerograms (average of pulse and non-
pulse type records) to cause the complete overturning of the structure (Figure 20), which
is 2.9 times higher than the corresponding code-based prediction of 0.48 g. Again, the
pulse-type ground motions were found to have more of a destructive effect on the rocking
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response (which was also illustrated by Figure 19), thus highlighting the sensitivity of the
model (and to an extent the code-based approach) to ground motion characteristics. The
results once more indicate the need for sounder code-base safety approaches such as the
one proposed here.
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for both pulse and non-pulse type recorded ground motions.

The solution time for each rocking analysis was again recorded, and it was found that,
when using an Intel® Core™ i7-6700HQ processor, solutions are obtained in an average of
10 s at most.

6. Conclusions

This paper presents a new multi-level procedure that combines upper bound limit
analysis with non-linear rocking dynamics to model seismic collapse of masonry structures
in a computationally-efficient manner. The procedure has been entirely implemented
within the visual programming environment offered by Rhinoceros3D + Grasshopper [30],
which would enable it to be used by both academics and practicing engineers in a fast,
simple and intuitive way.

The collapse mechanisms predicted by the tool are first validated using three case
studies from the literature, comprising a masonry shear wall without openings, a masonry
wall with openings and a masonry church. Good agreement was observed in terms of both
the geometry of the failure mechanism and load multiplier. Subsequently, the collapse
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mechanisms of the wall with openings as well as the church were discussed with respect to
seismic safety using code-based equivalent static approaches comprising both force and
displacement-based procedures, as well as rocking dynamics.

From this study it was found that:

1. The upper bound limit analysis coupled with the NMM tool is able to find the
minimum load multiplier and the associate collapse mechanism in less than 5 s.

2. The scale effect is not considered in the force-based approach, which can lead to con-
siderably different results to those obtained from the displacement-based procedure.

3. Both the displacement-based method and rocking dynamics were able to capture the
sensitivity of the response to ground motion characteristics - specifically the more
destructive influence of the pulse-type ground motions. However, the code-based
procedure tends to predict larger displacement demands than the rocking model,
which in practice may result in expensive and at times unnecessary interventions,
while also not being able to reproduce motion evolution over time.

4. The solution to the rocking equation of motion is obtained, on average, within a
maximum of 10 s, thus demonstrating the ability of the proposed tool/procedure
to conduct a large number of analyses in a time frame compatible with engineering
practice.

5. The definition of safety requires a full stochastic approach, which is the objective of
the work currently being developed by the authors.
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