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Introduction 
As HPC hardware continues to evolve and diversify and workloads become more dynamic and complex, applications need 
to be expressed in a way that facilitates high performance across a range of hardware and situations. The main application 
code should be platform-independent, malleable and asynchronous with an open, clean, stable and dependable interface 
between the higher levels of the application, library or programming model and the kernels and software layers tuned 
for the machine. The platform-independent part should avoid direct references to specific resources and their availability, 
and instead provide the information needed to optimise behaviour. 

This paper summarises how task abstraction, which first appeared in the 1990s and is already mainstream in HPC, should 
be the basis for a composable and dynamic performance-portable interface. It outlines the innovations that are required 
in the programming model and runtime layers, and highlights the need for a greater degree of trust among application 
developers in the ability of the underlying software layers to extract full performance. These steps will help realise the 
vision for performance portability across current and future architectures and problems. 



Task-Based Performance Portability in HPC 

3 

Key insights 
• Porting applications is difficult and must be

successful in a short time. HPC hardware evolves
quickly and supercomputers have a fast turnover. 
On the other hand, HPC applications have a long
lifetime. Usage practices are themselves evolving
towards more complex and dynamic scenarios,
involving simulation, code coupling, (in-situ)
analysis and visualisation, interactive computing,
urgent computing, and malleability.

• Applications should therefore be expressed in a
way that facilitates performance portability, as
agnostic as possible (and no more) of the
architectural particularities. The advantages are
more rapid porting to new platforms and the
flexibility to adapt to new application scenarios.
One of the hardest aspects to address is the need
to build trust among developers that the
underlying software layers can extract full
performance from a performance-portable
codebase rather than relying on hand
optimisation.

• Task-based programming models allow HPC
programmers to express applications and
workflows in such a performance portable way.
As global optimisation and coordination is
needed across all levels of the software stack,
task-based models identify pieces of work to be
done, thereby providing a clean abstraction for
the programmer to reason about the program.
The runtime layer should handle parallel
scheduling, overlapping of computation and
communication, data placement and transfers,
resiliency, load balancing and dynamic resource
sharing among applications.

• Open standardisation is one of the best ways to
drive adoption. HPC application developers
require a commitment to long-term
maintenance, support and high performance
across platforms. There is a vibrant ecosystem of
programming model research in Europe adopting 
various approaches, the most successful of which
should be standardised.

Key recommendations 
• The community should promote best practices in

application porting:

- Promote greater trust in the ability of lower-level
software layers to extract full performance, rather
than displaying “impressive” optimisation tricks.

- Confine adaptation efforts to short kernels, while
preserving the global application structure,
favouring composability.

- Separate the concerns of experts in distinct fields
to let them jointly contribute to the optimisation
effort in a coordinated, interference-free manner,
from application domain, to algorithm, to
programming model, to runtime, to platform.

• Research in task-based programming models and
runtimes should:

- Improve efficiency and extend scope of runtime
resource management decisions.

- Support new platforms/hardware, e.g. FPGAs,
PIM, and usage models, e.g. malleability.

- Enable cooperation of task-based models with
existing HPC components, such as compilers, job
schedulers, application deployment managers,
MPI, etc.

- Develop a portfolio of tools around task-based
models, such as performance analysis, verification 
and debugging frameworks.

• Europe should make the most of its vibrant
ecosystem of programming model research:

- Continue to foster various approaches motivated
by and evaluated using large-scale applications.

- Continue to incorporate the most successful
European-led approaches into open standards.
But standardisation needs to be done at the right
level of maturity and not all technologies may be
a good fit for a single model.

- Evolve programming models and runtimes to
support new technologies, such as new types of
accelerators, FPGAs and, in future, Processing-in-
Memory (PIM). The support should not be specific 
to hardware vendors, but be open and
standardised, allowing kernel code portability
across vendors.



White Paper 

4 

Shortening application deployment and optimisation efforts on 
complex, heterogeneous, high turnover HPC supercomputers 
Supercomputer platforms, such as those in PRACE Tier-0, are at the current state of the art in computer hardware 
technology, and as such, have short production lifetimes, at most 5 to 10 years. New machines must therefore deliver 
scientific and industrial results right upon entering production. At the same time, the technology race is leading to 
increasingly complex, heterogeneous, diverse computing hardware as vendors devise new solutions to deliver ever higher 
performance, making the software adaptation effort challenging. This evolution can be seen in the diversity of technical 
solutions, with and without accelerators, of various kinds, and with diverse and heterogeneous memory systems, in the 
most powerful systems at the Top500 and Green500 rankings. For instance, Top500 #1 Fugaku uses Fujitsu’s ARM derived 
A64FX processors, #2 Summit and #3 Sierra systems combine IBM’s Power9 processors with NVidia Volta GV100 GPUs, 
#4 TaihuLight is built on Sunway SW26010 many-core processors, etc. 

Application development is usually expensive and time consuming, and this is especially true in HPC, where applications 
tend to have long lifetimes to capitalise on developer investment and embody domain expertise that has grown over 
time. It is essential that the application’s architecture is stable and that all its prerequisites have long-term availability, 
maintenance and high performance across current and future target platforms. Applications are also becoming more 
diverse and complex as new users and science fields come to HPC. For example, scientific simulations now often need to 
be tightly coupled with AI-based data analytics in an efficient way.  

Task-based runtime systems perfectly cope with such evolving hardware and software. Since there is little time for 
software developers to port and tune applications specifically for new platforms, applications need to be expressed in a 
way that facilitates high performance across a range of hardware and situations. As much as possible, the majority of the 
application code should not  be dependent on specific resources or their availability, so that, in a simple example, instead 
of dividing up the work by the number of cores and/or devices the application should use an abstraction like a task-loop 
or parallel for. Resilience, load balancing and data placement should also be handled at lower software layers. This 
requires a greater degree of trust in the ability of the underlying software layers to extract high performance, and a larger 
focus on long-term maintainability, portability and performance rather than (impressive) short-term performance tricks. 

Task-based programming models allow developers to write applications in a way that preserves such stability by confining 
the adaptation effort mostly on select kernel routines that can be encapsulated into tasks with known inputs and outputs. 
The same task abstraction can be used to build libraries and domain-specific languages that can in turn be used by the 
application. Once standardised, the application developers can rely on wide support. 

Tasks as an abstraction for programming first appeared in 1995 [Blum95], and became mainstream in HPC programming 
with the publication of OpenMP 3.0 in 2008 [OpenMP3]. Since then, OpenMP’s support for tasks has been incrementally 
refined, to support dependencies, task-loops and reductions, amongst other things, with European research in 
programming models at the forefront of this innovation. 

As task-based programming models are reaching maturity, research effort should now focus on (a) improving and 
extending the scope of delegated management decisions, (b) developing an interoperable portfolio of tools around task-
based models, (c) extending the cooperation and composability of task-based models with existing components and 
programming models, and (d) supporting new platforms and architectures, such as FPGAs and Processing in Memory 
(PIM). 
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Usual HPC application design practices 
HPC applications are most commonly built around variants of the Bulk-Synchronous Parallelism (BSP) model, alternating 
phases of intra-node computations with phases of inter-node exchanges, separated by synchronisation operations, either 
using explicit message passing communications with MPI or abstracted through Partitioned Global Address Space (PGAS) 
approaches. The same BSP pattern is also commonly used at the node level to exploit multiprocessors and cores, either 
through MPI again, using multiple processes per node, or through OpenMP, using multiple threads in a fork/join manner. 
In the same way, synchronous kernel offloads to accelerators or GPUs using NVIDIA CUDA, OpenCL, or through 
OpenMP/OpenACC constructs, can also be seen as declinations of BSP. 

Fig. 1: Illustration of a heterogeneous computing node equipped with a multicore CPU, a GPU-based accelerator board 
equipped with its own embedded memory and reconfigurable FPGA device. 

However, the prominent issue with this BSP approach is the difficulty in ensuring a proper load balancing and coordination 
across these multiple levels, and the resulting amount of processing unit cycles wasted in synchronisation operations. 
Using non-blocking programming techniques may help to reduce the amount of wasted cycles. Yet, this makes the burden 
even higher for the application programmer, for instance to decide which pairs of operations can safely be overlapped, 
or to determine which amount of CPU computation balances some GPU kernel offload. Factoring in additional sources of 
complexity and imbalances, such as instruction set variants, cache hierarchies, non-uniform memory access (NUMA) 
architectures, specialised memory areas with distinct performance patterns (HBM/MCDRAM, NVM), or reconfigurable 
FPGA computing devices (see Fig.1), for instance, the effort required for hand-tuning an application on a given 
architecture becomes largely impractical by itself, and much of the investment becomes irrelevant or counterproductive 
on a different architecture. Moreover, the performance variability across multiple runs due to the interplay of multiple 
factors such as frequency scaling, thermal throttling, and general system noise defeats the most careful static execution 
planning. 

Moreover, the entanglement of the application algorithms with unrelated synchronisation, load balancing and more 
generally with parallelism management operations makes the resulting code difficult to read, to maintain and to evolve. 
Single-source programming models such as SYCL or Intel's DPC++, and to some extent OpenACC and OpenMP, attempt 
to address these issues by providing HPC programmers with a means to potentially target diverse hardware computing 
resources from a unique source code. In the short term, this may indeed be convenient. However, those programmers 
then become dependent on the availability of the right compiler to target a given combination of CPUs, accelerators, and 
other kinds of computing devices. Their immediate burden is lightened, but their control is reduced in the process. In 
addition, this hinders the ability to combine multiple programming models within the same application. 
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Overall, such common HPC application design techniques therefore suffer from significant issues to keep up with a fast 
evolving supercomputing landscape. Task-based programming models such as StarPU [Agullo17] (Inria, France), OmpSs 
[Duran11] (BSC, Spain), OCR-Vx [Dokulil16] (University of Vienna, Austria) and DuctTeip [Zafari19] (University of Uppsala, 
Sweden), developed in Europe, as well as non-European initiatives such as HPX [Kaiser14], Legion [Bauer12], OCR 
[OCRspec], PaRSEC [Hoque17], to name a few, all define a clear software design path to address these issues. 

A change of approach is needed, which goes beyond simply expressing bulk parallelism in the form of tasks, such as, for 
example, by converting "parallel for" loops into task-loops. It is necessary to exploit nested tasks, with the possibility of 
expressing offloading at multiple levels if needed. 

Programming for performance portability 
Performance portability designates a property of applicative codes to maximise efficiency across a broad range of 
hardware platforms, while minimising the specific adaptation effort required on each platform. Programming for 
performance portability requires a software design approach that isolates core application algorithms, i.e. long-term 
pieces of code persistent across platforms, from kernels, i.e. short-term code tuned for specific hardware. Moreover, 
machine-dependent work management should not be reinvented for the application and tangled up with it, but delegated 
to dedicated runtime systems. 

Principles of task-based parallel programming 
Parallel programming is a matter of assigning pieces of work to workers. Parallel programming models can be classified 
in three broad classes, whether they let programmers primarily focus on managing entire processes, such as with MPI, 
focus on managing workers, named “threads”, within such processes in the case of thread-based parallel programming 
models, or focus on expressing the pieces of work to be done, named “tasks”, in the case of task-based models. The 
common idea of task-based parallel programming models is to let the application programmer define elementary blocks 
of source codes, e.g. “pieces of work”,  as individual tasks, and then express the application core algorithms in terms of 
sequences of those tasks.  

A task-based programming model typically works together with an execution model supplied by a runtime system. The 
application submits execution requests for tasks in sequences to the runtime system, oftentimes inheriting understood 
sequential semantics from the original program, while the runtime system executes the tasks in the background on the 
available processing units in parallel, using some scheduling algorithm. Additional directives and constraints let the 
application core express semantic information and hints such as relationships among tasks or relationships between tasks 
and pieces of data, to guide the parallel execution process. 

Task-based execution models 
Task work requests are collected and executed in the background by a runtime system. The runtime system is therefore 
in charge of driving the execution of the application tasks while efficiently exploiting the available hardware resources. 
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Fig. 2: Illustration of the way the abstract representation of an application given by the task graph can be used by a 
runtime system to map tasks on available, possibly heterogeneous platforms. Tasks can be dynamically mapped to 
appropriate processing units using scheduling algorithms. Data consistency between devices can be enforced using data 
dependence edges. Prefetch operations can be triggered automatically to overlap data transfers with computation. 

The semantics information constituted from the flow of submitted tasks and their dependencies is commonly referred to 
as the task graph. This task graph synthesises the application structure in a conceptual object that can be exploited by 
the runtime system in many ways to perform operations on behalf of the application programmer, beyond the parallel 
execution of tasks, see Fig. 2. The task graph may be hierarchical, with nested tasks, in order to control the maximum 
degree of parallelism, and inherent synchronisation and contention, managed at a time. Data dependence edges in the 
task graph, for instance, let the runtime system infer when to trigger data transfers between computing nodes, as well 
as inside nodes between memory spaces (main memory, specialised memory, device-embedded memory). 
Computation/communication overlap and data prefetches can be handled transparently, in the process, to minimise idle 
times. The runtime system can even eliminate redundant data transfers using data replication and caching techniques. 
Other examples include using task graph information to enable dynamic resource management, malleable jobs, fault 
tolerance enforcement, to guide checkpointing and recovery operations, or deciding when to page data to disk and when 
to fetch it back in out-of-core execution scenarios on large datasets, for instance. 

Thanks to their flexibility, task-based models can co-exist alongside other common HPC models, including other task-
based models. This enables scenarios such as the incremental transformation of legacy codes into task-enabled codes for 
languages such as C, C++ and Fortran, the composition of multiple models such as tasks with MPI, the coupling of multiple 
codes, and even the active interoperability between models, as demonstrated in H2020 Project INTERTWinE 
[H2020INTW]. 
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Properties of task-based programming models 
Task-based programming models invite programmers to express applications in terms of elementary tasks and 
dependence relationships. This semantically rich abstract representation enables runtime systems to handle the resource 
management and load balancing duty on behalf of programmers. Furthermore, the clear separation of the stable 
machine-independent application structure from well identified machine dependent task routines greatly simplifies 
porting efforts. The resulting performance portability ensures a quick short term return on investment on new platforms, 
while preserving long term software development investment. 

Using a task-based model, programmers focus on decomposing their programs into tasks, while delegating it to the 
runtime system to decide how tasks are mapped to the available execution units of a parallel system and how data is 
managed across the memory hierarchy. This change in mentality from managing processes or threads of execution to 
describing the work to be done is in some ways similar to the move from assembler to Fortran/C or the move to structured 
programming. In all cases, application development is easier, safer and more efficient for human programmers and 
application analysis and optimisation is easier, safer and more effective for tools. 

Fig. 3: Overview of the task-based programming approach. An application submits tasks to a runtime system in charge of 
executing them on the available resources, thanks to the property of management delegation. Task implementations can 
be supplied through multiple means ranging from custom routines to kernels from highly optimised vendor libraries, 
thanks to the property of separation of concerns. Hardware-specific device drivers bring the property of performance 
portability. 
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Task-based models facilitate performance portability [Dokulil16, Agullo17, Garcia20] by enforcing a clear separation 
between the task submission side of an application, to be kept largely unchanged across platforms, and the architecture-
specific code concentrated in variants of the task kernel routines for CPUs, GPUs, FPGAs, PIM, and so on. The load 
balancing work over available computing units is handled by the runtime system scheduler. Task-based models also 
naturally bring the property of separation of concerns as a key added benefit, especially in HPC. Fig. 3 presents an 
overview of the task-based programming approach and illustrates these properties.  

Indeed, the application core algorithm designers, task kernels designers, task scheduling algorithm designers, runtime 
systems designers can be distinct persons, experts in their own domain, contributing to the same application in a safe 
and efficient manner, thanks to the proper isolation of each specific concern. In particular, the popularity of highly 
optimised routines from vendor-specific linear algebra libraries such as Intel MKL or NVIDIA CUBLAS show the interest of 
a portability strategy concentrated on kernels. 

Task-based models inherently increase application robustness as well. Using task relationship information with other 
tasks and with pieces of data, low-level concerns such as task synchronisation and data consistency management can be 
handled transparently. Further, task routines abiding by the functional programming concept of a pure function, that is, 
with no hidden internal side effects or dependencies, can be scheduled under a deadlock-free guarantee in any 
constraints-compliant order. Tasks can also have known side effects and dependencies, as required for deadlock-free 
interoperability with other programming models or APIs, such as MPI. 

In some specific application cases, simpler abstractions may be more convenient and effective than tasks. Examples of 
such high level layers include data-flow programming models, stencil-oriented models, or skeleton programming models, 
for instance (see Fig. 3). These models may however be offered as high level programming layers on top of task-based 
programming environments, to get the benefit of an increased case-specific abstraction, while preserving the 
performance portability and ecosystem integration properties of task-based models. 

Task-based parallelism initiatives in Europe 
StarPU 
The StarPU runtime system [StarPU, Agullo17] is developed in Bordeaux, France at Inria and the LaBRI laboratory. A key 
characteristic of StarPU is its performance model-based heterogeneous scheduling ability on computing nodes equipped 
with accelerators. It can be programmed either directly, as in the FLUSEPA code from Airbus [Flusepa], through libraries 
such as the Chameleon [Chameleon] (dense) and PaStiX [PaStiX] (sparse) linear algebra solvers, or from higher level 
programming models such as OpenMP and SkePU. 

OmpSs 
OmpSs is the parallel programming model from Barcelona Supercomputing Center, which is part of a 10+ years’ 
investment in programming model research [Duran11, Perez17]. It provides annotations to a sequential program with a 
single address space/namespace which is able to execute in parallel through the runtime computation of task 
dependencies.  OmpSs has been the forerunner for tasking in OpenMP 3.0 and task dependencies in OpenMP 4.0, and 
many improvements in subsequent versions of OpenMP, such as reductions, commutative, concurrent, task-loops were 
the result of research on OmpSs. The latest version, OmpSs2, is supported by the Mercurium source-to-source compiler 
and Nanos6 runtime system.   

OCR-Vx 
The OCR-Vx asynchronous, task-based runtime system [OCRVx] developed at the University of Vienna, Austria, is based 
on the Open Community Runtime specification [OCRspec] proposed in the context of the US XStack (Exascale Software 
Stack) initiative. The central idea of OCR is to decouple a program’s computations and data from the actual execution 
units and memory locations of a parallel system, based on the concepts of event-driven tasks and data blocks. To support 
dynamic program adaptation and facilitate fault tolerance, both tasks and data blocks are relocatable. OCR-Vx has been 
implemented in C++ for shared and distributed-memory systems.  

https://www.univie.ac.at/ocr-vx/
https://www.univie.ac.at/ocr-vx/doc/ocr-v1.1.0.pdf
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Recommendations for 2024–2025 
Best practices 
The community should promote best practices in application porting. Application developers should be encouraged to 
trust low-level software layers to extract performance from declarative information. Adaptation efforts should focus on 
short kernels within a stable application structure. As applications are getting ready for the exascale transition, now is 
also the time to encourage long term-oriented, performance-portable programming using task-based models, for 
instance, with the help of PRACE and national supercomputing entities. 

Research in task-based programming models 
Research in task-based programming models should continue to improve and extend low-level resource management 
and data locality decisions through more expressive abstractions and compiler/runtime intelligence. New platforms and 
hardware, such as FPGAs and PIM, provide important new challenges, often benefiting from the re-evaluation of previous 
ideas in the new context. Similarly, the programming model support layers should be extended to support new usage 
models such as malleability, for which the tasking model provides a natural way for the program to react to changing 
resource availability. In addition to supporting tasking within a node, as hybrid MPI+X, we should continue investigating 
tasking programming models across nodes. In complex applications, programming model interoperability and 
composition are important, as is interoperability with other components such as the job scheduler, for which 
standardisation will be important, perhaps via PMIx. The task graph information and separation of concerns bring the 
opportunity for more accurate performance analysis and debugging tools. In addition, the HPC ecosystem should be ready 
to incorporate ideas from other fields that face similar problems, e.g. in cloud computing. 

Ecosystem and standardisation 
There is a vibrant ecosystem of programming model research in Europe, and now is the time to increase the TRL and 
make them ready for production use in exascale supercomputers using large-scale applications. Since long-term software 
development depends on the stability of all prerequisites, including stable and supported implementations of the 
programming models, the most successful approaches should be incorporated into open standards. Tremendous 
progress has been achieved and a broad consensus has been reached, especially through the OpenMP initiative. It may 
not be possible to incorporate everything into OpenMP, but open standardisation is one of the best ways to enable 
programming model uptake and portability across vendors.  

Conclusions
This white paper has reviewed the case for task-based performance portability and identified what is needed to drive 
greater adoption. We discuss why the task abstraction provides a clean, stable and dependable interface between the 
machine-independent application programmer, library or domain-specific language implementation and the machine-
dependent software layers. We also outline the academic and industrial research needed to realise the vision of 
performance portability across current and future architectures and problems. 
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