
International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249 – 8958 (Online), Volume-9 Issue-5, June 2020

990

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: E1030069520/2020©BEIESP
DOI: 10.35940/ijeat.E1030.069520
Journal Website: www.ijeat.org

Abstract: Mobile software development is an emerging

technology. The aim of working on this technology is to make it
user-friendly and improve the user experience. This paper focuses
on the advancing technology - Progressive Web Apps (PWAs).
These apps combine the experience of both native and web
applications. Progressive web apps are cross-platform developed
which means that the app should function both on Android and
iOS platform. While web/hybrid/native apps are costly to build,
PWAs are way cheaper to build. These apps provide far better user
experience than the conventional native/web/hybrid mobile
applications. The service worker is the foundation of a PWA.
Service Worker enables caching of assets and controls the
network traffic. Manifest file lets the app to be installed on the
user’s device. Different caching techniques are discussed in the

paper and their performance has been monitored. The
performance of the Progressive Web App is analyzed using
Blazemeter as Remarkable growth has been seen in the
performance of several business platforms after the
implementation of progressive web apps. This paper assesses: (1).
The difference in features of Native/Mobile Web/ Hybrid Web
Mobile with PWAs, (2). Performance Analysis of the caching
techniques in PWAs.

Keywords: — Progressive Web App, Service Worker,
Manifest, Caching, Performance Analysis, Cross- platform

I. INTRODUCTION

Progressive web apps are software applications that are

developed so that the main features of an application can work
with or without an internet connection [1]. These apps do not
need to be installed either from the Google play store on
Android or from the Apple App Store for iOS. Due to its
Cross - platform approach, the feature of adding it to the home
screen turns out to be very useful. The word “progressive”

means that the application is functional even if the user has an
unsupported browser. Background sync with the server

Revised Manuscript Received on June 15, 2020.
* Correspondence Author

Alankrit Gupta*, Student, Department of Computer Science &
Engineering, Akhilesh Das Gupta Institute of Technology and Management,
New Delhi, India. E-mail: alankritgupta091099@gmail.com

Ritika Jain, Student, Department of Electrical & Electronics
Engineering, Akhilesh Das Gupta Institute of Technology and Management,
New Delhi, India. E-mail: jainritika181999@gmail.com

Uma Tomer, Assistant Professor, Department of Computer Science &
Engineering, Akhilesh Das Gupta Institute of Technology and Management,
New Delhi, India. E-mail: uma.tomer@gmail.com

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

allows the PWA to function even in the absence of internet
connection. They have numerous advantages over native,
hybrid and web apps. These apps provide far better user
experience than conventional mobile or web applications.
Services like push notifications and app like icons increase
the activity of the user and help the user to get acquainted with
the app in a short period of time. So, these apps act as an
envelope that covers both the native applications as well as
web applications.

II. COMPARATIVE STUDY OF

NATIVE/WEB/HYBRID APPLICATIONS

A. Native Applications

These applications are platform-dependent which means that
the codes are specifically written for different platforms like
Android, iOS etc [2]. One of the challenges faced by these
applications is fragmentation. Fragmentation is the event that
occurs when some mobile devices use older versions of OS
while others use newer versions.[3]Native apps add on to the
local storage of the device and require more time to access
with areas having bandwidth 2G and less than that or 3G
network. Usually, Java is used to build native apps for
Android and Swift or Objective-C for iOS. The cost of
building a native app is more than hybrid apps. Native apps
must be compatible with their respective operating systems
which provide security and device compatibility.

B. Mobile Web Applications

These apps are developed using HTML, CSS and
JavaScript and require web browsers to function. These are
very similar to the native applications but are executed in a
web browser [2]. They look like native apps but really are
websites. They occupy less device memory and necessarily
require an internet connection for their functionality.

It is not essential to install these apps but can be used on a
web browser. Web apps condense the website content to
improvise functionality.

C. Web-Based Hybrid Mobile Applications

These apps are partial native and partial web apps. They
acquire the attributes of both native and web applications and
are more efficient. These are developed using web technology
and can be distributed on any mobile platform. The
frameworks like Kotlin, React Native etc are used to design
these applications support major platforms. The native
wrapper is used to collect the best from both native and web
apps [5]. Hybrid apps are easier to scale which means that it is
easier to launch the app on another platform.

Performance Assessment of Caching Techniques
in PWAs

Alankrit Gupta, Ritika Jain, Uma Tomer

mailto:uma.tomer@gmail.com
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijeat.E1030.069520&domain=www.ijeat.org

Performance Assessment of Caching Techniques in PWAs

991

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: E1030069520/2020©BEIESP
DOI: 10.35940/ijeat.E1030.069520
Journal Website: www.ijeat.org

D. Progressive Web Applications (PWAs)

These apps provide user the experience of both a website
and a mobile application. It can be installed and has an icon
added to the home screen of mobile device. It has two main
components which are responsible for its activity, service
worker and app manifest file.

Service worker is responsible for caching the pages upon
the installation of the app. Manifest file is responsible for
executing the features like push notifications. Working in the
offline mode outstand them from the native and other web
applications. These apps need to be installed once and work
even when they lose network connection or slow network.
They are available on secure origins served through TLS,
using the HTTPS protocol.
Table I represents the feature comparison of PWA with
Native/Web/Hybrid Applications.

Table I. Feature Comparison of PWA with
Native/Web/Hybrid Applications.

Feature Native

Mobile

Web

 Hybrid
Web-Mobile

PWA

Cross-Platform X ✓ ✓ ✓

Installable ✓ X ✓ ✓

Offline-Capabiti
es ✓

X ✓
✓

Performance Fast
Depends
on
Network

Relatively
slow Fast

Size Large
Very
Small

Large Very
Small

III. MANIFEST FILE

It is referred to as the file which is required so that the
application is identified on a mobile device. The information
regarding the application is held by the JSON (JavaScript
Object Notation) file [5]. This file tells the browser how the
application will behave when installed on a device [6]. It also
contains the icon of the application to be installed along with
splash screen settings. It gives the user a better experience and
provides quick access. The user can modify the appearance,
theme, and the other regions they expect [7]. Fig. 1. Shows the
example of a manifest file.

Fig. 1. Example of Manifest File

IV. SERVICE WORKER

Service Worker is a very important building block of a
progressive web app. It is basically a JavaScript file that is
executed separately from the main browser thread, caching or
retrieving resources from the cache and intercepting network
requests. It is responsible for loading the app on multiple
devices, controlling push notifications and other assets like
handling network traffic. Fig. 2. Shows the working of a
Service Worker in the offline mode.

Fig. 2. Working of Service Worker when Offline

Normal Web apps need a stable internet connection to
work properly. When network connection fails, these apps fail
to work and that’s when service worker comes in to picture in

case of PWAs [6]. The cached assets are loaded, making them
work offline.Service worker adds dynamism to an app and
increases its performance by helping to display and dropping
the right content and background programs [3].

A. Working of Service Worker

Since most of the groundwork of PWA is done by the
service worker, it becomes crucial to check the compatibility
of the service worker with the web browser first. An
application without a service worker cannot be called an
application, it is merely a website. It is a JavaScript file which
is executed separately from UI. Service worker is a property
of the navigator object of the window. It has to be registered
first. Registration can be done on every page load as this
process doesn’t start from the beginning every time. If service

worker is new or updated, the installation process will be
initiated. The mechanism of a service worker accommodates
three major events:
1) Install: This is the very first event which is triggered
when an app is visited on any device. Its main function is to
load the service worker so that the assets of the website can be
cached.

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249 – 8958 (Online), Volume-9 Issue-5, June 2020

992

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: E1030069520/2020©BEIESP
DOI: 10.35940/ijeat.E1030.069520
Journal Website: www.ijeat.org

2) Activate: This event is triggered to modify
(update/remove) the previous data which was cached. This
event is the ideal location for removing cached static content
if it has a newer version.
 3) Fetch: This event is triggered every time a response is
fetched from the server. It is triggered multiple times.
Network traffic can be tracked and managed from this event.

B. Types of Caching

Caching techniques that can be employed with the service
worker to have an ideal experience are:
1) Precache: The content files and assets are cached all at
once when the ‘install’ event is triggered i.e. while the service
worker is being installed.

Fig. 3. gives the code to be added in install event.

Fig. 3. Code to be added in install event

The developer has to manually enter the path of all the

assets and files which is a tiring and cumbersome task. All the
assets are mentioned in the array and are cached by the service
worker at once.
2) Dynamic caching: The assets or content files are cached in
the “fetch” event. All the assets from the response which are
requested by the browser are cached here all at once.
Fig. 4. gives the code to be added in fetch event.

Fig. 4. Code to be added in Fetch event

Dynamic caching turns out to be very useful in those cases

where there are a lot of assets to be cached and adding path
manually is not practically possible.

V. PERFORMANCE ANALYSIS

Since Caching plays a very important role in PWA and
different caching techniques have been discussed above, a test
was conducted on a 2-page static website using Blazemeter
[8] to check performance of website performing different
caching techniques. Table II represents the cached assets of
the website.

Table II. Cached Assets of the website

Name Content-Type

/about.html

text/html; charset=UTF-8

Name Content-Type

/css/style.css text/css; charset=UTF-8

/index.html text/html; charset=UTF-8

/js/main.js application/javascript; charset=UTF-8

A. Precaching

Test Configuration 1
Server Location: US East (Virginia, Google)
Time: Feb 01, 2020, 12:01:05 PM
Table III represents results and observations of Precaching
Technique.
Fig. 5. shows the response time of Precaching.

Table III. Test 1 (Precache)

Max
Users

Duration

(min)

Avg.
Response (ms)

Avg.
Throughput

(No. of hits/ sec)

Precache 20

20 0.93 2065.43

Fig. 5. Response Time (Precaching)

B. Dynamic Caching

Test Configuration 2
Server Location: US East (Virginia, Google)
Time: Feb 01, 2020, 7:45:40 PM
Table IV represents results and observations of Dynamic
Caching Technique.
Fig. 6. shows the response time of Dynamic Caching.

Table IV. Test 2 (Dynamic Cache)

Max
Users

Duration

(min)

Avg.
Response

(ms)

Avg.
Throughput

(No. of hits/ sec)

Dynamic
cache

20

20 0.96 1971.73

Performance Assessment of Caching Techniques in PWAs

993

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: E1030069520/2020©BEIESP
DOI: 10.35940/ijeat.E1030.069520
Journal Website: www.ijeat.org

Fig. 6. Response Time (Dynamic Caching)

After analyzing the results of the tests performed, it is

observed that the response time for PWA turns out to be
almost same in both the cases. The response time may change
depending on the size of the PWA. Be it precaching or
dynamic caching similar graphs are obtained in both the
cases. So, it is upto the developer, what approach he wants to
use. But dynamic caching is highly recommended as it
reduces the pain of adding routes of all the assets manually
and is a practically more feasible for larger websites.

VI. CASE STUDY: TWITTER LITE

The mobile website of Twitter had many issues which
twitter wanted to overcome. Slow mobile connectivity and
limited space on the mobile devices were few of the problems.
This ended up in a reduction in the number of visitors on
Twitter’s website.

Twitter was looking for features such as instant loading,
lower data consumption, and large accessibility. Hence, they
switched to PWA.

Fig. 7. Growth of Twitter after PWA

The results are as follows: [9]

1) The bounce rate reduced from 80% to 20%
2) Rise in pages per session increased to 65%
3) Number of tweets send increased to 75%
4) Reduction in the average loading time.

VII. FUTURE SCOPE

Progressive web apps are the ultimate future of mobile
software development. It is a huge upgrade in the responsive
web apps. Google uses an acronym- FIRE – Fast, Integrated,

Reliable, and Engaging to explain why PWAs are so effective
[10]. With the latest browsing technologies coming, these
apps combine the accessibility of the web with mobile apps.
Currently the features of a progressive web app are supported
by various degrees of web browsers like Microsoft Edge,
Google Chrome, Mozilla Firefox, Apple Safari but more web
browsers may support the features in future.

VIII. CONCLUSION

It is concluded through this paper that Progressive Web
Apps are eventually the best technology and the future of web
development to improvise the user experience and overcome
the problems faced in conventional native web applications.
The working of the Service Worker is discussed to improvise
the caching process. Performance Analysis has been done on
different caching techniques of a PWA, pointing out their
advantages and disadvantages.

REFERENCES

1. A. B. Hansen, T. A. Majchrzak, and T. M Grønli, (2018) “Progressive

Web Apps for the Unified Development of Mobile Applications”.

International Conference on Web Information Systems and
Technologies. WEBIST 2017: Web Information Systems and
Technologies. Lecture Notes in Business Information Processing,
vol 322. Springer, Cham. pp 64-86.

2. I. Malavolta, “Beyond Native Apps: Web Technologies to the Rescue!
3. (Keynote).” ACM Mobile!’16, Amsterdam, Netherlands, (2016)

October pp. 5–6.
4. R. S Mishra, “Progressive WEBAPP : Review”. International Research

Journal of Engineering and Technology (IRJET) Volume: 03 Issue: 06
June (2016).

5. A. Gambhir and G. Raj, “Analysis of Cache in Service Worker and

Performance Scoring of Progressive Web Application”/2018

International Conference on Advances in Computing and
Communication Engineering (ICACCE-2018) Paris, France 22-23
June (2018).

6. S. S. Timalsina, “Progressive Web Application with React JS”.
Supervisor(s): Lasse Haverinen , Spring-Autumn (2019)

7. “The Web App Manifest| Tools for Web Developers” [Online]

Available:
https://developers.google.com/web/fundamentals/web-app-manifest

8. Y. M. Tashtoush, A. Alsmadi, A. Al-Abdi, N. Ababneh, O.
Almousa “An Analysis of Android Web App Manifest”. Proceedings
of the 23rd Conference of Open Innovations Association FRUCT.
(2018) November, Article No.: 78, pp. 556–559

9. “Blaze Meter Online URL Testing and Analysis Tool.”

[Online]. Available: www.blazemeter.com.
10. “Twitter Lite PWA Significantly Increases Engagement and Reduces

Data Usage | Tools for Web Developers” [Online]. Available:
https://developers.google.com/web/showcase/2017/twitter

11. J. Lockhorn, J. Rzutkiewicz “Why ProgressiveWeb Apps are the future

of Mobile Web”. Available:
https://ymedialabs.com/progressive-web-apps

12. R. Nunkesser, “Beyond Web/Native/Hybrid: A New Taxonomy for

Mobile App Development”. Proceedings of the 5th International
Conference on Mobile Software Engineering and Systems, (2018)
May, pp. 214–218

13. S. S. Tandel 1, A. Jamadar, “Impact of Progressive Web Apps on Web

App Development". International Journal of Innovative Research in
Science, Engineering and Technology, Vol. 7, Issue 9, (2018)
September.

14. V. Sharma, R. Verma, V. Pathak, M. Paliwal, P. Jain “Progressive Web

App (PWA) - One Stop Solution for All Application Development
Across All Platforms”. (2019).

https://link.springer.com/conference/webist
https://link.springer.com/conference/webist
https://link.springer.com/book/10.1007/978-3-319-93527-0
https://link.springer.com/book/10.1007/978-3-319-93527-0
https://dl.acm.org/doi/proceedings/10.1145/3197231
https://dl.acm.org/doi/proceedings/10.1145/3197231

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249 – 8958 (Online), Volume-9 Issue-5, June 2020

994

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: E1030069520/2020©BEIESP
DOI: 10.35940/ijeat.E1030.069520
Journal Website: www.ijeat.org

AUTHORS PROFILE

Mr. Alankrit Gupta, currently studying in Third
Year, pursuing B.Tech CSE from Akhilesh Das
Gupta Institute of Technology & Management,
GGSIPU. He is the Vice-Chairperson and
Treasurer of IEEE ADGITM. Also being a part of
IEEE Delhi Section, he is actively involved in its
activities. He is a full stack developer and has an
experience of 2 years in this field along with
excellent academic performance.

Ritika Jain, currently studying in Third year,

pursuing B.Tech EEE from Akhilesh Das Gupta
Institute of Technology & Management, GGSIPU.
She is the Vice-Chaiperson of IEEE ADGTIM and
also a part of IEEE Delhi Section with active
participation in its various activities. She is
currently working in the field of Machine Learning
and Data Science along with excellent academic
performance.

Uma Tomer received the MCA degree form
IGNOU in 2003. She is currently pursuing the Ph.D.
degree in Computer Application from Manav
Rachna International Institute of Research and
Studies, Faridabad, India. She is currently working
as Assistant Professor in the Department of
Computer Science & Engineering at Akhilesh Das
Gupta Institute of Technology and Management,
GGSIPU. She is teaching since 2004 and actively

supervised many students at bachelor’s level. Her

area of research is Software Quality with IoT and Web
Application.

