
International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249 – 8958 (Online), Volume-9 Issue-5, June 2020

872

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: E9861069520/2020©BEIESP
DOI: 10.35940/ijeat.E9861.069520
Journal Website: www.ijeat.org

Abstract: A tool that can search over large code corpus directly

and list ranked snippets can prove to be an invaluable resource to
programmers looking for similar code snippets using natural
language queries. It must have a deep understanding of the
semantics of source code and queries to evaluate their intent
correctly. Over the years, many tools that rely on the textual
similarity between source code and query have proven to be
ineffective as they fail to learn the high- level semantic
understanding of source code and query. While the previous
models for code search using deep neural networks do a good job
but, most of them only evaluate their models on only a single
programming language, mostly Java. In this paper, we propose a
novel deep neural network model called Unified Code Net that can
handle the intricacies of different programming languages. This
model borrows several vital features from different previous
models and builds on top of those ideas to make a unified model
that can generate document vector embeddings from source code,
and using similarity search with the query vector embedding can
return the most similar code snippets in any language. This tool
can drastically reduce the programmer’s efforts to look for an

efficient and viable code snippet for problem at hand which
ideally can replace use of search engines for the same.

Keywords: semantic code search, natural language processing,
information retrieval

I. INTRODUCTION

Code Search can provide a massive boost in productivity of
programmers as the recent uptick in the use of deep learning
for code search, and rise of computing power has made it
possible to retrieve related code from a massive code corpus
that matches programmer’s intent from natural language

queries. This saves the programmer from the hassle of Google
Searching for related code snippets to get something done or
endless browsing of community forums like StackOverflow
looking for possible usage of a proprietary API or some
standard coding problems/algorithm implementation. This,
even though troublesome might be fruitful for well-known
and used languages like Python, Java, and C++, but for
lesser-known languages or proprietary API with evolving

Revised Manuscript Received on June 12, 2020.
* Correspondence Author

Ashwin Patil*, Department of Computer Engineering, M.I.T College of
Engineering, Pune, India E-mail: me@ashwin.dev

Sonal Pachpute, Department of Computer Engineering, M.I.T College
of Engineering, Pune, India E-mail: sonalpachpute@gmail.com

Rushika Bhattad, Department of Computer Engineering, M.I.T College
of Engineering, Pune, India E-mail: rushika.bhattad11@gmail.com

Amisha Pandit, Department of Computer Engineering, M.I.T College of
Engineering, Pune, India E-mail: amishapandit13@gmail.com

Anita Gunjal, Department of Computer Engineering, M.I.T College of
Engineering, Pune, India E-mail: anita.gunjal@mitwpu.edu.in

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

communities, the answers may not exist at all in such forums.
Semantic Code Search makes it possible to search for such
snippets directly using natural language queries and get
ranked semantically similar code snippets of a particular
required language. In the implementation of the model, we
leveraged the power of Open Source tools like FAISS [10],
fastText [11] as well as Code Repositories like GitHub [4] to
collect code snippets from public repositories using
tools/techniques and benchmarks provided by
CodeSearchNet [6].

UnifiedCodeNet converts the code snippets into document
vectors, and those vectors are mapped on a shared space
where all the document vectors are mapped. When a user
searches using a query, the query is also converted to a
document vector and mapped to the same shared space and
using similarity search [7] closest document vectors of
required language are fetched and ranked according to
similarity.

For example, a simple query like "How to read text file
line by line?" returns ranked snippets in the required
language. Below are the actual top results from the query in
three languages PHP, Go, and Java.
1 public static function readLines(string $filePath):\Generator {
2 if (! $fh = @fopen ($filePath , ’r’)) {
3 throw new \ InvalidArgumentException (’Error :’. $filePath);
4 }
5 return self :: read ($fh);
6 }

Top Result for PHP - Query: Read Text File Line
by Line

1 func (cr * countingReader) Read (p [] byte) (int , error) {
2 n, err := cr. readerImpl . Read (p)
3 if recordInputHexdumpFlag && err == nil {
4 fwColLog . Debugf ("Hex dump of %d input bytes :\n% sEnd dump
of %d
input bytes ",
5 len(p), hex. Dump (p), len(p))
6 }
7 cr. inputBytes += int64 (n)
8 return n, err
9 }

Top Result for Go - Query: Read Text File Line
by Line

1 public String readLine () throws IOException {
2 StringBuilder result = new StringBuilder ();
3 for (;;) {
4 int intRead = read ();
5 if (intRead == -1) {
6 return result . length () == 0 ? null : result . toString ();
7 }
8 char c = (char) intRead ;
9 if (c == ’\n’ || c == ’\r’) break ;
10 result . append (c);
11 }
12 return result . toString ();
13 }

Unified Deep Semantic Search on Code

Ashwin Patil, Sonal Pachpute, Rushika Bhattad, Amisha Pandit, Anita Gunjal

mailto:anita.gunjal@mitwpu.edu.in
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijeat.E9861.069520&domain=www.ijeat.org

Unified Deep Semantic Search on Code

873

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: E9861069520/2020©BEIESP
DOI: 10.35940/ijeat.E9861.069520
Journal Website: www.ijeat.org

Top Result for Java - Query: Read Text File Line by Line
In the above examples, the document vectors and query
vector are semantically similar and are mapped closely,
which means that the model has a high-level understanding
of what the function does and similarly what the query
intends to find.

II. DATASET

For creating a dataset for our supervised learning model,
we lever- aged the power of Open Source GitHub
repositories. Source Code is fetched from GitHub using
the tools and techniques specified in CodeSearchNet.
The corpus we created contains about 6 million
functions from open-source code spanning six
programming languages (Go, Java, JavaScript, PHP,
Python, and Ruby). More than 2 million functions in the
dataset contain that description of the function in natural
language, which is present in the source code in the form
of comments or docstrings. The main reason for choosing
this dataset for our model training is the scope of
expanding the dataset with relative ease and still get the
same quality of data as the current one. As our model is a
supervised one, it will only perform better with a larger
training set. However, we believe that for proof of
concept, the current dataset will suffice.

A. Preprocessing

CodeSearchNet uses TreeSitter - GitHub’s universal
parser to ex- tract pairs of functions and docstring. The
parser focuses on extracting code and descriptions pairs
from the source code if the description does not exist the
description is scrapped from documentation of the
software if one exists. For tokenization, Firstly, all the
special characters are removed from the function as they
are unnecessary and cannot be used for creating
document embeddings of the code. Secondly, the tokens
are broken into individual tokens from their
representation in camelCase, which would be broken into
[camel, case] or snake_case, which would split into
[snake, case]. Also, during this, the tokens are converted
to lowercase. Further, all the duplicate tokens are
removed. In case of functions that are part of a class, the
class name is also tokenized and added to the list of
tokens as it helps in providing context to the function.

B. Filtering

To maintain the quality of the dataset, some filtering
techniques are employed as duplicate code has adverse
effects in the machine learning model of code [1]. As
open-source codes are full of duplicates, whether it be the
case of copy-pasting or multiple versions of
auto-generated code. Further, functions like
constructors, destructors, getters, setters, or inbuilt
functions are not included. Moreover, functions with
short/poor descriptions are also not included as they are
not informative.

C. Limitations

Even though this dataset is better than what the
community has tried to conjure up over the years, it does

have some shortcomings. Unsurprisingly, the scrapped
dataset is quite noisy. Firstly, the description is
fundamentally different from search queries as they are
written by the same person mostly at the time of writing
the code itself. It uses the same vocabulary as the code
itself. Secondly, the description might not closely
resemble the gist of the function to its entirety or might
be an outdated description for the function even though
the code is scrapped from popular and well-known
repositories. Finally, the quality of the code can be
sub-par at times, which would mean that there can be a
faster and better implementation elsewhere. It might also
be full of bad coding practices or antipatterns.

III. MODEL

Each entry in the dataset has a function snippet along with its
description in natural language. It tokenizes and creates word
embeddings of both the function and its description and the
model trains such that the document embeddings of both the
code and description are as same as possible. Our model uses
bidirectional LSTM’s to capture the context of the function
and description. The dissimilarity between those two
document vectors is the loss, and the model fits to minimize
the loss.

Fig. 1. Bidirectional LSTM Architecture

A. Input

All the tokens in the function are given sequentially to the
input as the sequence in which the tokens appear in the list
has semantic information. This what helps differentiate
between functions with similar tokens, for example, the
function names "convertStringToInt" and
"convertIntToString" although having exact same tokens
have different semantic contexts.

B. Word Embeddings

As the source code is broken up into snippets with the
granularity of a function and further tokenized in the process
specified above each of the tokens of the function converted
to word embeddings using a Word2Vec model, called
fastText [11] which uses a continuous skip-gram model with
a window size of 5, which means the words in a sentence
within a distance of 5 words are considered neighbors.
Generated word embeddings are of 500 dimensions, which
captures the full intent of each vocabulary.

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249 – 8958 (Online), Volume-9 Issue-5, June 2020

874

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: E9861069520/2020©BEIESP
DOI: 10.35940/ijeat.E9861.069520
Journal Website: www.ijeat.org

The word embeddings can be of higher dimensions, but
embeddings of size 500 are optimized for both accuracy and
speed.

C. Encoder

We used a bidirectional LSTM cell, specifically GRU cells
to summarize the input sequence. Our model contains 3
hidden layers with 256 hidden units in each direction. The
optimized used is Adam Optimizer, with a mini-batch size of
128. The model was trained for 100 epochs lasting over 12
hours on Nvidia RTX 2060, having compute capability of 7.5.

Fig. 2. Unified Neural Network Model for Document

Embeddings

D. Pooling

Max Pooling is used to combine the word embeddings into
a sequence embedding to get a final document embedding to
be mapped into the shared vector space for similarity search.

E. Similarity Search

When the user submits a query, the query is also converted
to a document vector using the encoder, and then using Cosine
Similarity k-nearest neighbors of the vector embedding is
found for any particular programming language and returned
to the user in descending order with code snippet with higher
similarity values ranked higher.

We used FAISS [10], an open-source implementation of

the similarity search which leverages GPU and is the fastest
k-selection algorithm being 8.5x faster than any other
implementation. FAISS helps in drastically reducing the
training as well as search time for the queries as our dataset is
enormous. higher similarity values ranked higher.

IV. RESULTS

A. Evaluation Metric

Mean Reciprocal Rank (MRR) is a rank-aware
evaluation metric; it is a measure of where does the first
relevant item lies in a ranked list. MRR is easy to compute and
evaluate and puts a high focus on ranking the best result at
the top of the list. It is a go-to metric to evaluate
navigational or factual ranked lists. The metric, however,
does has a downside; it only evaluates the first relevant
recommendation in the list and does not consider other
results. Mathematically, it is the sum of the multiplicative
inverse of rank of the most relevant result of the i-th query.

Normalized Discounted Cumulative Gain (NDCG) is a

qualitative ranking measure. Both MRR and NDCG values
ranking relevant results top of the ranked list. However,
NDGC quantifies the fact that some results are more
important than others. NDCG can measure the usefulness and
gain of the result accumulated over all the results with low
ranked results having discounted gains. Simply put, highly
relevant items must be ranked before medium relevant items
and non-relevant items at last. It is often used to measure the
effectiveness of web search engine ranking algorithms and
such related query-based applications. To calculate NDCG,
Discounted Cumulative Gain (DCG) is divided by the Ideal
Discounted Cumulative Gain(IDCG) of the query. This is
done to have an accurate evaluation of the ranking algorithm
over a set of queries as this can’t be consistently achieved

using DCG alone, NDCG is used. The mathematical formula
for this metric is as follows:

B. Evaluation Method

The evaluation method comprises of 100 search queries
with human ranked relevant code snippets and NDCG scores
are calculated using the predicted ranked snippets vs. the
ideally ranked snippets. This method is not perfect and might
not correlate to the actual task of code search, but this method
has been widely used as a proxy for training and evaluating
similar models.

Given below are the NDCG and MRR Results from the
trained model on various languages and mean NDCG and
MRR values of the model in its entirety.

Unified Deep Semantic Search on Code

875

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: E9861069520/2020©BEIESP
DOI: 10.35940/ijeat.E9861.069520
Journal Website: www.ijeat.org

Table I: Measure of Search Relevance using Normalized
Discounted Cumulative Gain (NDCG) and Mean

Reciprocal Rank (MRR)
Language NDCG MMR

Python 0.2578 0.6673

PHP 0.2925 0.5712
Java 0.3159 0.6082
Ruby 0.4612 0.7336

JavaScript 0.2235 0.4704
Go 0.2407 0.6985

Mean 0.2925 0.6248

Fig. 3. NDCG vs MRR for all languages

V. THREATS TO VALIDITY

Even though our model is significantly better than
statistical models that rely on textual similarity and many of
the simplistic deep neural network embedding models;
however, our model is far from perfect. We cannot stress this
enough, but understanding the context and intent of any code
snippet is challenging, and there exists no perfect way to
extract this information from the source code. Our model
doing these embeddings on multiple languages is the step in
the right direction, but there exist some threats to the validity
of our results, which we will discuss below.

Our model being a supervised learning model is hugely
dependent on quality and quantity of data, and with noisy data
or code with bad coding practices, the model will not be able
to perform document embeddings with expected accuracy. In
some cases, it was observed that the most relevant code
snippet is ranked bellow some other non-relevant code
snippets due to the code being semantically similar but not
contextually similar.

For the queries to return relevant results, the intended code
snippet must exist in our code corpus. If not, then all the
queries will return is similar code snippets, which will be of
no exact use to the user. So for the model to perform as
expected, it must be trained on a huge amount of good quality
data to achieve its core function.

VI. RELATED WORK

Deep Code Search [5] uses a neural network called
CODEnn (Code Description Embedding Neural Network) to
embed code snippets in high-dimensional vector space.

DeepCS breaks the inputs the code snippet in three ways
Method Name, Tokens, and API Sequences are used as input.
DeepCS is only trained and evaluated on Java/Android
codebase. It uses bi-directional Recurrent Neural Network
(RNN) for document embeddings. The predictions are
evaluated against Lucene [2] and CodeHow [9] predictions
for the same dataset.

Neural Code Search [12] used Word2Vec to create word
embeddings and using term frequency-inverse document
frequency (TFIDF) method to calculate the weighted average
of all the tokens in the code snippet to get document
embedding and using these vectors to find similar code
snippets to a query. Dataset [8] used is Android-related codes
from GitHub and StackOverflow’s answers to Android

related questions for evaluation.
UNIF (Embedding Unification) [3] is a minimal extension

to NCS, which provides an attention-based weighing scheme
to improve the accuracy of unsupervised NCS method.
Dataset used is a combination of CODEnn and NCS datasets.
This research shows that even a simple solution can
outperform complex models like CODEnn. Like the other
related works, this also trains and evaluates only Java
codebase.

VII. CONCLUSION

Our novel deep neural network model (UnifiedCodeNet)
built using state of the art systems and techniques proves
efficient in finding semantically similar code snippets from
open-source code across six programming languages with a
high level of accuracy and relevance. The effectiveness of the
model across language differs understandably due to the
difference in the quality of source-code and difference in
coding practices. Python embedding model being the most
efficient and Go embedding model being the least efficient
model for the set of queries we used. This is not an exact
indicator of the accuracy of the model as it is possible that
there exists no exactly semantically similar code snippet for a
particular set of the query in the evaluation set, which would
skew the results significantly. Also, given a different set of
evaluation queries, it is possible that the accuracy of models
may vary depending on the queries. Our model is significantly
better in ranking snippets in some areas; there exist areas of
improvement like the model would perform significantly
better on a uniform and larger dataset than the one we used.
This dataset is huge; we were only able to train for 100 epoch;
with more resources, the model is sure to perform
significantly better.

In the future, we will try to investigate on tree-LSTM
model for token embeddings to get a better semantic
representation of the code snippets as well as the query. This
method can be by far the best method for semantic search, but
this will require further study.

REFERENCES

1. Miltiadis Allamanis. 2018. The Adverse Effects of Code Duplication
in Machine Learning Models of Code. arXiv:1812.06469 [cs.SE]

2. Apache. 2020. Lucene. https://lucene.apache.org/
3. Jose Cambronero, Hongyu Li, Seohyun Kim, Koushik Sen, and Satish

Chandra. 2019. When Deep Learning Met Code Search.
arXiv:1905.03813 [cs.SE]

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249 – 8958 (Online), Volume-9 Issue-5, June 2020

876

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: E9861069520/2020©BEIESP
DOI: 10.35940/ijeat.E9861.069520
Journal Website: www.ijeat.org

4. GitHub. [n.d.]. https://github.com/
5. Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. 2018. Deep Code

Search. In Proceedings of the 40th International Conference on
Software Engineering (Gothenburg, Sweden) (ICSE ’18). Association

for Computing Machinery, New York, NY, USA, 933–944.
https://doi.org/10.1145/3180155.3180167

6. Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and
Marc Brockschmidt. 2019. CodeSearchNet Challenge: Evaluating the
State of Semantic Code Search. ArXiv abs/1909.09436 (2019).

7. Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2017. Billion-scale
similarity search with GPUs. arXiv:1702.08734 [cs.CV]

8. Hongyu Li, Seohyun Kim, and Satish Chandra. 2019. Neural Code
Search Evaluation Dataset. arXiv:1908.09804 [cs.SE]

9. F. Lv, H. Zhang, J. Lou, S.Wang, D. Zhang, and J. Zhao. 2015.
CodeHow: Effective Code Search Based on API Understanding and
Extended Boolean Model (E). In 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE). 260–270.

10. Facebook Research. 2020. FAISS.
https://github.com/facebookresearch/faiss

11. Facebook Research. 2020. fastText. https://fasttext.cc/
12. Saksham Sachdev, Hongyu Li, Sifei Luan, Seohyun Kim, Koushik

Sen, and Satish Chandra. 2018. Retrieval on Source Code: A Neural
Code Search. In Proceedings of the 2nd ACM SIGPLAN International
Workshop on Machine Learning and Programming Languages
(Philadelphia, PA, USA) (MAPL 2018). Association for Computing
Machinery, New York, NY, USA, 31–41.
https://doi.org/10.1145/3211346.3211353

AUTHORS PROFILE

Ashwin Patil is currently a final year student in the
Computer Department of M.I.T College of
Engineering, Pune. Artificial Intelligence and
Machine Learning are his areas of research with
special interests in Computer Vision, Natural
Language Processing, Reinforcement Learning and

Deep Neural Networks.

 Sonal Pachpute is currently a final year student
in the Computer Department of M.I.T College of
Engineering, Pune. Her research interests include
Machine Learning, Artificial Intelligence and
Reinforcement Learning.

 Rushika Bhattad is currently a final year student
in the Computer Department of M.I.T College of
Engineering, Pune. Her research interests include
Machine Learning, Artificial Intelligence and Data
Analytics.

 Amisha Pandit is currently a final year student in
the Computer Department of M.I.T College of
Engineering, Pune. Her research interests include
Machine Learning, Web Development and Search
Engine Optimization.

 Anita Gunjal is an Assistant Professor in the
department of Computer Engineering at M.I.T
College of Engineering, Pune. She has more than 9
years of experience and is a life time member of
ISTE and IEEE. She has done her B.E and M.E in
Computer Engineering and her research interests

include Machine Learning and Natural Language Processing.

https://doi.org/10.1145/3180155.3180167

