
International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249 – 8958 (Online), Volume-9 Issue-5, June 2020

1104

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: E1080069520/2020©BEIESP
DOI: 10.35940/ijeat.E1080.069520
Journal Website: www.ijeat.org

Abstract: Inode is one of the subsystems of WAFL(Write

Anywhere File Layout) file system. Inode cache is a dynamic
subsystem that is percentage factor of available memory. Based on
different workflows and the datasets inode cache grows and
shrinks. Based on the study of customer related issues it is found
that deploying such a workload and datasets at the scale, that
customers typically deploy and exercise inode cache for the whole
duration of test is very challenging, considering quality assurance
test typically focuses on multiple subsystems. Inode cache
behavior differs with steady state versus performance disruptive
workflows such as volume offline, volume online, volume
migration and backup/vault use cases. Based on the behavior
observed on the internal test systems it is found inode cache
disruptive workflows are exercised only during certain stages but
not repeatedly for the duration of test and also it is hard to find out
which volume is experiencing performance issues due to inode
cache invalidation/shrink/rewarning. In this paper, trying to
exercise the performance behavior of inode subsystem like the
way customer does and try to monitor and model the subsystem
using automation. Here considering the different key attributes
and typical operations that effect the inode cache behavior and
some of the interested counters statistics that need to be monitored
for analyzing the performance behavior of inode cache.
Exercising inode cache operations requires constant focus on
how the inode cache is performing. Repeat and Rerun some of the
targeted workflows for inode cache population invalidation/
shrink operations at constant intervals to model the behavior of
the inode subsytem.

Keywords: Inode Cache Grow, Inode Cache Invalidation,
Inode Cache Shrink, Snap Mirror, Volume Migration (Move).

I. INTRODUCTION

WAFL is a block level file system, where files can be
stored anywhere in the system. In WAFL meta data is stored
inside the files [1]. An inode is one of the subsystems under
WAFL. An inode is a data structure that stores the attributes

Revised Manuscript Received on June 15, 2020.
* Correspondence Author

Eshwari A Madappa*, Assistant Professor, Electronics and
Communication Engineering, JSS Science and Technological University,
Mysuru, Karnataka, India. E-mail: eshwarinaveen@sjce.ac.in

Swathi S, M.Tech, Networking and Internet Engineering, JSS Science
and Technological University, Mysuru, Karnataka, India. E-mail:
swathisrinivas001@gmail.com

Mayank Agrawal, Member of Technical Staff at NetApp, Bangalore,
Karnataka, India. E-mail: Mayank.Agrawal@netapp.com

Suresh Anjaneyalu, Member of Technical Staff at NetApp, Sunnyvale,
US. E-mail: sureshkab@gmail.com

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

of a file including its type, size and even where its data reside
etc. Inode number is unique integer number assigned to a file
when it is created[2][3]. The general structure of the WAFL
inode subsystem is shown in Fig. 1, inode stores the
information about other inodes, it is called Root Inode, where

the location is fixed. Inode is smaller in size, it either stores

the content of the file or it contains the pointer to the data file
block or to the indirect blocks and forms the tree structure
[4][5].
Inode has 2 different forms, in-core and on-disk forms.
1. In-core WIP(Wafl_Inode): An in-core inode is called

WIP. It resides in a 4K page called inode page. Each
inode page can hold 5-7 inodes depending on releases
and platforms.

2. On-disk Inode: The on-disk inode holds the permanent
state of an inode. Its size is currently 192 bytes.

Fig. 1. Structure of WAFL Inode

Inode pages are linked together and maintained in the inode
cache. For exercising the inode cache identified some of the
key attributes, operations and counters to model and monitor
the inode subsystem. Inode needs large volumes and multiple
of such volumes and those volumes should have millions of
inode created, it depends on the work specific file sizes some
files are very small, some are very large and some files are all
over the place. Inode cache is typically large for some
volumes like NFS(Network File System) systems and
volumes can be small for SAN(Storage Area Network) kind
of systems, here focusing on the NFS systems. Inode cache
behavior should change based on the operations that are
performed on inode. Inode cache population and invalidation
should happen over the time based on the volumes used and
how it is impacted per volume, inode cache varies with
different platforms as it is a matter of memory size.

The typical operations that impacted the inode subsystem
are volume migration, backup,
vault, and snapmirror. Typical
key counters which are

Automated Feature Performance Modelling of
Inode Cache

Eshwari A Madappa, Swathi S, Mayank Agrawal, Suresh Anjaneyalu

mailto:eshwarinaveen@sjce.ac.in
mailto:sureshkab@gmail.com
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijeat.E1080.069520&domain=www.ijeat.org

Automated Feature Performance Modelling of Inode Cache

1105

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: E1080069520/2020©BEIESP
DOI: 10.35940/ijeat.E1080.069520
Journal Website: www.ijeat.org

interested in monitoring the behavior of the inodes are
number of inodes on disk(inode_cnt), number of inodes to be
recycled (inode_cnt. RECYCLE), inodes in memory (inode
cache) and number of inodes that are pinned(pinned) vs
unpinned(unpinned).
These are some of the important key factors for inodes based
on which inodes behavior differs with the different operations
performed.
The different key attributes, operations and counters used for
the monitoring and modelling the inode cache is shown in Fig.
2.

Some definitions related to inode cache are:
Unpinned (inode) page: An inode page where all the wipes
are in one of the following three states: UNUSED/
RECYCLE/NOSTATE.
Pinned (inode) page: An inode page where at least one wip is
NOT in one of the following three states: UNUSED
/RECYCLE/NOSTATE.
Inode Cache Grow: The process of creating inode pages as
per the inode cache's sizing policy.
Inode Cache Scavenging/Shrinking: The process of freeing
inode pages as per the inode cache's sizing policy.
Lazy Inode Invalidation : In a steady state system i.e.
without any disruption to inode cache (i.e. no
takeover/giveback, volume move, volume snapshot restore,
file deletes etc) previously used volumes should invalidate
inodes by switching the inode churning workload to different
set of volumes in a lazy invalidation fashion assuming there is
no memory pressure.

Fig. 2. Key Attributes, Operations and Counters for

Monitoring the Inodes

II. PROBLEM STATEMENT

Considering one-year worth of customer related issues,
data collected can be categorized into different ways based on
the issue found. The 3 dominating categories are
Performance, Feature Interaction and Race Condition. Here
focusing on one category of issues that is performance.

For the customer data at high level, customer deploys larger
datasets, workloads and the scale are at much higher rate with
larger volumes and millions of data. They do both disruptive
and non-disruptive workloads and operations based on the
intent and requirement some of those are migration, tech
refreshers, rebalancing workloads based on number of active
and inactive volumes based on application demand. The scale
of the data sets is in terms of 100s of TB. These are some of
the key factors differentiated from testing done in internal
systems and data deployed at customers system. As the
customers are working at higher scale and datasets, could not
able to find such issues in the internal systems.

Some customers related issues found in inode subsystems
are, lazy invalidation failed to remove the inodes from the
cache, front end changing workloads stresses the backend
infrastructure based on the functionalities, they are indication
of kernel panic as inodes are not keeping up with its
operations, in case of v4 inodes system hangs during the
upgradation and not able to service reads and writes
operations.

III. PROPOSED SYSTEM

The general block diagram of how the inode subsystem is
exercised as shown in Fig. 3. The system consists of the
2-node controller connected via HA(High Availability) pair,
clients are connected to each node. Each node consists of
different number of volumes, number of files created on each
volume is different because of different volume size. When a
new file is created in the volume, new inodes are created to
store the information of a file, so inodes in the memory starts
increasing. As the volume and the files in the system
increases, traffic in the system also increases and reaches to a
point where there will be no space available for new inodes to
be cached, that’s when lazy invalidation has to recycle the

inodes which are not been used for longer time[6].
In some rare cases lazy invalidation could not kick out

inodes and causes memory pressure in the system which effect
the overall performance. In this paper, with different
operations forcing the invalidation of inode cache is carried
out. The first operation carried out is volume move
operation[11], with this volume in the source node has been
moved from source node to destination node. The second
operation performed is snap mirror operation[12], which
creates the snap mirror relationship between the volumes in
the source node and destination node by replicating the
volumes. The python and perl languages are used for
automation for performing different operations[7][8][9].

Fig. 3. General Block Diagram of How the Inode

Subsystem is Exercised

IV. OBSERVATION FROM INTERNAL TESTING

SYSTEM

Here are some of the observation seen from the internal test
systems. The inode cache behavior in normal test systems is
checked, collected some data of the inode cache behavior for
the duration of 10 hours.
Observation from Internal System:

The number of inode and the inode cache count remains to
be stagnant for the duration of test. Did not observe any inode
cache

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249 – 8958 (Online), Volume-9 Issue-5, June 2020

1106

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: E1080069520/2020©BEIESP
DOI: 10.35940/ijeat.E1080.069520
Journal Website: www.ijeat.org

grow/population, shrink, invalidation and deletion
happening in the system. In the same way the counter values
like number of inodes that are pinned, unpinned, and recycled
did not change in this duration of test.

The sample data collected from the internal systems is
shown in Fig. 4.

Fig. 4. Observation from Internal System

V. IMPLEMENTATION AND RESULTS

The inode cache in the system can be exercised by
performing the focused operations. After the different
operations have been carried out, now counter values are
collected from perfstat tool [10], the results are used to plot
the graph based on number of iterations carried for analyzing
the inode subsystem. The graph consists of time stamp (in
hours) in x-axis, number of inodes (in millions) in the y-axis,
and inode cache (in millions) in z-axis.

1. The behavior and observation of On-Disk Inode
Population on Inode cache:

Based on modelling work for exercising the inode
subsystem, the inode cache grow/population is analyzed. For
inode cache grow, the inode populator workload is used
which will untar the files into the volume. The inode cache
exercise more and more reads of on-disk inodes with files in
the volume, with this inode cache starts growing/populating
and it reaches maximum value and after that inode cache will
be stagnant based on the amount of memory available in the
system as shown in Fig. 5.

Fig. 5. Behavior of Inode Cache with Population

Observation from the Fig. 5 are:

 Number of Inodes (inode_cnt) and Inode cache increases
with each iteration.

 The counters like inode_cnt.Recycle, pinned, unpinned
also increases with the inode cache grow/population.

 The inodes in the system reaches to 4 Million.

2. The behavior and observation of Volume Migration on
Inode Cache:

Once inode cache is populated, then considering those
volumes with data populated and then perform volume move
operation. Here the volumes have been moved from source
node to the destination node. From the Fig. 6 and Fig. 7 after
performing the volume move operation source node behavior
is different from what is seen on the destination node. The
cycle of iterations has been repeated for 6 times back to back
so that consistency of how the inode cache impacted with the
operation performed can be analyzed.

Observation of inode system with volume move
operation:
Source Node:

The behavior of the source node with volume move
operation is shown in the Fig. 6. Some of the observations are,

 The moment volume move operation is started, the
inode cache for that volume tends to decrease, the
number of inode cache goes down as volume move
progresses and inode cache reaches the bottom, as
when volume move operation completes volume
decrease inode cache footprint.

 In parallel recycle of inodes (inode_cnt. RECYCLE)
also reduces in memory.

 Number of pinned and unpinned inodes also sort of
reduces as volume move will invalidate the inodes in
the memory.

Fig. 6. Behavior of Source Node with Volume Move

Operation
Destination Node:

The behavior of the destination node with volume move
operation is slightly different as shown in the Fig. 7. Some of
the observations are,

 On destination the behavior of the system is slightly
different from what is observed in the source node, this
is because it is just a volume move operation going on
in the destination node and there is no front end reads
and writes operation happening so no need to keep the
inodes in the memory.

 The inodes in memory are less and it keeps populating
as volume move operation progresses. As inodes reads
happen on the
destination inodes in
memory

Automated Feature Performance Modelling of Inode Cache

1107

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: E1080069520/2020©BEIESP
DOI: 10.35940/ijeat.E1080.069520
Journal Website: www.ijeat.org

(inode_cnt. RECYCLE) and inode cache in the system
increases.

 With the inode cache, pinned and unpinned counters
also increases slowly with the volume move operation.

Fig. 7. Behavior of Destination Node with Volume Move

Operation

3. The behavior of Snap Mirror Operation on Inode
Cache:

Here by performing the snapmirror operation trying to
exercise the inodes in the system. By creating the snapmirror
relationship between the volumes in the source node and the
destination node the replication of the volumes has been
created.

Observation of inode system with snapmirror operation:

The different behaviour is seen on both the source and the
destination node with the snapmirror operation. Some of the
observations are,
Source Node:

 With the population the number of inodes (inode_cnt)
and inode cache increases

 After reaching maximum value, the number of inodes
in cache remains to be stagnant at the source.

 Similarly, the inode cache pinned and unpinned
counters also increases as shown in the Fig. 8.

Fig. 8. Behavior of Source Node with Snap Mirror

Operation
Destination Node:

 As the new inodes are coming from the
snapmirror_source the inodes populates slowly over
the period.

 With increases in the inode cache, pinned and
unpinned counters also increases as shown in the Fig.
9.

Fig. 9. Behavior of Destination Node with Snap Mirror

Operation

4. The behavior of forced Inode Cache Shrink:

For the internal test system with smaller datasets, also
wanted to check how we can force the inode cache shrink to
happen without performing any operation. To depict that used
on-box flag to force the shrink to happen over the period. The
cycle of iterations has been repeated for 3 times back to back
so that consistency of how the inode cache is invalidated with
the flag can be analyzed.

Observations from forced inode cache shrink:

Some of the observations are,
 Inode cache increases with population with lesser scale

of 3 million inodes in the system.
 By using the on-box flag (icache_ inode_reclaims)

which will reclaim all the inodes populated till the time

 Inode cache starts invalidating the inodes and it
decreases its value with the flag

 Overall, the observation is that we can force the shrink
to happen by having that flag as shown in the Fig. 10.

Fig. 10. Behavior of Inode Cache with Shrink

Overall behavior observed by exercising the inode

subsystem is that, doing a lot of inode population as well as
volume move and snapmirror operation, which sort of
building a forced feature interaction in the system. Which
means inode cache shrink is working when volume move
operation is carried and when snapmirror operation is carried.
By performing different operations, system behavior and
performance related issues within the system can be analyzed.

VI. CONCLUSION

With the modelling work carried for analyzing the
behavior of the inode cache, forced feature interaction
happening in the system that is inode cache growing and
shrinking with the operations
like volume

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249 – 8958 (Online), Volume-9 Issue-5, June 2020

1108

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: E1080069520/2020©BEIESP
DOI: 10.35940/ijeat.E1080.069520
Journal Website: www.ijeat.org

move and snapmirror. With the focused performance
centric automation can induce inode cache behavior
dynamically by constantly polling the key performance
attributes/counters along with targeted operations that affect
inode cache.

FUTURE SCOPE

Open source tools like Grafana, Kibana can be used for
the charts and log analysis. The idea of testing can be used to
expand to other subsystems of WAFL such as snapshots,
front-end reads/writes and various other back-end operations.

ACKNOWLEDGEMENT

My sincere thanks to our Principal, HOD (Department of
ECE) of JSS Science and Technological University for the
support given to do the project in the company. I would like to
thank my guide Mrs. Eshwari A Madappa for guidance and
support provided. I would like to thank my manager of
NetApp Private Limited, Mr. Renuka Puttappa, Mr. Suresh
Anjaneyalu and Mr. Mayank Agrawal for the encouragement
and support provided. I thank the whole team for the support
of technical guidance.

REFERENCES

1. https://www.usenix.org/legacy/publications/library/proceedings/osdi9
9/full_papers/hutchinson/hutchinson_html/node3.html

2. https://netapp-world.blogspot.com/2014/01/inodes-in-netapp.html
3. http://www.linfo.org/inode.html
4. https://www.wikiwand.com/en/Write_Anywhere_File_Layout
5. Dave Hitz, James Lau, and Michael Malcolm. “File system design for

an NFS file server appliance”. In Proceedings of USENIX Winter 1994

Technical Conference, pages 235–246, Jan 1994.
6. Ram Kesavan, Rohit Singh, Travis Grusecki, Yuvraj Patel,”

Algorithms and Data Structures for Efficient Free Space Reclamation
in WAFL”, File and Storage Technologies (FAST’17) February

27–March 2, 2017
7. Chan Bernard Ki Hong, Perl 5 Tutorial, First Edition,2003
8. Ceder, V.L., McDonald, K., and Harms, D.D, The quick Python book

(p.335), Manning, 2010.
9. Sanner, M.F, Python: a programming language for software integration

and development, J Mol Graph Model, 17(1), pp.57-61, 1999.
10. https://www.sysadmintutorials.com/tutorials/netapp/netapp-perfstat-c

ollecting-performance-and-statistics/
https://library.netapp.com/ecmdocs/ECMP1368017/html/GUID-C568
5C7A-063C-43EC-B17E-FB7B352D7023.html

11. https://library.netapp.com/ecmdocs/ECMP1635994/html/GUID-98E2
BBA2-2A4F-4261-A390-9A712AB78761.html

AUTHORS PROFILE

Eshwari A Madappa Assistant Professor at Sri Jaya
Chamarajendra College of Engineering Mysuru, Dept
of Electronics and Communication. JSS Science and
Technology University. She has completed her
Bachelor of Engineering in JSSATE Bangalore and
Master of Technology in Power Electronics stream in
RVCE Bangalore.

Swathi S MTech student at Sri Jaya Chamarajendra
College of Engineering Mysuru in Networking and
Internet Engineering, Dept of Electronics and
Communication. JSS Science and Technology
University. She has completed her Bachelor of
Engineering in GSSS Institute of Engineering and
Technology, Mysuru

Mayank Agrawal Member of Technical Staff at
NetApp India Ltd. He is having 10 years of experience
in various storage and cloud technologies with QA
automation. He has completed his Bachelor of
Engineering from RGPV Bhopal and Master of
Technology from BITS Pilani in Software Systems.

Suresh Anjaneyalu Member of Technical Staff at
NetApp Sunnyvale, US. He is having 20 years of
industry experience. He has completed his Bachelor
of Science and Engineering from MSRIT Bangalore.

https://www.usenix.org/legacy/publications/library/proceedings/osdi99/full_papers/hutchinson/hutchinson_html/node3.html
https://www.usenix.org/legacy/publications/library/proceedings/osdi99/full_papers/hutchinson/hutchinson_html/node3.html
https://netapp-world.blogspot.com/2014/01/inodes-in-netapp.html
http://www.linfo.org/inode.html
https://www.wikiwand.com/en/Write_Anywhere_File_Layout
https://www.sysadmintutorials.com/tutorials/netapp/netapp-perfstat-collecting-performance-and-statistics/
https://www.sysadmintutorials.com/tutorials/netapp/netapp-perfstat-collecting-performance-and-statistics/
https://library.netapp.com/ecmdocs/ECMP1368017/html/GUID-C5685C7A-063C-43EC-B17E-FB7B352D7023.html
https://library.netapp.com/ecmdocs/ECMP1368017/html/GUID-C5685C7A-063C-43EC-B17E-FB7B352D7023.html
https://library.netapp.com/ecmdocs/ECMP1635994/html/GUID-98E2BBA2-2A4F-4261-A390-9A712AB78761.html
https://library.netapp.com/ecmdocs/ECMP1635994/html/GUID-98E2BBA2-2A4F-4261-A390-9A712AB78761.html

