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Abstract: A tool that can search over large code corpus directly 

and list ranked snippets can prove to be an invaluable resource to 
programmers looking for similar code snippets using natural 
language queries. It must have a deep understanding of the 
semantics of source code and queries to evaluate their intent 
correctly. Over the years, many tools that rely on the textual 
similarity between source code and query have proven to be 
ineffective as they fail to learn the high- level semantic 
understanding of source code and query. While the previous 
models for code search using deep neural networks do a good job 
but, most of them only evaluate their models on only a single 
programming language, mostly Java. In this paper, we propose a 
novel deep neural network model called Unified Code Net that can 
handle the intricacies of different programming languages. This 
model borrows several vital features from different previous 
models and builds on top of those ideas to make a unified model 
that can generate document vector embeddings from source code, 
and using similarity search with the query vector embedding can 
return the most similar code snippets in any language. This tool 
can drastically reduce the programmer’s efforts to look for an 

efficient and viable code snippet for problem at hand which 
ideally can replace use of search engines for the same. 

Keywords: semantic code search, natural language processing, 
information retrieval 

I. INTRODUCTION 

Code Search can provide a massive boost in productivity of 
programmers as the recent uptick in the use of deep learning 
for code search, and rise of computing power has made it 
possible to retrieve related code from a massive code corpus 
that matches programmer’s intent from natural language 

queries. This saves the programmer from the hassle of Google 
Searching for related code snippets to get something done or 
endless browsing of community forums like StackOverflow 
looking for possible usage of a proprietary API or some 
standard coding problems/algorithm implementation. This, 
even though troublesome might be fruitful for well-known 
and used languages like Python, Java, and C++, but for 
lesser-known languages or proprietary API with evolving 
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communities, the answers may not exist at all in such forums. 
Semantic Code Search makes it possible to search for such 
snippets directly using natural language queries and get 
ranked semantically similar code snippets of a particular 
required language. In the implementation of the model, we 
leveraged the power of Open Source tools like FAISS [10], 
fastText [11] as well as Code Repositories like GitHub [4] to 
collect code snippets from public repositories using 
tools/techniques and benchmarks provided by 
CodeSearchNet [6]. 

UnifiedCodeNet converts the code snippets into document 
vectors, and those vectors are mapped on a shared space 
where all the document vectors are mapped. When a user 
searches using a query, the query is also converted to a 
document vector and mapped to the same shared space and 
using similarity search [7] closest document vectors of 
required language are fetched and ranked according to 
similarity.  

For example, a simple query like "How to read text file 
line by line?" returns ranked snippets in the required 
language. Below are the actual top results from the query in 
three languages PHP, Go, and Java. 
1 public static function readLines(string $filePath):\Generator { 
2 if (! $fh = @fopen ( $filePath , ’r’)) { 
3 throw new \ InvalidArgumentException (’Error :’. $filePath ); 
4 } 
5 return self :: read ($fh); 
6 } 
 

Top Result for PHP - Query: Read Text File Line 
by Line 

 
 
1 func (cr * countingReader ) Read (p [] byte ) (int , error ) { 
2  n, err := cr. readerImpl . Read (p) 
3  if recordInputHexdumpFlag && err == nil { 
4  fwColLog . Debugf ("Hex dump of %d input bytes :\n% sEnd dump 
of %d 
input bytes ", 
5  len(p), hex. Dump (p), len(p)) 
6 } 
7  cr. inputBytes += int64 (n) 
8  return n, err 
9 } 
 

Top Result for Go - Query: Read Text File Line 
by Line 

 
1 public String readLine () throws IOException { 
2 StringBuilder result = new StringBuilder (); 
3 for (;;) { 
4 int intRead = read (); 
5 if ( intRead == -1) { 
6 return result . length () == 0 ? null : result . toString (); 
7 } 
8 char c = ( char ) intRead ; 
9 if (c == ’\n’ || c == ’\r’) break ; 
10 result . append (c); 
11 } 
12 return result . toString (); 
13 } 
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Top Result for Java - Query: Read Text File Line by Line 
In the above examples, the document vectors and query 
vector are semantically similar and are mapped closely, 
which means that the model has a high-level understanding 
of what the function does and similarly what the query 
intends to find. 

II. DATASET 

For creating a dataset for our supervised learning model, 
we lever- aged the power of Open Source GitHub 
repositories. Source Code is fetched from GitHub using 
the tools and techniques specified in CodeSearchNet. 
The corpus we created contains about 6 million 
functions from open-source code spanning six 
programming languages (Go, Java, JavaScript, PHP, 
Python, and Ruby). More than 2 million functions in the 
dataset contain that description of the function in natural 
language, which is present in the source code in the form 
of comments or docstrings. The main reason for choosing 
this dataset for our model training is the scope of 
expanding the dataset with relative ease and still get the 
same quality of data as the current one. As our model is a 
supervised one, it will only perform better with a larger 
training set. However, we believe that for proof of 
concept, the current dataset will suffice. 

A. Preprocessing 

CodeSearchNet uses TreeSitter - GitHub’s universal 
parser to ex- tract pairs of functions and docstring. The 
parser focuses on extracting code and descriptions pairs 
from the source code if the description does not exist the 
description is scrapped from documentation of the 
software if one exists. For tokenization, Firstly, all the 
special characters are removed from the function as they 
are unnecessary and cannot be used for creating 
document embeddings of the code. Secondly, the tokens 
are broken into individual tokens from their 
representation in camelCase, which would be broken into 
[camel, case] or snake_case, which would split into 
[snake, case]. Also, during this, the tokens are converted 
to lowercase. Further, all the duplicate tokens are 
removed. In case of functions that are part of a class, the 
class name is also tokenized and added to the list of 
tokens as it helps in providing context to the function. 

B. Filtering 

To maintain the quality of the dataset, some filtering 
techniques are employed as duplicate code has adverse 
effects in the machine learning model of code [1]. As 
open-source codes are full of duplicates, whether it be the 
case of copy-pasting or multiple versions of 
auto-generated code. Further, functions like 
constructors, destructors, getters, setters, or inbuilt 
functions are not included. Moreover, functions with 
short/poor descriptions are also not included as they are 
not informative. 

C. Limitations 

Even though this dataset is better than what the 
community has tried to conjure up over the years, it does 

have some shortcomings. Unsurprisingly, the scrapped 
dataset is quite noisy. Firstly, the description is 
fundamentally different from search queries as they are 
written by the same person mostly at the time of writing 
the code itself. It uses the same vocabulary as the code 
itself. Secondly, the description might not closely 
resemble the gist of the function to its entirety or might 
be an outdated description for the function even though 
the code is scrapped from popular and well-known 
repositories. Finally, the quality of the code can be 
sub-par at times, which would mean that there can be a 
faster and better implementation elsewhere. It might also 
be full of bad coding practices or antipatterns. 

III. MODEL 

Each entry in the dataset has a function snippet along with its 
description in natural language. It tokenizes and creates word 
embeddings of both the function and its description and the 
model trains such that the document embeddings of both the 
code and description are as same as possible. Our model uses 
bidirectional LSTM’s to capture the context of the function 
and description. The dissimilarity between those two 
document vectors is the loss, and   the model fits to minimize 
the loss. 

 
Fig. 1. Bidirectional LSTM Architecture 

A. Input 

All the tokens in the function are given sequentially to the 
input as the sequence in which the tokens appear in the list 
has semantic information. This what helps differentiate 
between functions with similar tokens, for example, the 
function names "convertStringToInt" and 
"convertIntToString" although having exact same tokens 
have different semantic contexts. 

B. Word Embeddings 

As the source code is broken up into snippets with the 
granularity of a function and further tokenized in the process 
specified above each of the tokens of the function converted 
to word embeddings using a Word2Vec model, called 
fastText [11] which uses a continuous skip-gram model with 
a window size of 5, which means the words in a sentence 
within a distance of 5 words are considered neighbors. 
Generated word embeddings are of 500 dimensions, which 
captures the full intent of each vocabulary.  
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The word embeddings can be of higher dimensions, but 
embeddings of size 500 are optimized for both accuracy and 
speed. 

C. Encoder 

We used a bidirectional LSTM cell, specifically GRU cells 
to summarize the input sequence. Our model contains 3 
hidden layers with 256 hidden units in each direction. The 
optimized used is Adam Optimizer, with a mini-batch size of 
128. The model was trained for 100 epochs lasting over 12 
hours on Nvidia RTX 2060, having compute capability of 7.5. 

 

 
Fig. 2. Unified Neural Network Model for Document 

Embeddings 

D. Pooling 

Max Pooling is used to combine the word embeddings into 
a sequence embedding to get a final document embedding to 
be mapped into the shared vector space for similarity search. 

E. Similarity Search 

When the user submits a query, the query is also converted 
to a document vector using the encoder, and then using Cosine 
Similarity k-nearest neighbors of the vector embedding is 
found for any particular programming language and returned 
to the user in descending order with code snippet with higher 
similarity values ranked higher. 

 
We used FAISS [10], an open-source implementation of 

the similarity search which leverages GPU and is the fastest 
k-selection algorithm being 8.5x faster than any other 
implementation. FAISS helps in drastically reducing the 
training as well as search time for the queries as our dataset is 
enormous. higher similarity values ranked higher. 

IV. RESULTS 

A. Evaluation Metric 

Mean Reciprocal Rank (MRR) is a rank-aware 
evaluation metric; it is a measure of where does the first 
relevant item lies in a ranked list. MRR is easy to compute and 
evaluate and puts a high focus on ranking the best result at 
the top of the list. It is a go-to metric to evaluate 
navigational or factual ranked lists. The metric, however, 
does has a downside; it only evaluates the first relevant 
recommendation in the list and does not consider other 
results. Mathematically, it is the sum of the multiplicative 
inverse of rank of the most relevant result of the i-th query. 

 
Normalized Discounted Cumulative Gain (NDCG) is a 

qualitative ranking measure. Both MRR and NDCG values 
ranking relevant results top of the ranked list. However, 
NDGC quantifies the fact that some results are more 
important than others. NDCG can measure the usefulness and 
gain of the result accumulated over all the results with low 
ranked results having discounted gains. Simply put, highly 
relevant items must be ranked before medium relevant items 
and non-relevant items at last. It is often used to measure the 
effectiveness of web search engine ranking algorithms and 
such related query-based applications. To calculate NDCG, 
Discounted Cumulative Gain (DCG) is divided by the Ideal 
Discounted Cumulative Gain(IDCG) of the query. This is 
done to have an accurate evaluation of the ranking algorithm 
over a set of queries as this can’t be consistently achieved 

using DCG alone, NDCG is used. The mathematical formula 
for this metric is as follows: 

 

B. Evaluation Method 

The evaluation method comprises of 100 search queries 
with human ranked relevant code snippets and NDCG scores 
are calculated using the predicted ranked snippets vs. the 
ideally ranked snippets. This method is not perfect and might 
not correlate to the actual task of code search, but this method 
has been widely used as a proxy for training and evaluating 
similar models. 

Given below are the NDCG and MRR Results from the 
trained model on various languages and mean NDCG and 
MRR values of the model in its entirety. 
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Table I:  Measure of Search Relevance using Normalized 
Discounted Cumulative Gain (NDCG) and Mean 

Reciprocal Rank (MRR) 
Language NDCG MMR 

Python 0.2578 0.6673 

PHP 0.2925 0.5712 
Java 0.3159 0.6082 
Ruby 0.4612 0.7336 

JavaScript 0.2235 0.4704 
Go 0.2407 0.6985 

Mean 0.2925 0.6248 

 

 
Fig. 3. NDCG vs MRR for all languages 

V. THREATS TO VALIDITY 

Even though our model is significantly better than 
statistical models that rely on textual similarity and many of 
the simplistic deep neural network embedding models; 
however, our model is far from perfect. We cannot stress this 
enough, but understanding the context and intent of any code 
snippet is challenging, and there exists no perfect way to 
extract this information from the source code. Our model 
doing these embeddings on multiple languages is the step in 
the right direction, but there exist some threats to the validity 
of our results, which we will discuss below. 

Our model being a supervised learning model is hugely 
dependent on quality and quantity of data, and with noisy data 
or code with bad coding practices, the model will not be able 
to perform document embeddings with expected accuracy. In 
some cases, it was observed that the most relevant code 
snippet is ranked bellow some other non-relevant code 
snippets due to the code being semantically similar but not 
contextually similar. 

For the queries to return relevant results, the intended code 
snippet must exist in our code corpus. If not, then all the 
queries will return is similar code snippets, which will be of 
no exact use to the user. So for the model to perform as 
expected, it must be trained on a huge amount of good quality 
data to achieve its core function. 

VI. RELATED WORK 

Deep Code Search [5] uses a neural network called 
CODEnn (Code Description Embedding Neural Network) to 
embed code snippets in high-dimensional vector space. 

DeepCS breaks the inputs the code snippet in three ways 
Method Name, Tokens, and API Sequences are used as input. 
DeepCS is only trained and evaluated on Java/Android 
codebase. It uses bi-directional Recurrent Neural Network 
(RNN) for document embeddings. The predictions are 
evaluated against Lucene [2] and CodeHow [9] predictions 
for the same dataset. 

Neural Code Search [12] used Word2Vec to create word 
embeddings and using term frequency-inverse document 
frequency (TFIDF) method to calculate the weighted average 
of all the tokens in the code snippet to get document 
embedding and using these vectors to find similar code 
snippets to a query. Dataset [8] used is Android-related codes 
from GitHub and StackOverflow’s answers to Android 

related questions for evaluation. 
UNIF (Embedding Unification) [3] is a minimal extension 

to NCS, which provides an attention-based weighing scheme 
to improve the accuracy of unsupervised NCS method. 
Dataset used is a combination of CODEnn and NCS datasets. 
This research shows that even a simple solution can 
outperform complex models like CODEnn. Like the other 
related works, this also trains and evaluates only Java 
codebase. 

VII. CONCLUSION 

Our novel deep neural network model (UnifiedCodeNet) 
built using state of the art systems and techniques proves 
efficient in finding semantically similar code snippets from 
open-source code across six programming languages with a 
high level of accuracy and relevance. The effectiveness of the 
model across language differs understandably due to the 
difference in the quality of source-code and difference in 
coding practices. Python embedding model being the most 
efficient and Go embedding model being the least efficient 
model for the set of queries we used. This is not an exact 
indicator of the accuracy of the model as it is possible that 
there exists no exactly semantically similar code snippet for a 
particular set of the query in the evaluation set, which would 
skew the results significantly. Also, given a different set of 
evaluation queries, it is possible that the accuracy of models 
may vary depending on the queries. Our model is significantly 
better in ranking snippets in some areas; there exist areas of 
improvement like the model would perform significantly 
better on a uniform and larger dataset than the one we used. 
This dataset is huge; we were only able to train for 100 epoch; 
with more resources, the model is sure to perform 
significantly better. 

In the future, we will try to investigate on tree-LSTM 
model for token embeddings to get a better semantic 
representation of the code snippets as well as the query. This 
method can be by far the best method for semantic search, but 
this will require further study. 
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