

NRC-HAA Cryogenic Radio Receiver Development

Sara Salem Hesari, Doug Henke, Lewis Knee, Vlad Reshetov, Bruce Veidt, Frank Jiang, Alireza Seyfollahi, Ivan Wevers, Neal Kelly

www.nrc-cnrc.gc.ca NRC Herzberg Astronomy and Astrophysics Research Centre, Victoria, BC, Canada September 2021

Presenter: Sara Salem Hesari, Ph.D.

RF Engineer

Email: sara.salemhesari@nrc-cnrc.gc.ca

National Research Conseil national de Council Canada recherches Canada

- RIT Research Activity
- Q-band/ngVLA Band-5 receiver development
 - System design
 - Feed horn
 - OMT
 - Vacuum window
 - LNA
 - Cryostat model
- Octave band receiver development
 - Feed horn
 - OMT
 - Vacuum window
 - LNA

RIT Research Activity

Design and development of a cryogenic receiver for ngVLA band-5

Design and development of an Octave band radio receiver

> Q-band receiver specification

ngVLA Band-5 Receiver

RF frequency range	30.5 - 50.5 GHz			
Polarization	Dual-linear			
Receiver noise temperature	T_{RX} < 25 K over entire band			
Optics	Optimized for ngVLA			
LNA noise temperature	T _{LNA} < 14 K (GaAs mHEMT LNA) T _{LNA} < 12 K (InP LNA)			
Calibration	Noise injection			
Monitoring	Remote monitor and control			
Cryogenic environment	2-stage Gifford-McMahon cryopump system (16 K and 70 K stages)			

NRC.CNRC

System description

Front-end Q-band Receiver Electrical Block Diagram [1]

NRC·CNRC

5

Cold Cartridge Assembly

System description

[2] S. Salem Hesari, et al, "NRC Q-band/Band-5 Receiver Development for the ngVLA," NRC Herzberg, HAA-RIT-NGVLA-001-REP-A, Oct. 1, 2021 RC-CRRC 6

Feed Horn

- Corrugated feed horn with logarithmic flare
- Compact structure
- Suitable candidate for all ngVLA bands
- Machinable features
- Could consider for 3D printing
- Symmetric pattern

[3] D. Henke, et al, "Axial Ring Feed Horn with Logarithmic Flare for Offset Gregorian Optics," URSI GASS, 2021.
[4] S. Salem Hesari, at al, "A Compact Axial-Ring Feed Horn and Vacuum Window Model for a Cryogenic Q-band Receiver", IEEE ANTEM, 2021

NRC·CNRC

Feed Horn

Frequency (GHz)	30	34	40	44	50
Aperture efficiency of a Gaussian feed (55°, 16dB)	95.8	95.9	96	96	96.1
Aperture efficiency of the Feed horn	95.6	95.5	95.5	95.3	96.3

NRC CNRC

[3] D. Henke, et al, "Axial Ring Feed Horn with Logarithmic Flare for Offset Gregorian Optics," URSI GASS, 2021.
[4] S. Salem Hesari, at al, "A Compact Axial-Ring Feed Horn and Vacuum Window Model for a Cryogenic Q-band Receiver", IEEE ANTEM, 2021

Vacuum window / IR filters

Vacuum window is the first optical component of the cartridge

9

NC CNRC

D2

L2

Vacuum window / IR filters

Vacuum window is the first optical component of the cartridge

Aperture efficiency (%)					
Frequency (GHz)	30	34	40	44	50
Gaussian feed (55°, 16dB)	95.8	95.9	96	96	96.1
Feed horn	95.6	95.5	95.5	95.3	96.3
Feed horn + vacuum window	94.5	95.1	95.3	95.5	95

[2] S. Salem Hesari, et al, "NRC Q-band/Band-5 Receiver Development for the ngVLA," NRC Herzberg, HAA-RIT-NGVLA-001-REP-A, Oct. 1, 2021

OMT + NC

Ortho-Mode transducer (OMT)

Port-1: input from feed horn circular waveguide Ports 2 and 3: linear X and Y output WR-22 Port-4: coupled noise injection input WR-22 Coupler 2 3 4

Noise Injection (T-junction power divider)

-35 dB

Linearly Polarized Outputs (RF signal

coupled noise)

-35 dB Coupler

[5] D. Henke, "OMT Data-Pack for ngVLA," NRC Herzberg, no. HAA-RIT-NGVLA-001-DSN-A, May 14, 2021.

OMT + NC

Ortho-Mode transducer (OMT)

NRC CNRC 12

OMT + NC

> OMT Data-Pack for ngVLA [5]

4 variations of possible OMT models for ngVLA.

EM designs have been optimised for Band 5 using WR-22.

Note that the dimensions are generally scalable across Bands 3–6.

NRC-1a: 3-Pc, Side Ports

NRC-1c: 4-Pc, with Couplers

NRC·CNRC

NRC-2: Compact

[5] D. Henke, "OMT Data-Pack for ngVLA," NRC Herzberg, no. HAA-RIT-NGVLA-001-DSN-A, May 14, 2021.

 \succ One of the most critical building blocks in a radio telescope is LNA.

$$T_{CASCADE} = T_{LNA} + T_{POST_LNA} / G_{LNA}$$

An mHEMT MMIC LNA design with WR-22 waveguide input and output ports:

Q-band low noise amplifier chassis

Frequency	30 – 50 GHz
Gain, S21	\geq 34 dB
Input match, S11	\leq -10 dB
Output match, S22	\leq -10 dB
Isolation	50 dB
Noise temperature	≤14 K
Gain flatness	± 1.5 dB

[6] F. Jiang, et al, "Cryogenic LNA Development for ngVLA Band 1, 3, 4, and 5 Receivers," NRC Herzberg, HAA-RIT-NGVLA-003-REP-A, Oct. 1, 202 Receiver Constant of the ngVLA," NRC Herzberg, HAA-RIT-NGVLA-001-REP-A, Oct. 1, 202 Receiver Development for the ngVLA," NRC Herzberg, HAA-RIT-NGVLA-001-REP-A, Oct. 1, 202 Receiver Development for the ngVLA," NRC Herzberg, HAA-RIT-NGVLA-001-REP-A, Oct. 1, 202 Receiver Development for the ngVLA," NRC Herzberg, HAA-RIT-NGVLA-001-REP-A, Oct. 1, 202 Receiver Development for the ngVLA," NRC Herzberg, HAA-RIT-NGVLA-001-REP-A, Oct. 1, 202 Receiver Development for the ngVLA," NRC Herzberg, HAA-RIT-NGVLA-001-REP-A, Oct. 1, 202 Receiver Development for the ngVLA," NRC Herzberg, HAA-RIT-NGVLA-001-REP-A, Oct. 1, 202 Receiver Development for the ngVLA," NRC Herzberg, HAA-RIT-NGVLA-001-REP-A, Oct. 1, 202 Receiver Development for the ngVLA," NRC Herzberg, HAA-RIT-NGVLA-001-REP-A, Oct. 1, 202 Receiver Development for the ngVLA," NRC Herzberg, HAA-RIT-NGVLA-001-REP-A, Oct. 1, 202 Receiver Development for the ngVLA," NRC Herzberg, HAA-RIT-NGVLA-001-REP-A, Oct. 1, 202 Receiver Development for the ngVLA," NRC Herzberg, HAA-RIT-NGVLA-001-REP-A, Oct. 1, 202 Receiver Development for the ngVLA," NRC Herzberg, HAA-RIT-NGVLA-001-REP-A, Oct. 1, 202 Receiver Development for the ngVLA," NRC Herzberg, HAA-RIT-NGVLA-001-REP-A, Oct. 1, 202 Receiver Development for the ngVLA," NRC Herzberg, HAA-RIT-NGVLA-001-REP-A, Oct. 1, 202 Receiver Development for the ngVLA," NRC Herzberg, HAA-RIT-NGVLA-001-REP-A, Oct. 1, 202 Receiver Development for the ngVLA," NRC Herzberg, HAA-RIT-NGVLA-001-REP-A, Oct. 1, 202 Receiver Development for the ngVLA," NRC Herzberg, HAA-RIT-NGVLA-001-REP-A, Oct. 1, 202 Receiver Development for the ngVLA," NRC Herzberg, HAA-RIT-NGVLA-001-REP-A, Oct. 1, 202 Receiver Development for the ngVLA," NRC Herzberg, HAA-RIT-NGVLA-001-REP-A, Oct. 1, 202 Receiver Development for the ngVLA," NRC Herzberg, HAA-RIT-NGVLA-001-REP-A, Oct. 1, 202 Receiver Development for the ngVLA, NC Herzberg, HAA-RIT-NGVL

Cascaded Noise Analysis

Component	Gain [dB]	Cum. Gain [dB]	T _{comp.} (K)	T _{rx} (K)	Phys. Temp (K)
Vacuum window	-0.014	-0.01	0.96	0.96	300
Feed Horn	-0.018	-0.03	0.06	1.03	16
OMT(integrated coupler)-thru path	-0.3	-0.33	1.14	2.18	16
Calibration coupler-coupled path	0	-0.33	0.09	2.29	300
WG to WG flange	-0.05	-0.38	0.18	2.49	16
LNA	30	29.6	13	16.6	16
WG to coax adaptor	-0.5	29.1	1.95	16.6	16
Stainless steel coax cable	-2	27.1	87.7	16.7	150
Coax cable to noise diode	-1	26.1	77.6	16.9	300
BPFilter (35-50GHz)	-2	24.1	175.4	17.3	300
Post amplification	25	49.1	527.3	19.4	300
Mixer	6	55.1	1716	19.4	300
Back-end cables	-5	50.1	648.6	19.4	300
21.60					

NRC·CNRC

Octave Band Receiver

System Overview Comparison

	Standard band	Octave band	
Bandwidth	1.66:1	2:1 (20% instantaneous bandwidth increase)	Val
Frequency range	30.5 -50.5 GHz	25-50 GHz	ues ar
Window	Reflected power < -30dB (2-stepped hole AR, UHMWPE)	Reflected power < -25dB (2-stepped hole AR, UHMWPE)	e simulat
Feed horn	Reflected power < -25dB Aperture efficiency > 95% Cross-pol < -30dB Phase efficiency > 99.5%	Reflected power < -25dB Aperture efficiency > 92% Cross-pol < -25dB Phase efficiency > 99.3%	ed or estimated
ОМТ	Reflected power < -26dB Cross-pol isolation < -50dB Insertion gain > -0.25dB	Reflected power < -21dB Cross-pol isolation < -40dB Insertion gain > -0.35dB	, not measure
LNA	Input reflected power < -10dB Output reflected power < -14dB Gain > 30dB	Input reflected power < -10dB Output reflected power < -10dB Gain > 30dB	d.

[7] D. Henke, et al, "Octave Band Receiver for ngVLA," NRC Herzberg, HAA-RIT-NGVLA-002-REP-A, Oct. 1, 2021.

NRC CNRC 16

Octave Band Receiver _ OMT

The complete assembly of ridge waveguide features that comprise the OMT, including a turnstile junction, E-bends, and a T-junction combiner.

[7] D. Henke, "A Full Octave-Band OMT for Millimetre-Wave Receivers," in Proc. 31st Int. Symp. Space Terahertz Technol., Tempe, Arizona, Mar. 2020, <u>http://www.nrao.edu/meetings/isstt/papers/2020/2020000046.pdf</u>

NRC CNRC

Octave Band Receiver _ OMT

➤ Mechanical assembly showing the six layer stack-up.

-10

-20

Required for full testing of OMT

Octave Band Receiver _ OMT

WR-22 to single (qty. 3) WR-34 to single (qty. 3) Single to double ridge Cloverleaf transition Single to double **Cloverleaf transition** Measurement across 2 standard bands: 1) Using WR-22 2) Using WR-34 WR-22 to single WR-34 to single

NRC CNRC

٠

٠

•

OMT

Octave Band Receiver _ OMT

Pictures showing progress of machined adapters and transitions for measuring the octave band OMT.

Octave Band Receiver _ Feed Horn

> Quad-Ridge with Axial Grooves

[7] D. Henke, et al, "Octave Band Receiver for ngVLA," NRC Herzberg, HAA-RIT-NGVLA-002-REP-A, Oct. 1, 2021.

RC·CRC 21

Octave Band Receiver _ Feed Horn

> Quad-Ridge with Axial Groove and a dielectric rod

Octave Band Receiver _ Vacuum Window

Cryostat Vacuum Window

[7] D. Henke, et al, "Octave Band Receiver for ngVLA," NRC Herzberg, HAA-RIT-NGVLA-002-REP-A, Oct. 1, 2021.

RC·CRC 23

Octave Band Receiver: LNA

➢ GaAs mHEMT MMIC design covering 18−36 GHz

(widened octave bandwidth for ngVLA Band 4)

S-parameter simulation at room temperature for 18–36 GHz MMIC chip

Estimated cryogenic performance: ~38 dB, 7–12 K

NRC·CNRC

Canada

THANK YOU

Sara Salem Hesari, Ph.D.

RF Engineer

Email: sara.salemhesari@nrc-cnrc.gc.ca

NRC Herzberg Astronomy and Astrophysics Research Centre, Victoria, BC, Canada

September 2021

