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Abstract

Deidentifying MRIs constitutes an imperative challenge, as it aims at precluding the

possibility of re-identification of a research subject or patient, but at the same time it

should preserve as much geometrical information as possible, in order to maximize

data reusability and to facilitate interoperability. Although several deidentification

methods exist, no comprehensive and comparative evaluation of deidentification per-

formance has been carried out across them. Moreover, the possible ways these

methods can compromise subsequent analysis has not been exhaustively tested. To

tackle these issues, we developed AnonyMI, a novel MRI deidentification method,

implemented as a user-friendly 3D Slicer plugin-in, which aims at providing a balance

between identity protection and geometrical preservation. To test these features, we

performed two series of analyses on which we compared AnonyMI to other two

state-of-the-art methods, to evaluate, at the same time, how efficient they are at

deidentifying MRIs and how much they affect subsequent analyses, with particular

emphasis on source localization procedures. Our results show that all three methods

significantly reduce the re-identification risk but AnonyMI provides the best geomet-

rical conservation. Notably, it also offers several technical advantages such as a user-

friendly interface, multiple input–output capabilities, the possibility of being tailored

to specific needs, batch processing and efficient visualization for quality assurance.
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1 | INTRODUCTION

A growing amount of evidence points to open science as the most

efficient strategy for understanding the structural and functional orga-

nization of the human brain (Milham et al., 2018). This notion has

driven several recent unprecedented large-scale collaborative

endeavors in neuroscience (Amunts et al., 2019; Mott, Gordon, &

Koroshetz, 2018). As a natural consequence, in the last years, data

sharing has promptly become a fundamental pillar of contemporary

neuroscience. Indeed, it allows otherwise impossible large-scale and

multi-centric analyses and also promotes transparency and reproduc-

ibility (Ascoli, Maraver, Nanda, Polavaram, & Armañanzas, 2017). Data

sharing also maximizes the scientific profit that can be obtained from

the data (Brakewood & Poldrack, 2013), reduces the economic cost of

new studies, and provides valuable resources for researchers without

access to expensive data acquisition equipment (Poline et al., 2012).

However, human data sharing also entails some risks, mostly

related to privacy and confidentiality of personal information and

metadata. Indeed, protecting the privacy and confidentiality of

research subjects is not always granted, even though considerable

efforts have been directed to establish data deidentification protocols

and tools, and data protection legislation (Kalkman, Mostert, Ger-

linger, van Delden, & van Thiel, 2019). Researchers must ensure that

they adhere to the applicable data protection legislation. Within

Europe, the General Data Protection Regulation (GDPR; EU

679/2016) establishes the law on data protection issues. Brought into

force in May 2018, the GDPR covers only those data where there is

the possibility of identifying the data subject from its contents—and it

applies a number of restrictions, such as how data can be shared and

stored, who can access them, and how it might be ultimately used

and reused. If it is not possible to re-identify subjects from the data,

then that data falls outside of the provisions of GDPR—and so such

restrictions do not apply. Thus, there is a pressing need, then, to clas-

sify which data entails (or not) the risk of identification of the

participant.

The problem of possible re-identification of participants is funda-

mental for data types containing explicit physical features, as in the case

of Magnetic Resonance Imaging (MRI). Typical MRI acquisitions in neuro-

science, aside from the brain, contain detailed representations of the

facial features of the participants (Figure 1) that can be used to create

accurate three-dimensional representations of the subject's faces (Prior

et al., 2009). To date, several solutions exist, which range from extracting

the brain and sharing only this part of the volumes (Kalavathi &

Prasath, 2016), to facial masking and facial removal (Bischoff-Grethe

et al., 2007), but each of these methods has its downsides. For example,

different masking and defacing procedures can affect subsequent steps

of analysis and even lead to failure (de Sitter et al., 2020). Moreover,

when MRIs are shared as part of EEG studies, brain extraction may

impede accurate source modeling analyses that take advantage of head

geometries (Hallez et al., 2007), and current facial masking or removal

techniques may induce geometrical distortions.

Few studies have quantitatively tested the re-identification risk and

the geometrical preservation offered by these methods (Budin, Zeng,

Ghosh, & Bullitt, 2008; de Sitter et al., 2020; Mazura et al., 2012; Prior

et al., 2009; Schwarz et al., 2021), and no comprehensive comparison

among them has been performed. Treating these two aspects simulta-

neously is of paramount importance not only for investigators and

research participants but also for properly informed legislation regarding

data protection. Indeed, without such information, it is impossible to

know whether currently accepted methods comply with the GDPR

requirements and, at the same time, to what extent the geometrical prop-

erties of the subjects can be preserved without risking re-identification.

In that vein, here we present a new method for deidentifying

MRIs - called AnonyMI- and we compare it with two state-of-the-art

deidentification methods by evaluating, for the first time, their perfor-

mance with tailored behavioral tasks. With respect to other methods,

AnonyMI aims at preserving most of the geometrical properties of the

subject's head while effectively deidentifying the MRI. It takes advan-

tage of the Boundary Element Method (BEM; Hallez et al., 2007),

which is a standard procedure for creating head models for source

F IGURE 1 AnonyMI. Illustration of the deidentification procedure. The deidentification procedure is performed by first using a watershed
algorithm to obtain 3D reconstructions of the skin and skull of the subject, then aligning the subject's MRI to a template that contains control
points for the face and ears (or indicating them manually), and finally applying a mask to the intersection of these control points and the skin and
skull surfaces. The MRI shown in this example is from a subject that provided informed consent for it to be shown
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localization of scalp EEG activity. Specifically, AnonyMI employs the

same three-dimensional surfaces that are used for source modeling

(Akalin-Acar & Gençer, 2004; Hamalainen & Sarvas, 1987) to mask

the subjects' facial features, which results in the same surfaces being

obtained when re-computing the surfaces on the anonymized MRIs.

To test the performance of AnonyMI, we performed two sets of

analyses, in both cases comparing it with other two state-of-the-art

methods: PyDeface and Maskface (Gulban et al., 2019; Milchenko &

Marcus, 2013). Specifically, first we performed a behavioral validation

in which we tested and compared, on two experiments, how effec-

tively each method deidentified the MRIs by asking participants to

identify subjects from 3D reconstructions of their MRIs. In addition,

we complemented these experiments by testing the identification per-

formance on the same subjects using a machine learning face recogni-

tion algorithm. Second, we performed a geometrical evaluation in

which we measured how much each method introduces spatial distor-

tions and affects subsequent processing stages, and also compared

their performance when being employed for source localization analy-

sis using ground-truth data (Mikulan et al., 2020). Our results show

that AnonyMI outperforms the other two methods in terms of geo-

metrical conservation. Most importantly, we also show that AnonyMI,

similarly to the other two tested deidentification methods, allows tak-

ing the re-anonymization risk close to chance level.

2 | METHODS

2.1 | AnonyMI

AnonyMI is an MRI deidentification tool that uses 3D surface modeling

in order to deidentify MRIs while retaining as much geometrical informa-

tion as possible. It can be run automatically or manually, which allows

precise tailoring for specific needs. It is distributed as a plug-in of 3D

Slicer, a widely used, open-source, stable, and reliable image processing

software (Fedorov et al., 2012). It leverages the power of this platform

for reading and saving images which makes it applicable on almost any

MRI filetype, including all the most commonly used formats

(e.g., DICOM, Nifti, Analyze, etc.). As it uses an algorithm from Freesurfer

(Dale, Fischl, & Sereno, 1999) it currently runs on Linux and Mac plat-

forms, but native Windows support will be possible in the near future

and is indeed possible at the present with an elaborate setup. This algo-

rithm is provided inside the toolbox and therefore does not require

installing Freesurfer. Importantly, AnonyMI operates on the image data

and does not apply changes to the file header, which might contain sen-

sitive information. Several options exist for removing sensitive data from

MRI file headers (Kushida et al., 2012). However, AnonyMI, by default,

saves images in NIfTI format which is less prone to contain private infor-

mation. Nevertheless, it is the responsibility of the user to ensure that

the file header is free of sensitive data.

The procedure involves three main steps (Figure 1). First, the water-

shed algorithm, taken from Freesurfer (Dale et al., 1999; Ségonne

et al., 2004), is applied in order to obtain 3D reconstructions of the skin

and skull of the subject (Figure 1b). It is worth mentioning that these are

the same surfaces that are often used in the creation of forward

solutions for source modeling (Hallez et al., 2007). Next, the location of

the face and ears are determined by performing a nonlinear registration

between the subject's MRI and a template, taken from the IXI dataset

(Avants & Tustison, 2018), on which these control points have already

been marked (Figure 1c). The location of these points can also be done

manually. Indeed, since AnonyMI is integrated with 3D Slicer, manual

procedures are eased by the extensive rendering and interactive capabili-

ties of this image computing platform. This allows extending the areas to

be anonymized at will, in order to cover specific parts that might increase

the subject's identification risk (e.g., scars, malformations, etc.). In addi-

tion, creating a new template is fast and straightforward and can be done

by simply importing the image to be used and marking the face and ears

control points. This permits the creation of population-specific templates

(e.g., age-specific) that can then be used to perform automatic

anonymization. Finally, a subject-specific mask is created by taking the

intersection of the control points and the skin and skull surfaces, which

is filled with random numbers that follow the distribution of voxel inten-

sities inside the space between the two surfaces (Figure 1d). In other

words, in this last step the data of the space between the skull and the

skin is filled with new values only in the places of intersection with the

control points, and the values outside the skin model are set to zero. The

resulting volume is an anonymized MRI that preserves most of the geo-

metrical information of the subject (Figure 1e).

In contrast to other state-of-the-art methods, AnonyMI does not

substantially modify the geometrical properties of the MRI, as in the case

of PyDeface, which uses template matching to completely remove the

face and cheeks area and leaves it empty. Additionally, it does not blur

the face area, dissolving the boundaries between tissue types, as in the

case of Maskface, which can preclude the possibility of doing source

reconstructions. Another key difference with respect to previous solu-

tions is that it provides an easy-to-use graphical interface that facilitates

the procedure for nonprogrammers, even for batch processing of large

datasets. Importantly, AnonyMI is an open-source software that can be

freely downloaded from https://github.com/iTCf/anonymi.

2.2 | Validation

In order to assess the performance of our method and validate its results,

we performed two series of analyses. First, we assessed the

deidentification level achieved in two behavioral experiments. Second, we

evaluated the similarity of the deidentified MRIs with respect to the origi-

nal versions and tested how using deidentified MRIs affects EEG source

localization results. In all cases, we compared the results obtained with

our method to those obtained with other two state-of-the-art methods,

PyDeface and Maskface. Data analyses were performed in Python and

statistical analyses were performed in R (R Core Team, 2019).

2.2.1 | Behavioral validation

We conducted two behavioral experiments to evaluate how much

different deidentification methods reduce the probability of identification

of a subject from a 3D reconstruction of his/her MRI. On each trial of
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the first experiment, participants were presented with one photograph

and then four deidentified MRIs, and they had to indicate to which of

them the photograph belonged. In the second experiment, the procedure

was inverted, that is, participants were presented with four photographs

and then one deidentified MRI, and had to indicate to which photograph

the MRI belonged. The two versions of the experiment aimed to provide

ecologically valid estimates of the deidentification performance of each

method as they correspond to trying to identify a person from a series of

available MRIs, and vice versa, trying to identify an MRI from a series of

available candidates.

Experiment 1

Stimuli. Stimuli consisted in 3D reconstructions of MRIs from 15 subjects

(F = 7, X age = 33.8, sd age = 7.28) that were deidentified with three

different methods (PyDeface, Maskface and AnonyMI) and their

corresponding photographs (front, left and right views). Reconstruc-

tions were obtained from 3D Slicer's Volume Rendering module and

photographs were acquired with a light gray background. All images

were postprocessed using the GNU Image Manipulation Program

(GIMP), where they were converted to grayscale, centered, aligned

(horizontally across the eyeline), cropped to the same size, and finally

normalized using the histogram equalization technique (see

Figure S1a). In the case of MRI reconstructions that presented noise

around the edges of the head, they were manually cleaned by back-

ground cloning (see Figure S1b).

Participants and procedure. A total of 31 subjects participated in the

experiment (F = 19; X age = 20.16, sd age = 0.58). The experiment

was performed in three consecutive groups in the same room with

one desktop computer per participant. Participants were instructed

that on each trial they would first see the photograph of a person,

followed by four 3D reconstructions of deidentified MRIs, and that

their task was to indicate, using the numbers from 1 to 4 on the key-

board, which was the MRI that corresponded to the photograph they

had seen. Each participant performed a total of 135 trials in ~25 min.

The experiment was programmed using PsychoPy3 (Peirce

et al., 2019). At the beginning of the experiment, the software created

a random sequence of trials for each participant by choosing for each

trial a photograph, its corresponding MRI and three random sex-

matched distractor MRIs. Each trial started with a fixation cross (1 s),

followed by the presentation of the photograph at the center of the

screen (3 s), followed by four MRI reconstructions displayed on a 2 by

2 grid, each one with a number from 1 to 4 on top (Figure 2a). Partici-

pants could take all the time they needed on each trial to respond.

Analysis. In order to quantify the differences in the deidentification

performance of these methods, we performed a mixed-effects logistic

regression analysis with participant as random factor, as it is one of

the recommended approaches for accuracy data (Dixon, 2008;

Jaeger, 2008). This analysis was performed using the lme4 package

(Bates, Mächler, Bolker, & Walker, 2015), which provides p values via

Wald tests. We defined deface as the reference level (as it is arguably

the most performant method due to the complete removal of facial

attributes) and assessed how much the probability of correct

responses changed by using the other two methods. Model fits were

judged by visual inspection of simulated residuals plot (i.e., diagonal

patterns in Q-Q plots) using the DHARMa package with 103 replica-

tions. Post-hoc comparisons were performed using estimated marginal

means and Tukey p value adjustment for multiple comparisons.

Experiment 2

Stimuli. The same stimuli of Experiment 1 were used, with the addition

of one more MRI (and its corresponding photographs), adding up to a

total of 16 subjects (F = 7, X age = 34.1 sd age = 7.11), and 40 photo-

graphs from new subjects that were used as distractors (F = 14, X

age = 38.6, sd age = 6.81). All images were post-processed as

described in Experiment 1. Test and control stimuli matching was per-

formed separately for each participant as each one was presented

with only a subset of the stimuli pool (see below).

Participants & procedure. A total of 24 subjects participated in the

experiment (F = 11; X age = 30.5, sd age = 6.57). The experiment

was programmed in PsychoPy and it was performed online by partici-

pants through the Pavlovia platform (https://pavlovia.org). They were

instructed that on each trial they would first see four photographs

from different persons followed by a 3D reconstruction of an MRI,

and that their task was to indicate, using the numbers from 1 to 4 on

the keyboard, to which of the subjects they had seen it belonged. The

numbers that indicated each stimulus remained on the screen while

the MRI image was being presented, in order to ease the memory load

of the task. Participants completed a total of 96 trials in ~20 min. One

hundred random combinations of stimuli were created offline and

each participant was assigned one of them using a random number

generator at the beginning of the experiment. These combinations of

stimuli were created by selecting six males and six females with MRIs,

and six males and six females from the distractors pool. For each

deidentification method, each of these stimuli subjects was presented

the same number of times (once from the front view and once from

one of the lateral views) in random combinations. After all trials using

F IGURE 2 Behavioral results. (a) Illustration of the experimental procedure of Experiment 1. (b) Boxplot of mean accuracy by participant for
each deidentification method of Experiment 1. The horizontal dashed line represents chance level. (c) Average pseudonymized accuracy across
methods by stimulus subject of Experiment 1. (d) Illustration of the experimental procedure of Experiment 2. (e) Boxplot of mean accuracy by
participant for each deidentification method of Experiment 2. The horizontal dashed line represents chance level. (f) Average pseudonymized
accuracy across methods by stimulus subject of Experiment 2. (g) Barplots of the face recognition machine learning algorithm performance on the
original a pseudonymized MRIS with two thresholds (stringent: 0.6; permissive: 0.7). Statistical analysis of panel b and e were carried out
employing binomial generalized linear mixed effects models with random intercept per participant. Post-hoc comparisons were performed using
estimated marginal means and Tukey p value adjustment for multiple comparisons
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deidentified MRIs were completed, a control block was presented in

which stimuli were created in the same way but using the 3D recon-

structions of the original MRIs (i.e., non deidentified) in order to obtain

a reference score for the performance of each participant. The control

block was presented at the end of the experiment, instead of aside to

the deidentification methods, in order to avoid that subjects recog-

nized distinctive features on the nonanonymized stimuli that could

have later served as cues in anonymized trials. On each trial subjects

were presented with a fixation cross (1 s), followed by the four photo-

graphs (7 s) on a 2 by 2 grid, followed by the MRI (maximum of 10 s to

respond; Figure 2d).

Analysis. The same analyses as in Experiment 1 were used (see above),

with the only difference of using the performance with the original

MRIs as reference level. Namely, we assessed how much was the

probability of correct responses reduced by using deidentified MRIs

with respect to the performance with nondeidentified MRIs.

Machine learning face recognition

Recent advances in artificial intelligence have shown that it is possible

to identify a subject from his/her MRI without the need of human

intervention (Prior et al., 2009; Schwarz et al., 2019; Schwarz

et al., 2021). These methods can process databases several orders of

magnitude bigger than humans and therefore pose a threat to the pro-

tection of the privacy of research participants. We therefore per-

formed a comparative analysis to test how well a state-of-the-art

machine learning face recognition algorithm could identify the same

subjects of the behavioral experiment.

Following a recently published article, which showed high recog-

nition accuracy on nonpseudonymized MRIs, we created 3D models

of the subjects faces using the Surfice Ice software (Schwarz

et al., 2019; https://www.nitrc.org/projects/surfice/) and saved 2D

renders of them as images. We then used the dlib package

(King, 2009), with the pre-trained detector as implemented in the fac-

e_recognition library (https://github.com/ageitgey/face_recognition).

Finally, we obtained the recognition results by employing two thresh-

olds, a more stringent (0.6) and a more permissive one (0.7). We

reported, for each method, the average number of “true identifica-

tions” (proportion of subjects in which the correct subject was among

the ones indicated by the algorithm), “false identifications” (proportion
of wrongly indicated subjects), “unknown persons” (proportion of sub-

jects on which the algorithm indicated that the subject was unknown)

and “no persons found” (proportion of subjects on which the algo-

rithm indicated that it was unable to identify a face on the image). Of

note, the “false identifications” are not univocal as more than one

wrong answer can be produced by the algorithm for each subject,

whereas for the other categories the maximum per subject is one.

2.2.2 | MRI geometrical similarity

In order to assess the geometrical similarity between the original and

deidentified MRIs, we performed three analyses on a publicly available

dataset (Souza et al., 2018), from which we randomly selected 75 MRIs

that included data from three different scanner manufacturers (25 Sie-

mens; 25 Phillips; 25 General Electric). First, we computed the Jaccard

Similarity, which is computed as the ratio between the intersection and

the union of two sets (Jaccard, 1912; Milchenko & Marcus, 2013). To

this end, performed skull-stripping, using the ANTs toolbox (Avants

et al., 2011), on the original and deidentified MRIs and calculated the

similarity between each deidentified MRI and its corresponding origi-

nal MRI. The skull-stripping procedure failed (i.e., removed brain tis-

sue) on eight of the original MRIs and therefore these were removed

from the analysis. The template used for skull-stripping for AnonyMI

and Maskface was the IXI template while the one used for PyDeface

was the OASIS template from ANTs, as using a nondefaced template

for the defaced images would have unfairly reduced its performance

(Tustison et al., 2014). The comparison among methods was per-

formed using pairwise Wilcoxon Rank Sum tests with Holm–

Bonferroni correction for multiple comparisons.

Next, we employed the watershed algorithm from Freesurfer to

create 3D reconstructions of the brain, inner skull, outer skull and

outer skin, which are the same that are used for EEG/MEG source

modeling. We assessed how many anonymized MRIs yielded usable

reconstructions, that is, did not present deformations as appraised by

visual inspection (Figure 3). We tested if the different deidentification

methods produced significantly different numbers of usable recon-

structions using Cochran's Q test followed by post-hoc pairwise

McNemar's Chi-squared tests with Holm–Bonferroni correction for

multiple comparisons.

Finally, we computed the Hausdorff Distance (Huttenlocher,

Klanderman, & Rucklidge, 1993), a measure of similarity of 3D models,

between each of the 3D reconstructions of deidentified MRIs that did

not present deformations and their corresponding reconstructions

obtained from the original MRIs. We tested if these distances were

different across deidentification methods for each of the four surfaces

(brain, inner skull, outer skull, and outer skin) using pairwise Wilcoxon

Rank Sum tests within surfaces with Holm–Bonferroni multiple com-

parisons correction.

2.2.3 | Source localization

In order to assess how much the geometrical distortions induced by

the deidentification procedures affect source localization results we

used the LocalizeMI dataset (Mikulan et al., 2020), which contains

ground-truth data for assessing source localization performance, and

tested how much the localization accuracy varied as a function of the

deidentification method with respect to the localization obtained

using the original MRI.

We used data from simultaneous HD-EEG (High-Density Electro-

encephalography) recordings and intracranial stimulation in order to

assess how much results varied by employing deidentified MRIs in the

creation of forward models. The description of the experimental pro-

cedure, preprocessing and source localization procedures can be

found in the open-access publication that accompanies the dataset

(Mikulan et al., 2020) and the corresponding scripts are also publicly

available. Here, we repeated the analysis with all the parameter's
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configurations that yielded optimal solutions for each of the 61 stimu-

lation sessions, but this time using forward models created with

deidentified MRIs. We then computed the percentage of solutions

that resulted in the same localization error as the one obtained with

the original MRIs. We tested if the different deidentification methods

produced significantly different percentages of equal solutions using

Cochran's Q test followed by post-hoc pairwise McNemar's Chi-

squared tests with Holm–Bonferroni correction for multiple compari-

sons. Next, on all the configurations that did not result in the same

localization error as in the original case for at least one method, we

calculated the distance from the real source and tested how different

it was from the distance obtained with the original MRIs by means of

a mixed effects model. Specifically we used the log-transformed dis-

tance to the real source as dependent variable, each MRI

deidentification method as predictor with the original MRIs as refer-

ence level, and subject as random factor (intercept and slope).

3 | RESULTS

3.1 | Behavioral validation

3.1.1 | Experiment 1

The overall performance (i.e., percentage of correct trials) was 33%

for PyDeface, 37% for AnonyMI and 40% for Maskface. The mixed

effects logistic regression analysis showed that AnonyMI increased

the probability of correct responses (β = 0.18, p < .05) with respect to

PyDeface, but this increase was smaller than in the case of Maskface

(β = 0.28, p < .001). See Table S1 for a complete report of this analy-

sis. Interestingly the overall performance across stimulus subjects

ranged from 12% to 49% (X =36%, sd = 10%), showing that there

were subjects that were almost unidentifiable whereas the perfor-

mance on others was above chance level.

3.1.2 | Experiment 2

The overall performance was 46% for the original MRIs, 25% for

PyDeface, 29% for AnonyMI and 30% for Maskface. All three

deidentification methods reduced the probability of correct responses

in a statistically significant manner. PyDeface provided the highest

reduction in performance with respect to the original MRIs

(β = �0.92, p < .001), followed by AnonyMI (β = �0.70, p < .001) and

Maskface (β = �0.67, p < .001). See Table S2 for a complete report of

this analysis. The overall performance across stimulus subjects varied

from 15% to 46% (X =28%, sd = 8%), showing again that there were

subjects that were almost unidentifiable whereas others were above

chance level.

3.1.3 | Machine learning face recognition

This analysis showed that ~30% and 50% of the subjects were cor-

rectly identified when using the original MRIs with the stringent and

permissive thresholds, respectively (Figure 2g). In contrast, with the

pseudonymized MRIs no subjects were identified with any of

the tested methods when using a stringent threshold, and only one

subject was identified with both AnonyMI and Maskface when using

a more permissive threshold. Interestingly, PyDeface and Maskface

produced a higher number of “no person found” results than

AnonyMI in which the algorithm detected that there was a person but

was unable to identify it, in line with the improved geometrical preser-

vation of the latter.

3.2 | MRI geometrical similarity and application to
source localization

3.2.1 | Geometrical similarity

The Jaccard Distance on skull-stripped images analysis showed that

AnonyMI resulted in a mean similarity of 0.9982 and for Maskface

of 0.9985 with respect to the original MRIs, whereas PyDeface

resulted in 0.9686 (with some volumes going below 0.9). The dif-

ferences between methods were all statistically significant

(p < .001), however, the difference of .0001 between AnonyMI and

Maskface holds little practical significance, especially if compared

to the difference of ~0.03 between both of these methods and

PyDeface.

F IGURE 3 MRI similarity and source localization analyses. (a) Example of 3D reconstructions of an original MRI and the three deidentification
methods under evaluation. (b) Example of original, successful, distorted, and failed surface reconstructions obtained employing the watershed
algorithm, (c) Results of Jaccard Similarity between skull-stripped MRIs between the original image and each deidentification method.
(d) Percentage of failed watershed reconstructions (as depicted in rightmost column of panel b). Statistical analyses were performed using
Cochran's Q test and pairwise McNemar tests with Holm–Bonferroni correction for multiple comparisons. (e) Results of the Hausdorff Distance
analysis between the surfaces obtained with the original MRIs and those obtained with deidentified MRIs. Only images whose watershed
reconstructions did not fail in any of the three deidentification methods were employed in this analysis. Statistical analyses were performed using
pairwise Wilcoxon Rank Sum tests within surfaces with Holm–Bonferroni multiple comparisons correction. (f) Percentage of solutions on which
the reconstructed source was equal to the source obtained using the original MRI for each deidentification method. Statistical analyses were
performed using Cochran's Q test and pairwise McNemar tests with Holm–Bonferroni correction for multiple comparisons. (g) Mean and standard
deviation of distances to real source (i.e., location of the stimulating intracranial contact) when using the original and deidentified MRIs. (h) Violin
plot and boxplot of difference between the source obtained with the original MRI and with each deidentification method when considering the
solutions on which at least one method was different from the original solution. (i) Density plot of difference with respect to the source obtained
with the original MRI when considering only the different solutions for each method
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The analysis on the 3D reconstructions of the brain, skull, and

skin surfaces revealed that the original MRIs, AnonyMI and PyDeface

yielded 92% of usable models (all three failing on the exact same

MRIs), whereas Maskface produced 69%. This difference was statisti-

cally significant as assessed by McNemar's Chi-squared test

(χ2 = 13.06; p < .001).

The pairwise analysis of the Hausdorff Distance by surface and

method showed significant differences between PyDeface (X =49.3)

versus AnonyMI (X =4.69; p< .001) and PyDeface versus Maskface

(X =6.00; p< .001) for the outer skull surface; and between PyDeface

(X =50.20) versus AnonyMI (X =5.42; p< .001), PyDeface versus

Maskface (X =7.32; p< .001) and AnonyMI versus Maskface (p< .05)

for the outer skin surface. See Table S3 for a complete report of this

analysis. Overall, these results showed that AnonyMI provided the

highest level of geometrical preservation.

3.2.2 | Source localization

The source localization analysis showed that AnonyMi provided 88%

of equal solutions with respect to the results obtained with the origi-

nal MRIs, while Maskface provided 85% and PyDeface 84%

(Figure 3f). The difference between methods was statistically signifi-

cant as assessed by McNemar's Chi-squared tests. The difference in

the overall distance between the real sources and the reconstructed

ones was not statistically significant between methods, due to the rel-

atively high number of equal solutions yielded by each method

(>84%). However, all of them differed significantly from the results

obtained with the original MRIs (Figure 3g). The overall distance

between the sources reconstructed with the original MRI and the

sources reconstructed with each method is shown in Figure 3h for

each solution in which at least one method showed a different result

(same number of observations across methods), and on Figure 3i for

the solutions on which each of the methods showed a different result

(different number of observations across methods).

4 | DISCUSSION

Deidentifying MRIs constitutes a challenge as it has to balance two

opposite goals. It should prevent the possibility of re-identification of

a participant while keeping as much geometrical information as possi-

ble. To tackle this issue, we developed a novel MRI deidentification

method that aims at providing a balance between these objectives. In

order to assess the performance on these two fronts, and to compare

it to other state-of-the-art methods we performed two series of anal-

ysis: a behavioral and a geometrical validation.

To the best of our knowledge, this is the first study that jointly

evaluated and compared the deidentification and geometrical preser-

vation performance of state-of-the-art MRI deidentification methods.

In two behavioral experiments we tested how well could participants

identify subjects from 3D reconstructions of their MRIs. On Experi-

ment 1, where subjects were first presented with a single photograph

which was followed by four deidentified MRIs, the performance was

33, 37, and 40% for PyDeface, AnonyMI and Maskface, respectively.

The only statistically significant difference was found between

PyDeface and Maskface. Even though the average results were above

chance level (25%), the general performance of all three methods can

be arguably considered satisfactory, as the experimental design cor-

responded more to a discrimination task than to an identification task,

which would have been more difficult. In other words, if subjects were

able to discard one of the four testing images (i.e., instead of identify-

ing the correct subject they recognized that one of them was not the

correct answer) and guess randomly, chance-level would rise to ~33%,

which is close to the observed performance levels. To complement

these results, we performed a second experiment, with a more ecolog-

ical design, in which participants were presented with four photo-

graphs and then with a single reconstructed MRI and had to decide to

which of the four photographs it corresponded. This task included a

memory component as subjects had to remember the faces and

reduced the possibility of using a discrimination strategy, which made

it more similar to a real-life situation. In this case, the performance

was 25, 29, and 30%, for PyDeface, AnonyMI and Maskface, respec-

tively. In this task we also included a control block on which the MRIs

were not deidentified, which allowed us to estimate a baseline level of

identification performance, which was 46%. It is worth noting that the

performance with the original MRIs might be inflated with respect to

the anonymized ones as this block was always carried out at the end

of the task, when subjects had had more training. This experimental

design was chosen in order to avoid that subjects found distinctive

features on the nondeidentified stimuli that could be used on

deidentified trials and bias the results of the main aim of the experi-

ment. The differences among methods were not statistically signifi-

cant, but the identification performance of all three methods was

significantly lower than in the nondeidentified condition. Interestingly,

in both behavioral experiments the analysis on individual stimulus

subjects showed that different methods worked better with different

subjects. Several articles have consistently shown that the eyes,

mouth, nose, eyebrows and also the head outline are the most impor-

tant features for facial recognition (Davies, Ellis, & Shepherd, 1977;

Haig, 1986; Kamps, Morris, & Dilks, 2019; Karczmarek, Pedrycz,

Kiersztyn, & Rutka, 2017; Sadr, Jarudi, & Sinha, 2003). Future studies

employing eye-tracking techniques will be required to assess which of

these features are playing a role in the recognition of pseudonymized

MRIs, in order to make these pseudonymization techniques more

robust.

The overall pattern of results indicates that even though

PyDeface was the most performant deidentification method in terms

of reducing the re-identification risk, followed by AnonyMi and finally

by Maskface, all three methods efficiently reduced the risk of identifi-

cation almost at chance level. This notion is of paramount importance

in light of the new legislation for data privacy. Indeed, if it is assumed

that all currently used methods are sufficient to appropriately

deidentify MRI data, that is, that it is not possible to re-identify a data

subject from such a “deidentified” dataset, and this assumption is

incorrect then it leaves open the possibility of a major data breach.
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Data breaches can seriously infringe the privacy of patients and

research subjects, and also, under GDPR, they can have significant

financial implications for the offending scientist and their institution.

Administrative fines are detailed in Article 83 of the GDPR and stipu-

late that, depending upon the severity of the breach, fines could be up

to €20 million or 4% of the institutions' global annual turnover of the

previous financial year, whichever is higher (European Parliament and

Council of European Union, 2016). This is not to mention the poten-

tial reputational damage and distress to data subjects such a breach

might cause.

Our study focused on the identification risk by a human operator,

however, a growing body of literature shows that machine learning

algorithms could potentially be used to individuate research partici-

pants from shared data and even to reconstruct the subject's face

from deidentified MRIs (Abramian & Eklund, 2019; Schwarz

et al., 2019; Schwarz et al., 2021). An in-depth analysis of this risk is

of utmost importance for future studies in order to provide a compre-

hensive picture of the risks associated with making deidentified MRIs

public. To this end, we employed a face recognition machine learning

algorithm to test how well it could identify the same subjects used in

the behavioral task. This analysis showed that with the original MRIs,

depending on the threshold, ~30 to ~50% of the subjects could be

correctly recognized. When using the pseudonymized MRIs, only one

out of 16 were identified both with AnonyMI and Maskface and none

with PyDeface.

While, in the case of data sharing, reducing the re-identification

risk of the MRI is obviously the main aim of any MRI deidentification

method, the associate distortions of the geometrical feature of the

images should be maximally reduced in order to maximize reuse and

interoperability (Wilkinson et al., 2016). For this reason, we performed

a spatial analysis in which we tested how well each method preserved

the geometrical characteristics of the MRIs. We first tested the

Jaccard Similarity of skull stripped brain volumes done with

the deidentified MRIs with respect those obtained with the original

MRIs. In this analysis Maskface and AnonyMI showed ~99% conver-

gence, whereas PyDeface showed 96%, with some images going

below 90% with the latter. It is worth mentioning that the skull strip-

ping procedure was carried out with a defaced template in the case of

the PyDeface method while it was done with a full-face template for

Maskface and AnonyMI, because using the latter for PyDeface would

have unfairly underestimated its performance. These results indicate

that both Maskface and AnonyMI provide deidentified volumes that

give more similar results to those obtained with the original MRIs

when applying a subsequent processing algorithm as skull stripping.

This is important to ensure replicability of results when using

deidentified images.

Next, we extracted 3D surfaces of the brain, skull and skin using

the watershed algorithm, a standard procedure for performing M/EEG

source localization. We found that Maskface provided 30% of

unusable surfaces due to severe geometrical distortions, whereas with

PyDeface and AnonyMI it was 8%, the same percentage obtained

with the original MRIs. Then, employing the successfully

reconstructed surfaces we computed how similar they were to the

surfaces obtained with the original MRIs. This analysis showed that

AnonyMI significantly outperformed PyDeface for the outer skull, and

also outperformed both PyDeface and Maskface for the skin. This

pattern of results indicates that AnonyMI was the method that

induced less geometrical distortions.

To assess how much using deidentified MRIs affects source locali-

zation results, we reconstructed electrical sources using a dataset with

ground-truth and compared the results obtained with each

deidentification method to those obtained with the original MRIs. This

analysis showed that the percentage of equal solution with respect to

the original MRIs was 88, 85 and 84% for AnonyMI, Maskface and

PyDeface, respectively. In other words, AnonyMI provided an increase

of ~4% of equal solution across multiple parameter configurations. The

overall pattern of geometrical results shows that AnonyMI provides the

most reliable MRIs for performing structural and source localization

analysis. The increase in the number of equal solutions might be more

pronounced if using FEM instead of BEM models (Hallez et al., 2007),

as the former creates a more detailed geometrical reconstruction. We

chose to use the BEM method, as it is arguably the most widely used

method for distributed source modeling due to its balance of low com-

putational costs with geometrical correctness (Hallez et al., 2007).

Aside from the aforementioned benefits, AnonyMI presents many

other advantages. It leverages the power of 3D Slicer for importing

and saving in any filetype, avoiding unnecessary format changes that

are mandatory with other methods and that can lead to errors. It also

takes advantage of 3D Slicer for fast and practical visualization of

results, which eases the quality assurance of the procedure. It can also

create population specific templates in minutes, simplifying the analy-

sis of particular datasets (i.e., age specific). It provides a visual inter-

face to mask specific areas of a subject that might have severely

increased the re-identification risk. It can easily run multiple subjects

automatically, making it easy to process large datasets and has both a

command-line and a graphical interface, providing an essential solu-

tion for nonprogrammers.

In sum, AnonyMI is a novel method that offers several technical

advantages that make MRI deidentification easier, and that provides

the optimal balance between deidentification performance and geo-

metrical preservation.

5 | LIMITATIONS

The present study is the first to comparatively analyze the perfor-

mance of different MRI deidentification methods, however, further

studies will be required to obtain a more comprehensive characteriza-

tion. We focused on two particular behavioral tasks to assess the

identification risk and to quantify the improvements provided by each

method, aiming at tasks that could provide ecologically valid esti-

mates. Nevertheless, different tasks might provide different results,

and therefore, more experiments with different experimental designs

will be required to thoroughly describe each method's performance.
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Similarly, the stimuli employed, and the participants of the behavioral

tasks corresponded to relatively homogeneous samples of white cau-

casian subjects, therefore the generalization of our results to other

ethnicities is not granted and should be addressed in future studies

(Dotson & Duarte, 2020). With regards to the geometrical analysis,

we focused on three measures (Jaccard similarity, Hausdorff distance

and BEM outcome). A comparison of more measures and analysis

pipelines would be of great importance to appraise how much each

method allows reusability under different circumstances. Finally, our

source localization analysis focused on one forward model type

(i.e., BEM), three inverse solution methods (dSPM, eLORETA, and

MNE), and used nonphysiological ground truth data. We chose these

methods as they are among the most used methods in contemporary

M/EEG source localization analysis. However, an investigation of

other forward models and inverse solution methods would provide a

more nuanced comparison.
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