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Abstract—In this work we study the problem of emotion
recognition under the prism of preference learning. Affective
datasets are typically annotated by assigning a single absolute
label, i.e. a numerical value that describes the intensity of
an emotional attribute, to each sample. Then, the majority
of existing works on affect recognition employ sample-wise
classification/regression methods to predict affective states, using
those annotations. We take a different approach and use a deep
network architecture that performs joint training on the tasks of
classification/regression of samples and ordinal ranking between
pairs of samples. By treating input samples in a pairwise manner,
we leverage the auxiliary task of inferring the ordinal relation
between their corresponding affective states. Incorporating the
ranking objective allows capturing the inherently ordinal struc-
ture of emotions and learning the inter-sample relations, resulting
in better generalization. Our method is incorporated into existing
affect recognition architectures and evaluated on datasets of
electroencephalograms (EEG) and images. We show that the
approach proposed in this work leads to consistent performance
gains when incorporated in classification/regression networks.

Index Terms—Affect annotation, emotion recognition, elec-
troencephalogram, facial expressions

I. INTRODUCTION

Human emotional experiences have a critical role in our ev-
eryday lives. Reliable affect estimation is one of the main goals
of the affective computing field, requiring multi-disciplinary
research that spans across computer science, neuroscience and
psychology. Affect can be analyzed by studying both the
physical and neurophysiological changes that occur during
emotion elicitation through facial expressions [7], [12], body
gestures [21], speech [3], brain activity [29], etc. Various
theories have been proposed to model emotions [25], [27], with
the most common ones being the categorical emotion model of
Ekman et al. [6] and the dimensional model of Russell [26].
Affective datasets adopt such theoretical models to derive
their data annotations, either from experiment participants
reporting self-assessment emotion ratings, or from offline
external annotators.

During emotion data labelling, typically, humans assign
a value in a continuous range, for each emotional behav-
ior. These values are assumed to be on an absolute scale,
however even for a single annotator the perception of the
rating scale may change across time [16], while there are
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different subjective biases across multiple annotators [19].
Works inspired from the adaptation level theory of Helson [9],
suggest that human judgments of presented stimuli are relative
to the context [28], including previously encountered stimuli,
rather than absolute. Therefore emotions can be expressed
in relative terms, i.e. through comparisons between different
affective state levels. Labelling emotions by assigning relative
values has been an alternative path to the traditional scheme of
absolute labels [14], [32]. This means that annotating emotions
involves comparison of the human affective states between
past and forthcoming experiences. Therefore, one possible way
of inferring such ordinal relations between affective states, is
through machine learning models that can explicitly compare
them.

In this work, we study the problem of affect recognition
on datasets where annotations are provided in the form of
sample-wise labels. Typically, plain regression or classification
approaches are applied on such datasets. In the case of
regression, the inherent biases of continuous affect annota-
tions described above, are harmful for the training process
thus also for the model’s performance [34]. Other problems
arise when adopting classification approaches as a remedy
to the shortcomings of regression. Discrete classes cannot
express the compoundness of emotions. Transforming ratings
of ordinal nature into nominal classes results in information
loss regarding the structure of ratings. Furthermore, the class
splitting criteria defined by researchers, do not always ac-
curately reflect the manifestations of affect [16]. Hence, a
more suitable approach is preference learning [8], that involves
comparing emotions. The superiority of preference learning
methods over classification algorithms for affect recognition,
has been previously studied in [18]. We follow an alternative
direction, investigating the utilization of preference learning
as an auxiliary objective to improve the performance of deep
neural networks on classification/regression.

Despite the exciting results of deep learning methods on
affective computing problems, the possibility of building deep
networks that can compare samples corresponding to different
affective states, has remained mostly unexplored. Refrain-
ing from using solely a sample-wise classification/regression
objective, we propose employing an additional pairwise ob-
jective, namely the emotional rating comparison. Consider-
ing a pair of data samples and their affective labels, the
comparison task infers the ordinal ranking relation between
the labels of the samples (i.e. higher/similar/lower arousal,
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higher/similar/lower valence). We use a shared deep feature
extractor along with separate network heads that infer the
affective state level of each sample and perform pairwise
ranking between samples. Our experiments show that the
former task benefits from the latter, as treating the data in
a pairwise manner enables better representation learning. The
main contributions of our work are the following:

• We propose a deep architecture that is jointly trained on
sample-wise classification/regression and pairwise ordinal
ranking.

• We conduct experiments on neurophysiological and vi-
sual data, showing consistent gains from the incorporation
of a ranking objective in the training process.

• We perform ablation studies on models trained with our
proposed method, to quantitatively evaluate the benefits
of various components.

II. RELATED WORK

In this Section, we present an overview of the related
work on the topics of affect modelling and affect recognition.
These two areas are closely connected, therefore meaningful
combinations of knowledge from both of them can lead to new
insights.

A. Affect modelling

Affect modelling [4] is the task of mapping inputs (e.g. ex-
tracted features from facial expressions or neurophysiological
signals) to an affective state. The kind of affect annotation
determines the expected output of the model, hence also the
type of machine learning approach that can be applied, namely
regression, classification or preference learning [8], [24]. The
subjectivity of emotional rating annotations can be observed
across multiple experimental sessions of an individual, or
across multiple human participants, making the annotation
process inherently biased. Treating ratings as numerical values
through regression, leads to trained models of questionnable
performance. Converting annotations into discrete classes (i.e.,
splitting the scale range of ratings into classes such as
“low”/“high”, by defining a threshold value), results in models
that ignore the ordinal relation, not only across different
classes, but also between samples within each class.

Emotion recognition methods could benefit by favoring
relative over absolute schemes, for representing and annotating
emotions. Research findings that highlight the reliability of
collecting rank-based affective annotations, pave the way for
utilising such datasets for emotion analysis. Yannakakis et al.
[33] proposed a discrete rank-based real-time affect annotation
tool, showing higher quality of the obtained relative labels
compared to absolute labels. In [17], annotations collected
using a relative and unbounded labelling scheme yielded
high inter-rater agreement. Differently from these works, we
consider existing datasets having annotations that are not rank-
based, and suggest converting their original absolute labels into
pairwise ranking labels.

B. Affect recognition

Recently, a broad range of methods have been proposed
to address emotion recognition tasks on several modalities.
In our work we focus on electroencephalograms (EEG) and
facial expression images as inputs, experimenting on widely
used datasets. Commonly, attempts of training stronger facial
expression recognition models are based on aspects irrelevant
to annotations per se. Panda et al. propose training on large-
scale data crawled from the internet [22], while Kollias et al.
artificially generate facial images [11] to be included in the
training set. Studying the temporal dynamics of emotions [1]
or applying state-of-the-art deep learning architectures such
as Transformers [15] is another line of research. The study of
Zhang et al. [35] investigates the problem of noisy labels
on affective datasets, indicating the significance of dealing
properly with such annotations. In EEG-based affective ex-
periments, the annotations are typically obtained through self-
assessment ratings of the human participants. Often, evaluation
protocols impose quantizing these ratings into classes corre-
sponding to different affective state levels [10]. In [13], the
subject-specific range of each individual’s ratings is studied,
and the classes are reformulated by computing a personal-
ized threshold. Overall, the development of affect recognition
models that abide to the nature of emotions is of paramount
importance to the affective computing field.

III. PROPOSED METHOD

The main motivation of our work is to investigate mean-
ingful combinations of classification/regression and ordinal
ranking through deep neural networks, in the field of affective
computing. In contrast to typical network architectures that op-
erate on affective data solely in a sample-wise manner, we aim
to additionaly perform pairwise operations between samples,
learning the ordinal relation between their corresponding affec-
tive ratings. Our goal is to boost the performance of emotion
recognition models on their classification/regression measures,
leveraging the additional supervision of a ranking task only
during training. Traditional preference learning systems such
as RankNet [2], train a function that maintains a higher score
for the preferred option. The preference decision is a fixed
operation on sample-wise preference scores, without involv-
ing any trainable parameter. Our method differs from such
systems, as it learns the ordinal relation through a trainable
module. Considering that the emotion label space has an inher-
ently ordinal structure, we avoid disregarding such knowledge,
by further exploiting it through the ranking task. To achieve
this, we utilise the provided affective state annotations to form
rank-based labels, and construct a deep architecture that can
handle both the end-goal task of classification/regression, as
well as the additional task of pairwise ranking. In the following
paragraphs, we explain various aspects of our method.

A. Methodology

Pairwise ordinal ranking: The proposed methodology that
derives pairwise ranking labels is applicable on datasets having



Fig. 1: Illustration of the ordinal relations defined over a
bounded continuous rating scale.

as annotations either continuous affective ratings or categor-
ical labels of ordinal nature. We explain its functionality on
continuous labels, defined on a bounded scale. Considering
a pair of samples x1 and x2 (with corresponding affective
rating labels y1 and y2), the goal of the ranking task is to
infer the ordinal relation between the labels y1 and y2. In
previous works this is addressed by establishing a preference
of the sample with the higher rating over the other sample,
i.e. x1 � x2 or x1 ≺ x2. The symbols of “≺”/“�” denote
preceding/succeeding order of the samples with respect to
their ratings y1 and y2, i.e. by using these symbols we do
not imply a comparison on the raw feature values of x1 and
x2. A minimum difference value between the compared ratings
is used to discard unclear comparisons. To avoid posing very
strict constraints over pairs of ratings with small difference, we
opt to add a third case of rank, namely the case x1 ∼ x2, if x1
and x2 have similar ratings [23]. We define a hyperparameter
ε > 0, called “rank tolerance”, such that x1 ∼ x2 holds true
when |y1 − y2| ≤ ε. Thus, x1 � x2 when x1 has a higher
rating than x2 under the condition y1 > (y2+ε), and x1 ≺ x2
when y1 < (y2 − ε). The ordinal relations for continuous
ratings are shown in Table I, as well as in Fig. 1.

Relation Condition
x1 � x2 y1 > (y2 + ε)
x1 ∼ x2 |y1 − y2| ≤ ε
x1 ≺ x2 y1 < (y2 − ε)

TABLE I: List of ordinal ranking relations and their corre-
sponding conditions, when performing a comparison operation
over continuous ratings.

Joint training - combining ranking with end-goal tasks:
Our method is simple and it can be integrated into existing
affect recognition architectures. In essence, every deep neural
network operating on an end-goal task of affect classifica-
tion/regression, consists of a backbone that extracts feature
representations which are ultimately fed into a classifica-
tion/regression layer. We suggest adding an extra supervisory
signal, by imposing a pairwise ranking objective on the inter-
mediate representations learned by the backbone, leveraging
the knowledge around the ordinal nature of emotions. The
ranking task is performed by a ranking head that is stacked on
top of the backbone network. The processing pipeline for clas-

sification/regression remains intact and the total architecture is
trained in an end-to-end manner. We fully backpropagate the
gradients of both the classification/regression loss and ranking
loss to the backbone, updating its weights based on both loss
terms. The backbone network benefits from the additional
ranking supervision, extracting features that enable better
generalisation on the end-goal task. The classification and
ranking losses are computed using a cross-entropy criterion,
while the regression loss is computed using a Mean Squared
Error (MSE) criterion.

B. Network architecture

We aim to build an architecture that operates on affective
data inputs to perform sample-wise classification/regression of
emotions, as well as a pairwise comparison operation (ordinal
ranking) with respect to the emotional ratings for a pair
of samples. Regarding the implementation of deep networks
that accomodate pairwise operations, our work builds on the
Relation Networks [30] that have been used for few-shot image
recognition. In the context of Relation Networks, a relation
module refers to a mechanism that learns to compare feature
embeddings for a pair of samples, to determine whether they
have the same class label or not. We adapt the framework
of [30] to suit the purposes of pairwise ranking. We propose
using a ranking module that learns to perform ordinal ranking
on the feature embeddings of a pair of samples, by inferring
the ordinal relation between their affective ratings. Note that
the inputs of our ranking module are pairwise feature embed-
dings, formed by concatenating the sample-wise embeddings
obtained from a backbone feature extractor, for each pair of
samples. Our architecture, named Pairwise Ranking Network
(“PRNet”), can be seen in Fig. 2. A detailed explanation of
its consisting modules is provided below.

Fig. 2: The architecture of a Pairwise Ranking Network that
accomodates joint training on classification/regression and
ranking tasks.

Embedding module: The embedding module is the back-
bone of our architecture, serving as a feature extractor. The
batch samples are fed as inputs to the embedding module
and a feature embedding is computed for each sample. The
produced embeddings are to be further processed for the tasks



of classification/regression and ranking, by the corresponding
modules.

Classification/regression module: The classifica-
tion/regression module receives as input the features produced
by the embedding module, and predicts the affective state for
each sample. In the classification scenario, the groundtruth
targets are discrete emotion classes (e.g. “low”/“high” arousal,
“low”/“high” valence) while in the regression scenario, the
targets are the original arousal/valence annotations in a
continuous space. We denote the classification and regression
predictions as ŷcls and ŷregr respectively. Similarly, the
corresponding groundtruth values are ycls and yregr. Note
that ŷcls contains probabilities obtained by passing the outputs
of the classification module through a softmax layer, while
ycls contains one-hot encodings of the labels. The loss terms
Lcls and Lregr of the classification and regression tasks are
defined as follows:

Lcls = −
kcls∑
i=1

yi
cls log(ŷ

i
cls) (1)

Lregr =
1

kregr

kregr∑
i=1

(yi
regr − ŷi

regr)
2 (2)

Ranking module: The ranking module operates on pairwise
feature representations that correspond to sample pairs, and in-
fers their ordinal relation with respect to their affective ratings.
To form the pairwise feature representation of two samples, we
get the feature vectors extracted from the embedding module
for both samples, and we concatenate them across the channel
dimension. To form multiple pairs of sample embeddings
during training with a batch size of Nb, we split each batch
into two sub-batches of size Nsub = Nb

2 . Every sample of each
sub-batch is compared against all samples of the other sub-
batch, yielding (Nsub)

2 pairs in total. Denoting the softmaxed
ranking predictions and one-hot groundtruth values as ŷrank

and yrank respectively, the loss term Lrank of the ranking task
is defined as follows:

Lrank = −
krank∑
i=1

yi
rank log(ŷ

i
rank) (3)

The total loss that is used to optimize the Pairwise Ranking
Network is the sum of the loss on the end-goal task and the
ranking loss. We use a coefficient α to weight the contribution
of the ranking loss to the total loss, i.e. Ltotal = Lcls+αLrank

in the case of classification or Ltotal = Lregr +αLrank in the
case of regression. When not stated otherwise, we set the value
of α equal to 1.

Architecture details: For our experiments on EEG data,
the embedding module consists of two fully-connected (FC)
layers with 128 nodes each, receiving 100-dimensional feature
vectors as inputs. The classification module consists of one FC
layer for each of the targets (i.e, Arousal, Valence), with kcls
output nodes, where kcls is the number of classes. The ranking

module consists of one FC layer for each of the targets, having
krank = 3 output nodes.

When operating on visual data, the embedding module
consists of five convolutional stages, each stage having two
convolutional layers and a max-pooling layer with a downsam-
ple rate of 2. The number of channels for the convolutional
stages is {64, 128, 256, 512, 512}, and the feature maps of
the last stage are flattened, so that the computed embeddings
are in the form of feature vectors. The regression module
consists of two FC layers, having 256 and kregr output nodes,
where kregr = 2 is the number of regression targets (arousal,
valence). The ranking module has two FC layers for each of
the targets, having 256 and krank = 3 output nodes.

The baseline model for our experiments is the composition
of the embedding and classification/regression modules, i.e. a
simple model with a feature extractor and a classifier/regressor.

IV. EXPERIMENTAL RESULTS

We apply our method on three emotion recognition prob-
lems where the original affective annotations are inherently
ordinal, aiming to exploit this property through our analysis.
Specifically, we study the datasets of DEAP [10], SEED [36]
and AffectNet [20]. Each dataset has been annotated through a
different process, and is evaluated on a different end-goal task.
Investigating whether such tasks can benefit from pairwise
ranking through a joint training, is an interesting direction of
research. An overview of the datasets used in our study is
shown in Table II.

A. Dataset details

DEAP dataset: DEAP [10] is a dataset for EEG-based
emotion recognition, having 32 participants and 40 music
video clips as stimuli, with a fixed duration of 60 seconds
for each clip. Groundtruth labels for arousal and valence are
given as self-assessment ratings in the continuous range of
[1.0, 9.0]. The end-goal task on DEAP is the classification
of “Low”/“High” affective states, defined by thresholding the
rating scale in the middlepoint of 5.0. The classification head
of our deep architecture predicts class scores for these two
outputs on arousal and valence.

In the case of DEAP dataset, the original labels are continu-
ous ratings and the end-goal task is classification. The affective
ratings are quantized thus the ordinality of the initial labels
is lost. Moreover, collapsing entire ranges of the rating scale
into single classes leads to models that cannot reason about
intra-class sample differences. The application of a ranking
approach on the original ratings is straight-forward, following
the ordinal relations that are shown in Table I.

SEED dataset: SEED [36] is a dataset for EEG-based
emotion recognition, having 15 participants and 15 Chinese
movie videos as stimuli, with varying duration for each clip
(4 minutes in average). The labels are categorical, belonging
in three classes, namely “Positive”, “Neutral” and “Negative”.
The end-goal task of SEED is the classification of these three
states.



Dataset Modality Annotation
process

Annotation
values

End-goal
task

DEAP [10] EEG -Self-assessment reports
-Varying per participant

Arousal, Valence
in the continuous range [1.0, 9.0]

Classification:
Low/High Arousal
Low/High Valence

SEED [36] EEG -Determined from the study’s authors
-Fixed for all participants

3 discrete classes:
Negative, Neutral, Positive

Classification:
Negative, Neutral, Positive

AffectNet [20] Images -Determined by multiple external annotators

8 discrete classes* and

Arousal, Valence
in the continuous range [-1.0, 1.0]

Regression:
Arousal, Valence

TABLE II: Details regarding the affective annotations and evaluation tasks on the datasets used in our work.
* We do not use the discrete class labels of AffectNet in any stage of our work.

The discrete class annotations of SEED are traditionally
treated as being nominal, ignoring the evident ordinality. The
classes of SEED practically correspond to three ordered levels
of valence, therefore inferring ordinal relations between them
is plausible. We adopt the convention that the “Positive” class
corresponds to higher valence compared to “Neutral” and
“Negative”, and that the “Neutral” class corresponds to higher
valence compared to “Negative”. These ordinal relations that
are used on SEED dataset are shown in Table III.

y1

y2 Negative Neutral Positive

Negative x1 ∼ x2 x1 ≺ x2 x1 ≺ x2
Neutral x1 � x2 x1 ∼ x2 x1 ≺ x2
Positive x1 � x2 x1 � x2 x1 ∼ x2

TABLE III: The ordinal relations that are adopted in our work,
for the categorical labels of SEED dataset to be rendered useful
in the pairwise ranking task.

AffectNet dataset: AffectNet [20] is a dataset of facial
images annotated both in terms of discrete facial expression
classes and continuous Arousal/Valence in the range of [−1, 1].
There are 280K images in the training set, and 4K images in
the validation set. We do not make use of the categorical labels
in any way, and our end-goal task is the regression of arousal
and valence, hence the regression head has two outputs.

Considering the dataset of AffectNet in the context of
regression, the involvement of multiple annotators with subjec-
tive perception biases, presents a challenging case for ranking.
Forming sample pairs to perform ordinal comparisons with
respect to their ratings, is typically done on samples from a
single human annotator. However, AffectNet does not provide
information to establish correspondences between ratings and
individual annotators. Thus in our approach we rank pairs of
samples from unknown annotators and deal with additional
sources of label noise. Ranking is applied following the rules
of Table I.

B. Experiments on DEAP and SEED

EEG data preparation: To perform training on DEAP
and SEED, we represent each input sample in the form of a
feature vector. Among the most well-established EEG signal
features for emotion recognition, are Power Spectral Density
(PSD), Power Spectral Asymmetry (PSA) and Differential

Entropy (DE). For each electrode’s signal, these features are
computed in a specific frequency band and for a short time
window (2 seconds on DEAP, 1 second on SEED). There
are 5 frequency bands that are commonly used for feature
extraction, namely theta band (4− 8 Hz), alpha band (8− 12
Hz), slow alpha band (8 − 10 Hz), beta band (12 − 30 Hz)
and gamma band (30− 45 Hz). PSD features characterize the
spectral content of each signal, while PSA features measure
the asymmetric hemisphere activation occuring in the brain
through pairs of laterally corresponding/symmetric electrodes.
We compute PSD and PSA as in [10], using the method
of Welch [31]. The DE features measure the complexity of
the signal across time [5]. On DEAP dataset, we use the
PSD and PSA features, concatenating their feature vectors.
On SEED, we use the precomputed DE features, provided
by [36]. On both datasets, to discard features of negligible
discriminability, feature selection is applied using Fisher’s
linear discriminant, similarly to [10], keeping the 100 most
discriminative features. Afterwards, a zero-mean and unit-
variance normalization procedure is applied on each of the
remaining features, using the statistics of the train set.

Training details for DEAP, SEED: Training is done for 20
epochs with a batch size of 40, using a Stochastic Gradient De-
scent (SGD) optimizer, learning rate lr = 0.001, momentum
m = 0.9 and weight decay equal to 5e-4. For DEAP dataset,
the ordinal ranking operation is performed setting ε = 0.25
and following Table I. The training process is a subject-
dependent 10-fold cross validation. For each subject the 40
available trials are split into 10 folds (each fold containing
4 trials), keeping 9 folds as the train set and 1 fold as the
test set. For SEED dataset, the ordinal ranking operation is
performed following Table III. The training process is subject-
dependent and the train-test splits are done in the same way
with [36]. On both datasets, evaluation is done by computing
the classification accuracy and F1 score. Especially on DEAP
where there is significant class imbalance, the F1 score is a
more representative measure of model performance.

Our experiments explore the impact of joint training on
the model classification performance. As a baseline method,
a plain MLP network (with 2 FC layers in its embedding
module and 1 FC classification layer) is trained only on the
classification task. In our case, we train PRNet jointly on the
classification and ranking tasks. From the results of Table IV



and Table V, we can see that joint training improves the
accuracy and F1 score both on the dataset of DEAP and SEED.
Considering the F1 scores, the performance improvement of
the proposed method over the baseline is statistically signifi-
cant on DEAP (p < 0.01 for both arousal and valence), but
not on SEED (p = 0.058).

Model Arousal Valence
Acc. F1 Acc. F1

Classification loss 60.49 51.94 57.69 54.61
Proposed method:

Classification + ranking loss 60.60 53.25* 58.42 55.57*

TABLE IV: Accuracy (%) and F1 score on DEAP dataset.
Stars indicate statistical significance of the F1-score distribu-
tion over subjects, according to Student’s t-test (∗ = p < 0.05)

Model 3-class problem
Acc. F1

Classification loss 74.80 72.79
Proposed method:

Classification + ranking loss 76.98 75.51

TABLE V: Accuracy (%) and F1 score on SEED dataset.

The results verify our motivation of forming and learning
pairwise relations utilising the available affective annotations.
On DEAP, we notice that collapsing fine-grained affective
rating information into discrete classes, is harmful for the
training process. Incorporating the ranking supervision through
the ordinal relation labels derived by the original continuous
ratings, we boost the performance of our model. Similarly, the
fact that our approach considers the ordinality of the classes
on SEED, shows that our method can be beneficial even in
cases where the original annotations are discrete.

C. Experiments on AffectNet

Visual data preparation: Training on AffectNet dataset
is performed using images as inputs. Data augmentation is
performed during training, through rotation (±30◦), zoom
(±15%), horizontal flipping and brightness/contrast changes.
The images are finally resized in a 96×96 size and their pixel
values are normalized in the [0, 1] range by dividing with 255.

Training details for AffectNet: Training is done for 50K
steps with a batch size of 128. A Stochastic Gradient Descent
optimizer is used, with learning rate lr = 0.001, momentum
m = 0.9 and weight decay equal to 1e-4. The ordinal ranking
operation is performed setting ε = 0.15 and following Table I.
A plain CNN network is trained only on the regression task,
serving as our baseline model. Joint training on regression and
ranking is performed with PRNet and the results are shown
on Table VI. We use the evaluation measures of Root Mean
Square Error (RMSE), Pearson Correlation Coefficient (PCC)
and Concordance Correlation Coefficient (CCC), as defined in
[20]. By design, the RMSE measure is sensitive to outliers.
Also, RMSE does not reflect the covariance of data while the
PCC measure does so. Compared to PCC, CCC differs in the

Model Arousal Valence
RMSE CCC PCC RMSE CCC PCC

MSE loss 0.365 0.405 0.488 0.430 0.527 0.577
Proposed:
MSE+rank 0.350 0.461 0.529 0.409 0.567 0.605

TABLE VI: Root Mean Square Error (RMSE ↓), Concordance
Correlation Coefficient (CCC ↑) and Pearson Correlation Co-
efficient (PCC ↑) on the validation set of AffectNet.
↓: lower means better, ↑: higher means better.

sense that it scales the correlation of the two distributions with
the distance between their means.

The results show that adding the pairwise ranking loss as
an extra supervision during training, has beneficial effects for
both arousal and valence on all measures. One interesting
observation of the results, is that incorporating the ranking
task does not adversely affect the model’s performance on
the RMSE measure. The original MSE loss that is used to
train the network on the regression task, explicitly optimizes
the performance on the measure of RMSE. The improvement
obtained on RMSE by jointly training on the regression and
ranking task, indicates that the potential merits of ranking
approaches are not restricted on particular measures.

To compare our method against RankNet [2] on the Affect-
Net dataset, we select the same architecture as our baseline
CNN and train it using the method of [2]. We evaluate the
model using PCC measure between the sample-wise pref-
erence scores and the ground truth arousal/valence ratings.
The results (PCC=0.517 for arousal, PCC=0.580 for valence)
are inferior to those obtained with our proposed method.
This shows the importance of performing comparisons using
trainable functions instead of fixed operations.

D. Ablation studies

To get deeper insights about the incorporation of the ranking
task in the training process, we perform ablation studies using
the dataset of AffectNet.

Impact of ranking loss: In this experiment, we investigate
the impact of the coefficient α that is used to weight the con-
tribution of the ranking loss to the total objective. In Table VII
we report the performance of PRNet on the validation set
of AffectNet, for different values of α. It can be seen that
increasing the contribution of the ranking loss in the total
optimization objective, can yield boosts especially in terms
of valence estimation. In the case of arousal the benefits are
smaller, indicating that the value of the ranking coefficient α
should be estimated on a case-dependent basis.

Impact of rank tolerance: As explained in Section III,
the hyperparameter of rank tolerance ε defines the maximum
allowed distance between two labels on the rating scale, for
their samples to be considered as similar. Changing the value
of ε leads to the reformulation of the ordinal ranking labels
that correspond to pairs of samples. The rank tolerance directly
affects the sensitivity of the ranking module on discriminat-
ing pairs of higher/lower ratings. The results are shown in
Table VIII.



Ranking
coefficient

Arousal Valence
RMSE CCC PCC RMSE CCC PCC

Baseline
(α = 0) 0.365 0.405 0.488 0.430 0.527 0.577

α = 0.5 0.351 0.483 0.553 0.407 0.568 0.604
α = 1.0 0.350 0.461 0.529 0.409 0.567 0.605
α = 2.0 0.351 0.484 0.540 0.408 0.565 0.606
α = 3.0 0.350 0.461 0.529 0.409 0.567 0.605
α = 4.0 0.352 0.487 0.548 0.385 0.609 0.638
α = 5.0 0.343 0.494 0.550 0.397 0.602 0.622
α = 6.0 0.347 0.490 0.547 0.404 0.581 0.612

TABLE VII: Ablation study on the impact of the ranking
coefficient α on the model performance.

Rank
tolerance

Arousal Valence
RMSE CCC PCC RMSE CCC PCC

Baseline
(no rank) 0.365 0.405 0.488 0.430 0.527 0.577

ε = 0.05 0.347 0.472 0.513 0.400 0.579 0.603
ε = 0.10 0.357 0.461 0.536 0.399 0.585 0.620
ε = 0.15 0.350 0.461 0.529 0.409 0.567 0.605
ε = 0.20 0.347 0.459 0.509 0.405 0.562 0.612
ε = 0.25 0.353 0.478 0.542 0.406 0.579 0.601
ε = 0.30 0.361 0.461 0.537 0.393 0.596 0.629
ε = 0.35 0.352 0.465 0.528 0.424 0.544 0.597

TABLE VIII: Ablation study on the impact of the rank
tolerance hyperparameter ε.

The selection of hyperparameter ε has a noticeable impact
on the performance of models trained with ranking loss.
Specifically, the largest gains on the estimation of valence are
achieved by choosing relatively high values of rank tolerance
(ε = 0.30). Regarding arousal, the optimum performance
in terms of RMSE is achieved when ε = 0.20, while for
CCC/PCC it is achieved when ε = 0.25. We can see that there
are consistent improvements over the baseline, and therefore
the framework is robust to the precise value of ε and gives
benefits even in the case of large values of ε. This is consistent
with the benefits in SEED dataset where the quantization of
the label space is rather rough (i.e., not fine-grained).

Generalization benefits of ranking: In this experiment,
we investigate the performance of models that are trained
on a training set that does not contain labels at the ends of
the distribution (i.e., very high or very low) and evaluated
on the original validation set. More specifically, the original
label space of the continuous annotations for arousal and
valence, covers the range [−1, 1]. We introduce a cut-off
hyperparameter c (0 < c ≤ 1) and discard samples from
the training set, by restricting the label space of the training
samples so as to cover the range [−c, c]. That is, we discard
a training sample x having labels (ya, yv), if either of the
conditions |ya| > c and |yv| > c holds true. Lower values
of c lead to smaller training set and narrower training label
space, rendering the generalization of the trained model on
validation samples that cover the original label space (i.e.,
[−1, 1]) a challenging task. We compare baseline models that
are trained on the regression task, with models that are trained
jointly on regression and ranking. It is expected that lower

values of c deteriorate more the validation performance of all
trained models, as they are evaluated on samples belonging
to an increasingly large unseen label space. The results are
shown in Table IX.

Model, c Arousal Valence
RMSE CCC PCC RMSE CCC PCC

Baseline
c=0.4 0.521 0.004 0.044 0.468 0.160 0.402

Proposed
c=0.4 0.497 0.035 0.154 0.440 0.247 0.457

Baseline
c=0.5 0.491 0.023 0.125 0.462 0.300 0.456

Proposed
c=0.5 0.471 0.070 0.228 0.441 0.355 0.498

Baseline
c=0.6 0.452 0.079 0.276 0.460 0.357 0.482

Proposed
c=0.6 0.424 0.176 0.359 0.434 0.421 0.536

Baseline
full 0.365 0.405 0.488 0.430 0.527 0.577

Proposed
full 0.350 0.461 0.529 0.409 0.567 0.605

TABLE IX: Ablation study on the generalization capabilities
of models trained with a restricted label space. Evaluation is
done on the full validation set of AffectNet (i.e. validation
labels of the entire range [−1, 1]).

We observe that shrinking the training label space is less
harmful to the performance of the models that are trained
jointly on regression and ranking, as models that are trained
on plain regression fail to generalize. This is supported by the
increasingly large performance gaps, especially for arousal but
also for valence, as c takes lower values.

Discussion: We applied our method on datasets where the
original affective labels were converted into pairwise ranking
labels. Transforming affective ratings into ordinal annotations,
is a more controllable process when done on a per-subject
basis [16] (i.e., comparing labels of a single annotator). On our
pairwise ranking labels formed for the AffectNet dataset, we
went beyond this practice, by comparing ratings of different
annotators. Furthermore, the self-assessment ratings of each
participant on DEAP dataset, were done in an one-hour long
session. Hence, establishing pairwise comparisons between
temporally distant ratings may result in less reliable ranking
labels, due to the potentially different context within which
the ratings were reported.

V. CONCLUSION

The findings of our work highlight that exploring the
ordinality of emotions through deep neural networks that
accomodate pairwise ranking comparisons, is beneficial for
affect recognition models. The proposed method is evaluated
on neurophysiological and visual data with diverse affective
annotation processes, showing consistent performance gains.
The performed ablation studies shed light on various aspects
of the ordinal ranking task. We believe that our study provides
a promising direction on training robust emotion recognition
models, through tasks that abide to the ordinal nature of
emotions.
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