Sub-diurnal Variation of SST Gradients in Infrared Satellite Data

Peter Cornillon[†], Carol Anne Clayson^{*} and Pierre Le Borgne[‡]

> GHRSST XVII 8 June 2016

Peter Cornillon[†], Carol Anne Clayson* and Pierre Le

Outline

- 3 The Analsysis/Results
- African Upwelling Zone

5 Conclutsions

Acknowledgments

Funding

- NASA
- State of Rhode Island and Providence Plantations

Outline

Introduction

2 The Data

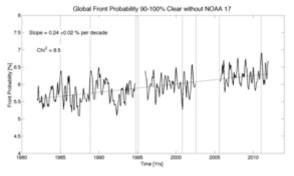
- The Analsysis/Results
- African Upwelling Zone

Conclutsions

Added Attractions

- The focus of this talk is on the sub-diurnal variability of SST gradients.
- It was motivated by the MS Thesis of my former student Kelsey Obenour:
 - Kelsey examined the 30 year trend in front probability in the global ocean
 - Using the global Pathfinder v. 5.2 4km fields for 1982-2010
 - With SST fronts determined with the Cayula-Cornillon algorithm
 - The results were startling.
 - That's a 12% increase in frontal probability (5.5% to 6.2%) between 1982 and 2010.

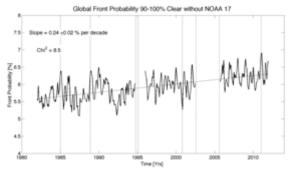
- The focus of this talk is on the sub-diurnal variability of SST gradients.
- It was motivated by the MS Thesis of my former student Kelsey Obenour:
 - Kelsey examined the 30 year trend in front probability in the global ocean
 - Using the global Pathfinder v. 5.2 4km fields for 1982-2010
 - With SST fronts determined with the Cayula-Cornillon algorithm
 - The results were startling.
 - That's a 12% increase in frontal probability (5.5% to 6.2%) between 1982 and 2010.


- The focus of this talk is on the sub-diurnal variability of SST gradients.
- It was motivated by the MS Thesis of my former student Kelsey Obenour:
 - Kelsey examined the 30 year trend in front probability in the global ocean
 - Using the global Pathfinder v. 5.2 4km fields for 1982-2010
 - With SST fronts determined with the Cayula-Cornillon algorithm
 - The results were startling.
 - That's a 12% increase in frontal probability (5.5% to 6.2%) between 1982 and 2010.

- The focus of this talk is on the sub-diurnal variability of SST gradients.
- It was motivated by the MS Thesis of my former student Kelsey Obenour:
 - Kelsey examined the 30 year trend in front probability in the global ocean
 - Using the global Pathfinder v. 5.2 4km fields for 1982-2010
 - With SST fronts determined with the Cayula-Cornillon algorithm
 - The results were startling.
 - That's a 12% increase in frontal probability (5.5% to 6.2%) between 1982 and 2010.

- The focus of this talk is on the sub-diurnal variability of SST gradients.
- It was motivated by the MS Thesis of my former student Kelsey Obenour:
 - Kelsey examined the 30 year trend in front probability in the global ocean
 - Using the global Pathfinder v. 5.2 4km fields for 1982-2010
 - With SST fronts determined with the Cayula-Cornillon algorithm
 - The results were startling.
 - That's a 12% increase in frontal probability (5.5% to 6.2%) between 1982 and 2010.

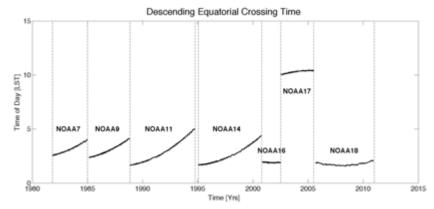
Ocean Fronts


- The focus of this talk is on the sub-diurnal variability of SST gradients.
- It was motivated by the MS Thesis of my former student Kelsey Obenour:
 - Kelsey examined the 30 year trend in front probability in the global ocean
 - Using the global Pathfinder v. 5.2 4km fields for 1982-2010
 - With SST fronts determined with the Cayula-Cornillon algorithm
 - The results were startling.

• That's a 12% increase in frontal probability (5.5% to 6.2%) between 1982 and 2010.

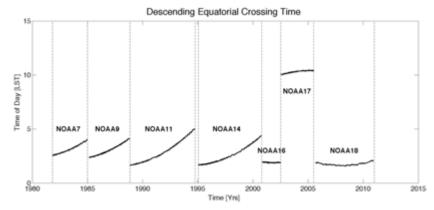
Ocean Fronts

- The focus of this talk is on the sub-diurnal variability of SST gradients.
- It was motivated by the MS Thesis of my former student Kelsey Obenour:
 - Kelsey examined the 30 year trend in front probability in the global ocean
 - Using the global Pathfinder v. 5.2 4km fields for 1982-2010
 - With SST fronts determined with the Cayula-Cornillon algorithm
 - The results were startling.


• That's a 12% increase in frontal probability (5.5% to 6.2%) between 1982 and 2010.

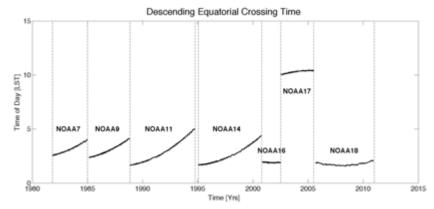
But my granddaughter was skeptical

The Issue


• One of her primary concerns was the drift in satellite orbits.

She was concerned that there might be a diurnal cycle in front probability

The Issue

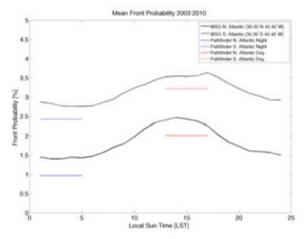

• One of her primary concerns was the drift in satellite orbits.

• She was concerned that there might be a diurnal cycle in front probability

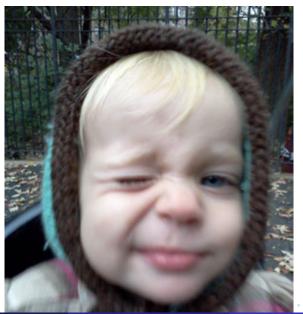
The Issue

• One of her primary concerns was the drift in satellite orbits.

• She was concerned that there might be a diurnal cycle in front probability which, coupled with the orbital drifts, might lead to a bias in the trend.


Diurnal Variability in Front Probability

She was correct;


• Diurnal variability in front probability exists - at least at some locations

Diurnal Variability in Front Probability

- She was correct;
- Diurnal variability in front probability exists at least at some locations

Zazie was pretty pleased with herself

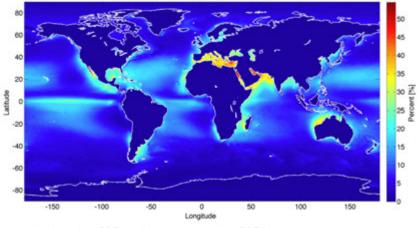
More Diurnal Variability in Front Probability

• We decided to examine this in more detail. We chose

- To look at the Eastern Mediterranean because of the general lack of cloud cover:
- And to look at SST gradients as opposed to SST fronts.

More Diurnal Variability in Front Probability

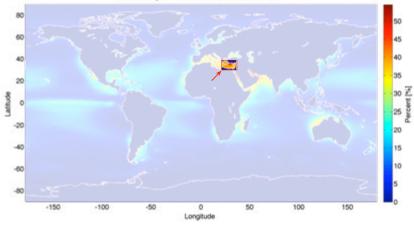
• We decided to examine this in more detail. We chose


- To look at the Eastern Mediterranean because of the general lack of cloud cover:
- And to look at SST gradients as opposed to SST fronts.

More Diurnal Variability in Front Probability

- We decided to examine this in more detail. We chose
 - To look at the Eastern Mediterranean because of the general lack of cloud cover:

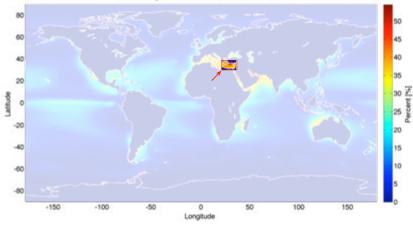
Probability of Clear Pixel for Time Series


Introduction

And to look at SST gradients as opposed to SST fronts.

More Diurnal Variability in Front Probability

- We decided to examine this in more detail. We chose
 - To look at the Eastern Mediterranean because of the general lack of cloud cover:


Probability of Clear Pixel for Time Series

Introduction

And to look at SST gradients as opposed to SST fronts.

More Diurnal Variability in Front Probability

- We decided to examine this in more detail. We chose
 - To look at the Eastern Mediterranean because of the general lack of cloud cover:

Probability of Clear Pixel for Time Series

Introduction

And to look at SST gradients as opposed to SST fronts.

Outline

2 The Data

- 3 The Analsysis/Results
- African Upwelling Zone

• Conclutsions

Added Attractions

Data

• Gradients were determined with the Sobel kernel

-1	0	1	1	2	1
-2	0	2	0	0	0
-1	0	1	-1	-2	-1

We use SEVIRI data

- Good coverage of the Med
- 5km spatial resolution
- Hourly data
- All fields converted from geostationary view to local sun time (LST) fields.

イロト イヨト イヨト イヨト

Data

• Gradients were determined with the Sobel kernel

-1	0	1	1	2	1
-2	0	2	0	0	0
-1	0	1	-1	-2	-1

We use SEVIRI data

- Good coverage of the Med
- 5km spatial resolution
- Hourly data
- All fields converted from geostationary view to local sun time (LST) fields.

Data

• Gradients were determined with the Sobel kernel

-1	0	1	1	2	1
-2	0	2	0	0	0
-1	0	1	-1	-2	-1

We use SEVIRI data

- Good coverage of the Med
- 5km spatial resolution
- Hourly data
- All fields converted from geostationary view to local sun time (LST) fields.

Data

• Gradients were determined with the Sobel kernel

-1	0	1	1	2	1
-2	0	2	0	0	0
-1	0	1	-1	-2	-1

We use SEVIRI data

- Good coverage of the Med
- 5km spatial resolution
- Hourly data
- All fields converted from geostationary view to local sun time (LST) fields.

Data

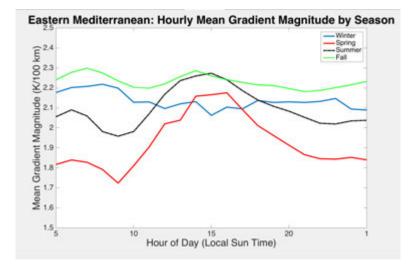
• Gradients were determined with the Sobel kernel

-1	0	1	1	2	1
-2	0	2	0	0	0
-1	0	1	-1	-2	-1

- We use SEVIRI data
 - Good coverage of the Med
 - 5km spatial resolution
 - Hourly data
 - All fields converted from geostationary view to local sun time (LST) fields.

Data

• Gradients were determined with the Sobel kernel


-1	0	1	1	2	1
-2	0	2	0	0	0
-1	0	1	-1	-2	-1

- We use SEVIRI data
 - Good coverage of the Med
 - 5km spatial resolution
 - Hourly data
 - All fields converted from geostationary view to local sun time (LST) fields.

Diurnal Signal in Mean SST Gradients

• As with fronts, gradients show a significant diurnal signal.

The Data

- I need to again acknowledge Pierre Le Borgne who provided the data
- As well as many thoughtful discussions
- And entertainment while on a walk at lunch one day I came across him relaxing

- I need to again acknowledge Pierre Le Borgne who provided the data
- As well as many thoughtful discussions
- And entertainment while on a walk at lunch one day I came across him relaxing

- I need to again acknowledge Pierre Le Borgne who provided the data
- As well as many thoughtful discussions
- And entertainment while on a walk at lunch one day I came across him relaxing

- I need to again acknowledge Pierre Le Borgne who provided the data
- As well as many thoughtful discussions
- And entertainment while on a walk at lunch one day I came across him relaxing

What Glves?

• So what contributes to the increase in mean SST gradient magnitude?

- Are all gradients increasing?
- Just those that were weak early in the morning?
- Just those that were strong early in the morning?

• . . .

- To address this, we determine the change in gradient magnitude
- Then histogram the results for all clear pixels in the study area

What Glves?

- So what contributes to the increase in mean SST gradient magnitude?
 - Are all gradients increasing?
 - Just those that were weak early in the morning?
 - Just those that were strong early in the morning?

• . . .

- To address this, we determine the change in gradient magnitude
- Then histogram the results for all clear pixels in the study area

What Glves?

- So what contributes to the increase in mean SST gradient magnitude?
 - Are all gradients increasing?
 - Just those that were weak early in the morning?
 - Just those that were strong early in the morning?

• . . .

- To address this, we determine the change in gradient magnitude
- Then histogram the results for all clear pixels in the study area

What Glves?

- So what contributes to the increase in mean SST gradient magnitude?
 - Are all gradients increasing?
 - Just those that were weak early in the morning?
 - Just those that were strong early in the morning?

• . . .

- To address this, we determine the change in gradient magnitude
- Then histogram the results for all clear pixels in the study area

What Glves?

- So what contributes to the increase in mean SST gradient magnitude?
 - Are all gradients increasing?
 - Just those that were weak early in the morning?
 - Just those that were strong early in the morning?
 - ...
- To address this, we determine the change in gradient magnitude
- Then histogram the results for all clear pixels in the study area

What Glves?

- So what contributes to the increase in mean SST gradient magnitude?
 - Are all gradients increasing?
 - Just those that were weak early in the morning?
 - Just those that were strong early in the morning?

- To address this, we determine the change in gradient magnitude
- Then histogram the results for all clear pixels in the study area

What Glves?

- So what contributes to the increase in mean SST gradient magnitude?
 - Are all gradients increasing?
 - Just those that were weak early in the morning?
 - Just those that were strong early in the morning?

- To address this, we determine the change in gradient magnitude between the time of interest and 4 AM LST
- Then histogram the results for all clear pixels in the study area

What Glves?

- So what contributes to the increase in mean SST gradient magnitude?
 - Are all gradients increasing?
 - Just those that were weak early in the morning?
 - Just those that were strong early in the morning?

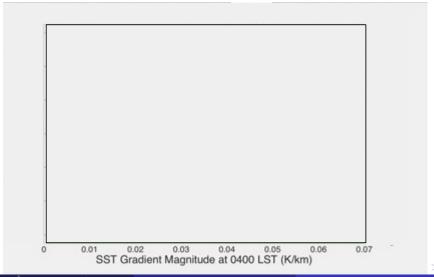
- To address this, we determine the change in gradient magnitude between the time of interest and 4 AM LST as a function of the gradient magnitude at 4 AM LST
- Then histogram the results for all clear pixels in the study area

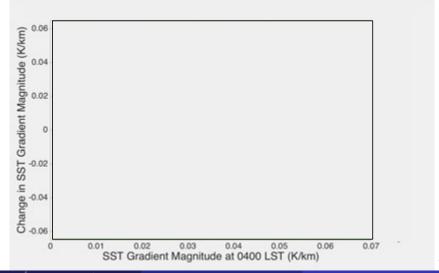
What Glves?

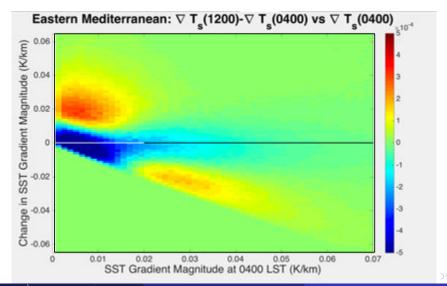
- So what contributes to the increase in mean SST gradient magnitude?
 - Are all gradients increasing?
 - Just those that were weak early in the morning?
 - Just those that were strong early in the morning?

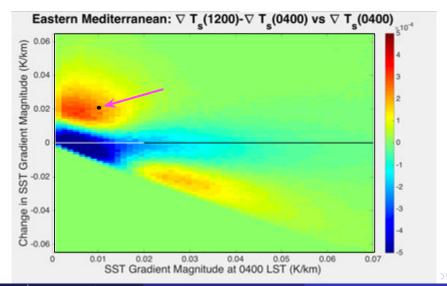
- To address this, we determine the change in gradient magnitude between the time of interest and 4 AM LST as a function of the gradient magnitude at 4 AM LST
- Then histogram the results for all clear pixels in the study area

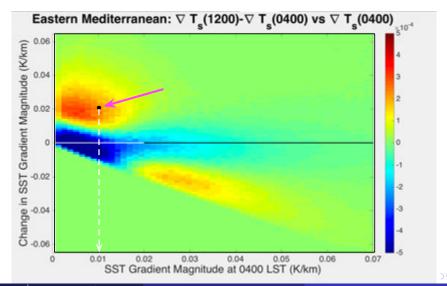
Outline

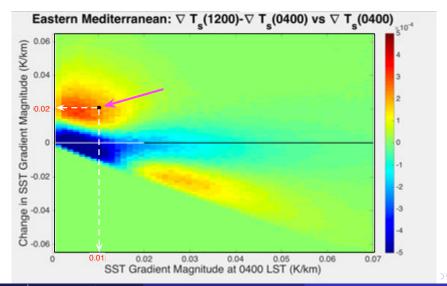

2 The Data

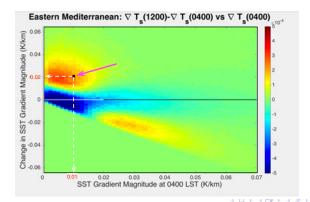

3 The Analsysis/Results


4 African Upwelling Zone


Conclutsions


Added Attractions



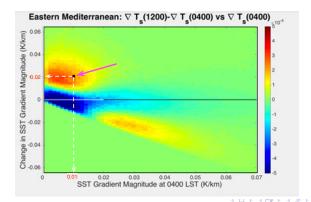


Example Continued

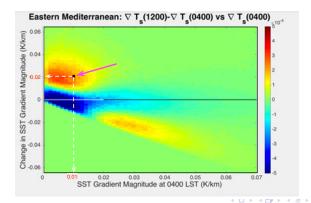
• So, approximately 0.023% of the pixels

Had a gradient of 0.01 K/km at 4 LST And a gradient of 0.03 K/km at 12 LST.

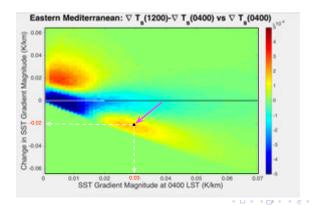
• Conversely, approximately 0.012% of the pixels Had a gradient of 0.03 K/km at 4 LST And a gradient of 0.01 K/km at 12 LST.



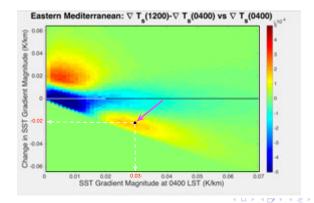
Example Continued


 So, approximately 0.023% of the pixels Had a gradient of 0.01 K/km at 4 LST

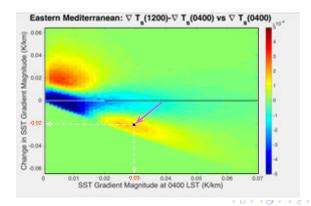
And a gradient of 0.03 K/km at 12 LST.


 Conversely, approximately 0.012% of the pixels Had a gradient of 0.03 K/km at 4 LST And a gradient of 0.01 K/km at 12 LST.

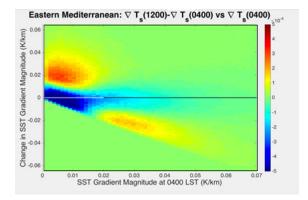
- So, approximately 0.023% of the pixels Had a gradient of 0.01 K/km at 4 LST And a gradient of 0.03 K/km at 12 LST.
- Conversely, approximately 0.012% of the pixels Had a gradient of 0.03 K/km at 4 LST And a gradient of 0.01 K/km at 12 LST.



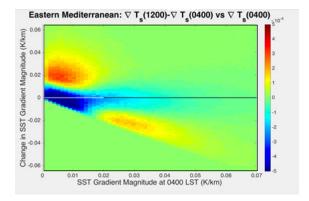
- So, approximately 0.023% of the pixels Had a gradient of 0.01 K/km at 4 LST And a gradient of 0.03 K/km at 12 LST.
- Conversely, approximately 0.012% of the pixels Had a gradient of 0.03 K/km at 4 LST And a gradient of 0.01 K/km at 12 LST.



- So, approximately 0.023% of the pixels Had a gradient of 0.01 K/km at 4 LST And a gradient of 0.03 K/km at 12 LST.
- Conversely, approximately 0.012% of the pixels Had a gradient of 0.03 K/km at 4 LST

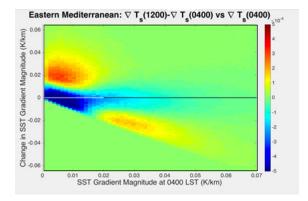

And a gradient of 0.01 K/km at 12 LST.

- So, approximately 0.023% of the pixels Had a gradient of 0.01 K/km at 4 LST And a gradient of 0.03 K/km at 12 LST.
- Conversely, approximately 0.012% of the pixels Had a gradient of 0.03 K/km at 4 LST And a gradient of 0.01 K/km at 12 LST.

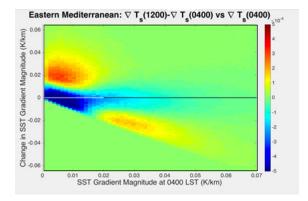

Removing the Effect of Noise on the Histograms

• Uncorrelated noise in the SST field \Rightarrow displacements in the vertical away from 0.

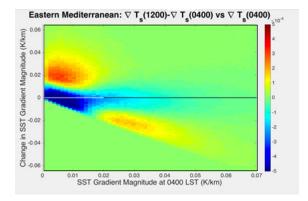
- To reduce the impact of noise subtract 5 LST histogram from histogram.
- We conclude that the increase in the mean gradient magnitude is due to
 - An increase of weak gradients
 - Which is partially balanced by a decrease in strong gradients.


Removing the Effect of Noise on the Histograms

• Uncorrelated noise in the SST field \Rightarrow displacements in the vertical away from 0.

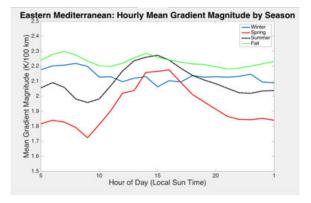

- To reduce the impact of noise subtract 5 LST histogram from histogram.
- We conclude that the increase in the mean gradient magnitude is due to
 - An increase of weak gradients
 - Which is partially balanced by a decrease in strong gradients.

Removing the Effect of Noise on the Histograms


- Uncorrelated noise in the SST field \Rightarrow displacements in the vertical away from 0.
- To reduce the impact of noise subtract 5 LST histogram from histogram.
- We conclude that the increase in the mean gradient magnitude is due to
 - An increase of weak gradients
 - Which is partially balanced by a decrease in strong gradients.

Removing the Effect of Noise on the Histograms

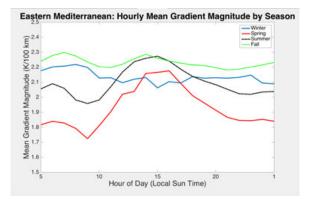
- Uncorrelated noise in the SST field \Rightarrow displacements in the vertical away from 0.
- To reduce the impact of noise subtract 5 LST histogram from histogram.
- We conclude that the increase in the mean gradient magnitude is due to
 - An increase of weak gradients
 - Which is partially balanced by a decrease in strong gradients.


Removing the Effect of Noise on the Histograms

- Uncorrelated noise in the SST field \Rightarrow displacements in the vertical away from 0.
- To reduce the impact of noise subtract 5 LST histogram from histogram.
- We conclude that the increase in the mean gradient magnitude is due to
 - An increase of weak gradients
 - Which is partially balanced by a decrease in strong gradients.

• Recall that the diurnal change in mean SST gradient is seasonally dependent.

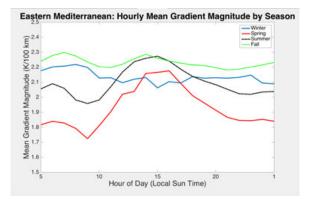
The Analsysis/Results



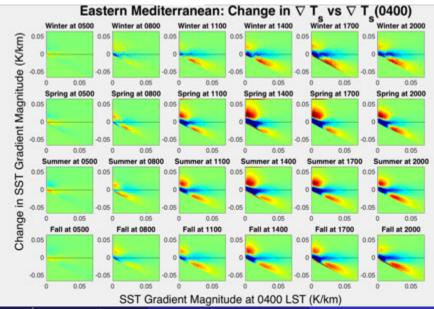
• This suggests possible differences in the evolution of histograms during the day

• So, let's look at the seasonal dependence.

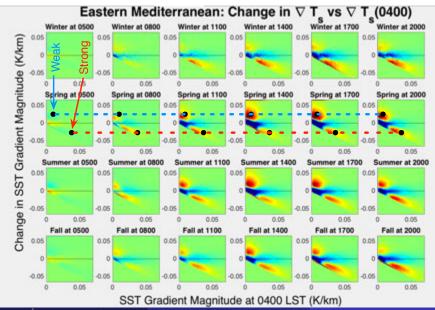
• Recall that the diurnal change in mean SST gradient is seasonally dependent.


The Analsysis/Results

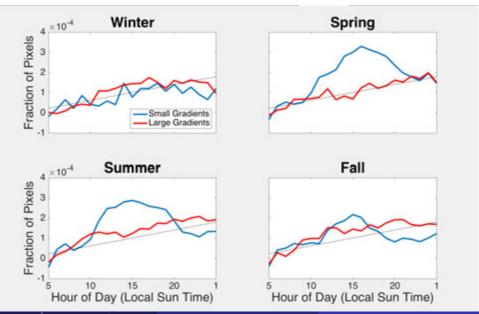
- This suggests possible differences in the evolution of histograms during the day
- So, let's look at the seasonal dependence.


• Recall that the diurnal change in mean SST gradient is seasonally dependent.

The Analsysis/Results



- This suggests possible differences in the evolution of histograms during the day
- So, let's look at the seasonal dependence.


Seasonal Dependence

Seasonal Dependence

Seasonal Dependence Of Weak Gradients Which Get Stronger and ...

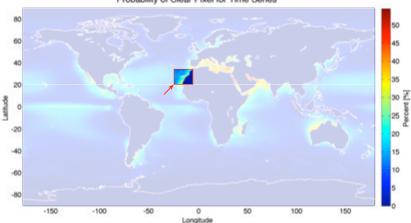
Outline

2 The Data

- 3 The Analsysis/Results
- African Upwelling Zone

Conclutsions

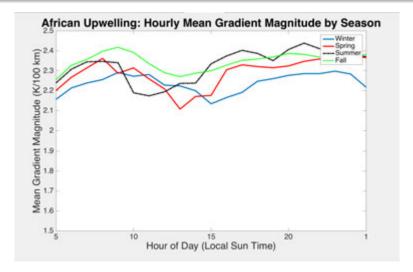
Added Attractions


More Diurnal Variability in Front Probability

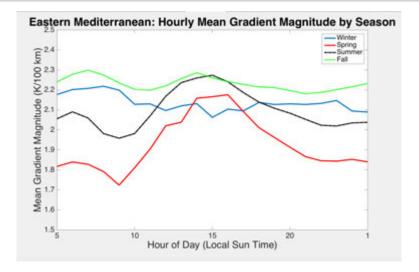
• We also looked at the upwelling region in the eastern North Atlantic.

African Upwelling Zone

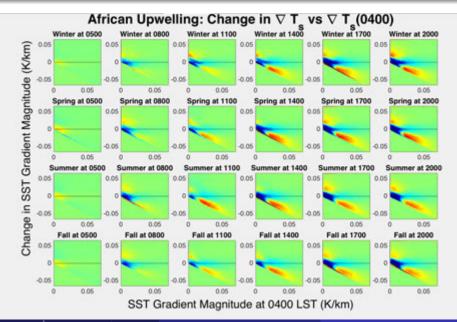
More Diurnal Variability in Front Probability


• We also looked at the upwelling region in the eastern North Atlantic.

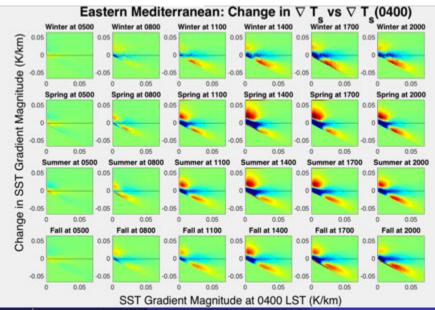
Probability of Clear Pixel for Time Series


African Upwelling Zone

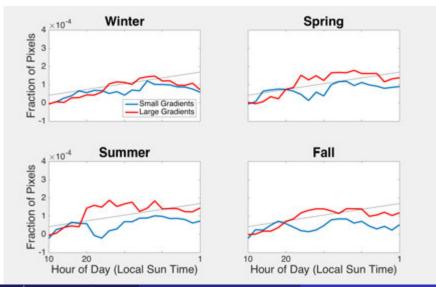
Diurnal Signal in Mean SST Gradients - Upwelling Region



African Upwelling Zone

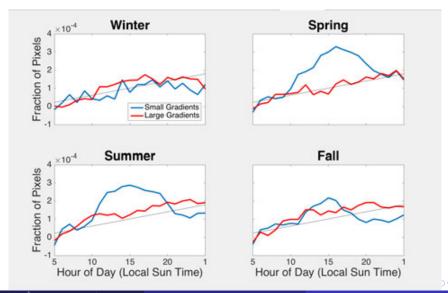

Diurnal Signal in Mean SST Gradients - Upwelling Region

Seasonal Dependence


Seasonal Dependence

African Upwelling Zone

Seasonal Dependence Of Weak Gradients Which Get Stronger and ...


African Upwelling Region

African Upwelling Zone

Seasonal Dependence Of Weak Gradients Which Get Stronger and ...

Eastern Mediterranean

Outline

2 The Data

- 3 The Analsysis/Results
- African Upwelling Zone

5 Conclutsions

Added Attractions

- There is a significant diurnal signal in the $\overline{|\nabla T_s|}$ in the eastern Med
- The mean gradient tends to increase substantially from morning to mid-afternoon in Spring and Summer.
- With relatively little variability in fall and winter.
- Relatively stronger fronts tend to decrease over the course of the day in all seasons.
- These observations suggest that fields of diurnal warming exhibit have spatial structure.
- Significant regional differences.

- There is a significant diurnal signal in the $\overline{|\nabla T_s|}$ in the eastern Med
- The mean gradient tends to increase substantially from morning to mid-afternoon in Spring and Summer.
- With relatively little variability in fall and winter.
- Relatively stronger fronts tend to decrease over the course of the day in all seasons.
- These observations suggest that fields of diurnal warming exhibit have spatial structure.
- Significant regional differences.

- There is a significant diurnal signal in the $\overline{|\nabla T_s|}$ in the eastern Med
- The mean gradient tends to increase substantially from morning to mid-afternoon in Spring and Summer.
- With relatively little variability in fall and winter.
- Relatively stronger fronts tend to decrease over the course of the day in all seasons.
- These observations suggest that fields of diurnal warming exhibit have spatial structure.
- Significant regional differences.

- There is a significant diurnal signal in the $\overline{|\nabla T_s|}$ in the eastern Med
- The mean gradient tends to increase substantially from morning to mid-afternoon in Spring and Summer.
- With relatively little variability in fall and winter.
- Relatively stronger fronts tend to decrease over the course of the day in all seasons.
- These observations suggest that fields of diurnal warming exhibit have spatial structure.
- Significant regional differences.

- There is a significant diurnal signal in the $\overline{|\nabla T_s|}$ in the eastern Med
- The mean gradient tends to increase substantially from morning to mid-afternoon in Spring and Summer.
- With relatively little variability in fall and winter.
- Relatively stronger fronts tend to decrease over the course of the day in all seasons.
- These observations suggest that fields of diurnal warming exhibit have spatial structure.
- Significant regional differences.

- There is a significant diurnal signal in the $\overline{|\nabla T_s|}$ in the eastern Med
- The mean gradient tends to increase substantially from morning to mid-afternoon in Spring and Summer.
- With relatively little variability in fall and winter.
- Relatively stronger fronts tend to decrease over the course of the day in all seasons.
- These observations suggest that fields of diurnal warming exhibit have spatial structure.
- Significant regional differences.

- There is a significant diurnal signal in the $\overline{|\nabla T_s|}$ in the eastern Med
- The mean gradient tends to increase substantially from morning to mid-afternoon in Spring and Summer.
- With relatively little variability in fall and winter.
- Relatively stronger fronts tend to decrease over the course of the day in all seasons.
- These observations suggest that fields of diurnal warming exhibit have spatial structure.
- Significant regional differences.

Whoa, not quite done. A very BRIEF overview of Fan Wu's Poster

Peter Cornillon[†], Carol Anne Clayson* and Pierre Le

GHRSST XVII 8 June 2016 30 / 35

Whoa, not quite done.

A very BRIEF overview of Fan Wu's Poster

Peter Cornillon † , Carol Anne Clayson * and Pierre Le

GHRSST XVII 8 June 2016 30 / 35

Whoa, not quite done. A very BRIEF overview of Fan Wu's Poster

Outline

Introduction

2 The Data

- The Analsysis/Results
- African Upwelling Zone

Conclutsions

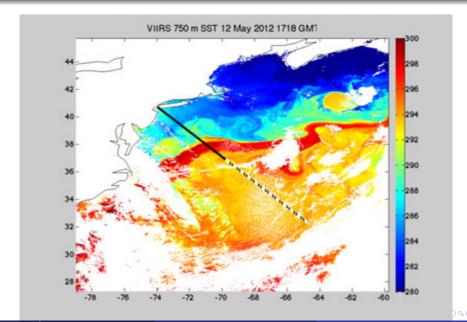
6 Added Attractions

Objective: To develop a methodology to quantify the fidelity of the small scale structure in satellite-derived SST products.

• Our approach compares spectra from a longterm ship of opportunity run

• With spectra derived from the various SST products.

Objective: To develop a methodology to quantify the fidelity of the small scale structure in satellite-derived SST products.


• Our approach compares spectra from a longterm ship of opportunity run

• With spectra derived from the various SST products.

Objective: To develop a methodology to quantify the fidelity of the small scale structure in satellite-derived SST products.

- Our approach compares spectra from a longterm ship of opportunity run
- With spectra derived from the various SST products.

The SST Field – 12 May 2012 1718GMT

Extraordinarily Good Agreement with VIIRS

Best results for

- VIIRS obtained from CLASS several years ago
 - Along scan
 - Nighttime
 - Within 400 km of nadir
- Relatively poor results for AVHRR

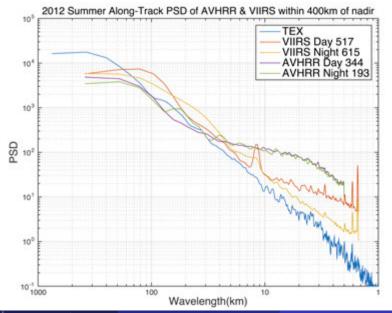
- (E) (E)

Extraordinarily Good Agreement with VIIRS

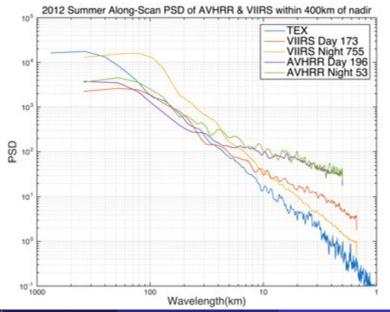
Best results for

VIIRS — obtained from CLASS several years ago

- Along scan
- Nighttime
- Within 400 km of nadir
- Relatively poor results for AVHRR


- Best results for
 - VIIRS obtained from CLASS several years ago
 - Along scan
 - Nighttime
 - Within 400 km of nadir
- Relatively poor results for AVHRR

- Best results for
 - VIIRS obtained from CLASS several years ago
 - Along scan
 - Nighttime
 - Within 400 km of nadir
- Relatively poor results for AVHRR


- Best results for
 - VIIRS obtained from CLASS several years ago
 - Along scan
 - Nighttime
 - Within 400 km of nadir
- Relatively poor results for AVHRR

- Best results for
 - VIIRS obtained from CLASS several years ago
 - Along scan
 - Nighttime
 - Within 400 km of nadir
- Relatively poor results for AVHRR

The Results

The Results

