
Noname manuscript No.
(will be inserted by the editor)

The Complete Proof of the Riemann Hypothesis

Frank Vega

the date of receipt and acceptance should be inserted later

Abstract Robin criterion states that the Riemann Hypothesis is true if and only if the
inequality σ(n)< eγ×n× log logn holds for all n > 5040, where σ(n) is the sum-of-
divisors function and γ ≈ 0.57721 is the Euler-Mascheroni constant. We prove that
the Robin inequality is true for all n > 5040 which are not divisible by any prime
number between 2 and 953. Using this result, we show there is a contradiction just
assuming the possible smallest counterexample n > 5040 of the Robin inequality. In
this way, we prove that the Robin inequality is true for all n > 5040 and thus, the
Riemann Hypothesis is true.
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1 Introduction

In mathematics, the Riemann Hypothesis is a conjecture that the Riemann zeta func-
tion has its zeros only at the negative even integers and complex numbers with real
part 1

2 [7]. As usual σ(n) is the sum-of-divisors function of n [3]:

∑
d|n

d

where d | n means the integer d divides to n and d - n means the integer d does not
divide to n. Define f (n) to be σ(n)

n . Say Robins(n) holds provided

f (n)< eγ × log logn.
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The constant γ ≈ 0.57721 is the Euler-Mascheroni constant, and log is the natural
logarithm. The importance of this property is:

Theorem 1.1 Robins(n) holds for all n> 5040 if and only if the Riemann Hypothesis
is true [7].

It is known that Robins(n) holds for many classes of numbers n.

Theorem 1.2 Robins(n) holds for all n > 5040 that are not divisible by 2 [3].

On the one hand, we prove that Robins(n) holds for all n > 5040 that are not divisible
by any prime number between 3 and 953. Let q1 = 2,q2 = 3, . . . ,qm denote the first m
consecutive primes, then an integer of the form ∏

m
i=1 qai

i with a1 ≥ a2 ≥ ·· · ≥ am ≥ 0
is called an Hardy-Ramanujan integer [3]. A natural number n is called superabundant
precisely when, for all m < n

f (m)< f (n).

Theorem 1.3 If n is superabundant, then n is an Hardy-Ramanujan integer [2].

Theorem 1.4 The smallest counterexample of the Robin inequality greater than 5040
must be a superabundant number [1].

On the other hand, we prove the nonexistence of such counterexample and therefore,
the Riemann Hypothesis is true.

2 A Central Lemma

These are known results:

Lemma 2.1 [3]. For n > 1:

f (n)< ∏
q|n

q
q−1

. (2.1)

Lemma 2.2 [4].
∞

∏
k=1

1
1− 1

q2
k

= ζ (2) =
π2

6
. (2.2)

The following is a key lemma. It gives an upper bound on f (n) that holds for all n.
The bound is too weak to prove Robins(n) directly, but is critical because it holds for
all n. Further the bound only uses the primes that divide n and not how many times
they divide n.

Lemma 2.3 Let n > 1 and let all its prime divisors be q1 < · · ·< qm. Then,

f (n)<
π2

6
×

m

∏
i=1

qi +1
qi

.
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Proof We use that lemma 2.1:

f (n)<
m

∏
i=1

qi

qi−1
.

Now for q > 1,
1

1− 1
q2

=
q2

q2−1
.

So

1
1− 1

q2

× q+1
q

=
q2

q2−1
× q+1

q

=
q

q−1
.

Then by lemma 2.2,
m

∏
i=1

1
1− 1

q2
i

< ζ (2) =
π2

6
.

Putting this together yields the proof:

f (n)<
m

∏
i=1

qi

qi−1

≤
m

∏
i=1

1
1− 1

q2
i

× qi +1
qi

<
π2

6
×

m

∏
i=1

qi +1
qi

.

3 About the p-adic order

In basic number theory, for a given prime number p, the p-adic order of a natural
number n is the highest exponent νp ≥ 1 such that pνp divides n. This is a known
result:

Lemma 3.1 In general, we know that Robins(n) holds for a natural number n> 5040
that satisfies either ν2(n) ≤ 19, ν3(n) ≤ 12 or ν7(n) ≤ 6, where νp(n) is the p-adic
order of n [5].

We know the following lemmas:

Lemma 3.2 [5]. Let ∏
m
i=1 qai

i be the representation of n as a product of primes q1 <
· · ·< qm with natural numbers as exponents a1, . . . ,am. Then,

f (n) =

(
m

∏
i=1

qi

qi−1

)
×

m

∏
i=1

(
1− 1

qai+1
i

)
.
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Lemma 3.3 [5]. Let n > ee23.762143
and let all its prime divisors be q1 < · · · < qm,

then (
m

∏
i=1

qi

qi−1

)
<

1771561
1771560

× eγ × log logn.

Lemma 3.4 Robins(n) holds for all 101010 ≥ n > 5040 [5].

Putting together all these results, then we obtain that

Lemma 3.5 Robins(n) holds for n > 5040 when ν31(n)≤ 3.

Proof From lemma 3.2, we note that

f (n) =

(
m

∏
i=1

qi

qi−1

)
×

m

∏
i=1

(
1− 1

qai+1
i

)
≤

(
m

∏
i=1

qi

qi−1

)
×
(

1− 1
31ν31(n)+1

)
when ν31(n)≤ 3. We only need to look at the case where ν31(n) = 3 since the weaker
cases follow because(

1− 1
311+1

)
<

(
1− 1

312+1

)
<

(
1− 1

313+1

)
.

In this way, we obtain that

f (n)≤

(
m

∏
i=1

qi

qi−1

)
×
(

1− 1
313+1

)
=

923520
923521

×

(
m

∏
i=1

qi

qi−1

)

when ν31(n)≤ 3. With lemma 3.3, we have for n > ee23.762143

923520
923521

×

(
m

∏
i=1

qi

qi−1

)
<

923520
923521

× 1771561
1771560

× eγ × log logn < eγ × log logn

since 923520
923521 ×

1771561
1771560 < 1. In light of lemma 3.4 and the fact that ee23.762143

< 101010
,

we then conclude that Robins(n) holds for n > 5040 when ν31(n)≤ 3.

4 A Particular Case

We can easily prove that Robins(n) is true for certain kind of numbers:

Lemma 4.1 Robins(n) holds for n > 5040 when q≤ 7, where q is the largest prime
divisor of n.

Proof Let n > 5040 and let all its prime divisors be q1 < · · ·< qm ≤ 5, then we need
to prove

f (n)< eγ × log logn

that is true when
m

∏
i=1

qi

qi−1
≤ eγ × log logn
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according to the lemma 2.1. For q1 < · · ·< qm ≤ 5,
m

∏
i=1

qi

qi−1
≤ 2×3×5

1×2×4
= 3.75 < eγ × log log(5040)≈ 3.81.

However, we know for n > 5040

eγ × log log(5040)< eγ × log logn

and therefore, the proof is complete when q1 < · · · < qm ≤ 5. The remaining case
is for n > 5040 when all its prime divisors are q1 < · · · < qm ≤ 7. Robins(n) holds
for n > 5040 when ν7(n)≤ 6 according to the lemma 3.1 [5]. Hence, it is enough to
prove this for those natural numbers n > 5040 when 77 | n. For q1 < · · ·< qm ≤ 7,

m

∏
i=1

qi

qi−1
≤ 2×3×5×7

1×2×4×6
= 4.375 < eγ × log log(77)≈ 4.65.

However, for n > 5040 and 77 | n, we know that

eγ × log log(77)≤ eγ × log logn

and as a consequence, the proof is complete when q1 < · · ·< qm ≤ 7.

5 A Better Bound

This is a known result:

Lemma 5.1 [8]. For x > 1:

∑
q≤x

1
q
< log logx+B+

1
log2 x

(5.1)

where
B = 0.2614972128 · · ·

denotes the (Meissel-)Mertens constant [8].

We show a better result:

Lemma 5.2 For x≥ 11, we have

∑
q≤x

1
q
< log logx+ γ−0.12.

Proof Let’s define H = γ−B. The lemma 5.1 is the same as

∑
q≤x

1
q
< log logx+ γ− (H− 1

log2 x
).

For x≥ 11,

(H− 1
log2 x

)> (0.31− 1
log2 11

)> 0.12

and thus,

∑
q≤x

1
q
< log logx+ γ− (H− 1

log2 x
)< log logx+ γ−0.12.
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6 On a Square Free Number

We know the following results:

Lemma 6.1 [3]. For 0 < a < b:

logb− loga
b−a

=
1

(b−a)

∫ b

a

dt
t
>

1
b
. (6.1)

Lemma 6.2 [3]. For q > 0:

log(q+1)− logq =
∫ q+1

q

dt
t
<

1
q
. (6.2)

We recall that an integer n is said to be square free if for every prime divisor q of
n we have q2 - n [3]. Robins(n) holds for all n > 5040 that are square free [3].

Lemma 6.3 For a square free number

n = q1×·· ·×qm

such that q1 < q2 < · · ·< qm are odd prime numbers, qm ≥ 11 and 3 - n, then:

π2

6
× 3

2
×σ(n)≤ eγ ×n× log log(219×n).

Proof By induction with respect to ω(n), that is the number of distinct prime factors
of n [3]. Put ω(n) = m [3]. We need to prove the assertion for those integers with
m = 1. From a square free number n, we obtain

σ(n) = (q1 +1)× (q2 +1)×·· ·× (qm +1) (6.3)

when n = q1× q2×·· ·× qm [3]. In this way, for every prime number qi ≥ 11, then
we need to prove

π2

6
× 3

2
× (1+

1
qi
)≤ eγ × log log(219×qi). (6.4)

For qi = 11, we have

π2

6
× 3

2
× (1+

1
11

)≤ eγ × log log(219×11)

is actually true. For another prime number qi > 11, we have

(1+
1
qi
)< (1+

1
11

)

and
loglog(219×11)< log log(219×qi)

which clearly implies that the inequality (6.4) is true for every prime number qi ≥ 11.
Now, suppose it is true for m−1, with m≥ 2 and let us consider the assertion for those
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square free n with ω(n) = m [3]. So let n = q1×·· ·×qm be a square free number and
assume that q1 < · · ·< qm for qm ≥ 11.

Case 1: qm ≥ log(219×q1×·· ·×qm−1×qm) = log(219×n).
By the induction hypothesis we have

π2

6
× 3

2
×(q1+1)×·· ·×(qm−1+1)≤ eγ×q1×·· ·×qm−1×log log(219×q1×·· ·×qm−1)

and hence
π2

6
× 3

2
× (q1 +1)×·· ·× (qm−1 +1)× (qm +1)≤

eγ ×q1×·· ·×qm−1× (qm +1)× log log(219×q1×·· ·×qm−1)

when we multiply the both sides of the inequality by (qm +1). We want to show

eγ ×q1×·· ·×qm−1× (qm +1)× log log(219×q1×·· ·×qm−1)≤

eγ×q1×·· ·×qm−1×qm×log log(219×q1×·· ·×qm−1×qm)= eγ×n×log log(219×n).

Indeed the previous inequality is equivalent with

qm× log log(219×q1×·· ·×qm−1×qm)≥ (qm +1)× log log(219×q1×·· ·×qm−1)

or alternatively

qm× (log log(219×q1×·· ·×qm−1×qm)− log log(219×q1×·· ·×qm−1))

logqm
≥

log log(219×q1×·· ·×qm−1)

logqm
.

We can apply the inequality in lemma 6.1 just using b = log(219×q1×·· ·×qm−1×
qm) and a = log(219×q1×·· ·×qm−1). Certainly, we have

log(219×q1×·· ·×qm−1×qm)− log(219×q1×·· ·×qm−1) =

log
219×q1×·· ·×qm−1×qm

219×q1×·· ·×qm−1
= logqm.

In this way, we obtain

qm× (log log(219×q1×·· ·×qm−1×qm)− log log(219×q1×·· ·×qm−1))

logqm
>

qm

log(219×q1×·· ·×qm)
.

Using this result we infer that the original inequality is certainly satisfied if the next
inequality is satisfied

qm

log(219×q1×·· ·×qm)
≥ log log(219×q1×·· ·×qm−1)

logqm
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which is trivially true for qm ≥ log(219×q1×·· ·×qm−1×qm) [3].
Case 2: qm < log(219×q1×·· ·×qm−1×qm) = log(219×n).
We need to prove

π2

6
× 3

2
× σ(n)

n
≤ eγ × log log(219×n).

We know 3
2 < 1.503 < 4

2.66 . Nevertheless, we could have

3
2
× σ(n)

n
× π2

6
<

4×σ(n)
3×n

× π2

2×2.66

and therefore, we only need to prove

σ(3×n)
3×n

× π2

5.32
≤ eγ × log log(219×n)

where this is possible because of 3 - n. If we apply the logarithm to the both sides of
the inequality, then we obtain

log(
π2

5.32
)+(log(3+1)− log3)+

m

∑
i=1

(log(qi+1)− logqi)≤ γ + log loglog(219×n).

In addition, note that log( π2

5.32 )<
1
2 +0.12. However, we know

γ + log logqm < γ + log loglog(219×n)

since qm < log(219×n). We use that lemma 6.2 for each term log(q+1)− logq and
thus,

0.12+
1
2
+

1
3
+

1
q1

+ · · ·+ 1
qm
≤ 0.12+ ∑

q≤qm

1
q
≤ γ + log logqm

where qm ≥ 11. Hence, it is enough to prove

∑
q≤qm

1
q
≤ γ + log logqm−0.12

but this is true according to the lemma 5.2 for qm ≥ 11. In this way, we finally show
the lemma is indeed satisfied.

7 Robin on Divisibility

Robins(n) holds for every n > 5040 that is not divisible by 2 [3]. We extend this
property to other prime numbers:

Lemma 7.1 Robins(n) holds for all n > 5040 when 3 - n. More precisely: every pos-
sible counterexample n > 5040 of the Robin inequality must comply with (220×313) |
n.
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Proof We will check the Robin inequality is true for every natural number n =
qa1

1 × qa2
2 × ·· · × qam

m > 5040 such that q1,q2, · · · ,qm are distinct prime numbers,
a1,a2, · · · ,am are natural numbers and 3 - n. We know this is true when the great-
est prime divisor of n > 5040 is lesser than or equal to 7 according to the lemma 4.1.
Therefore, the remaining case is when the greatest prime divisor of n> 5040 is greater
than or equal to 11. We need to prove

f (n)< eγ × log logn

that is true when
π2

6
×

m

∏
i=1

qi +1
qi
≤ eγ × log logn

according to the lemma 2.3. Using the formula (6.3) for the square free numbers, then
we obtain that is equivalent to

π2

6
× σ(n′)

n′
≤ eγ × log logn

where n′ = q1× ·· ·× qm is the square free kernel of the natural number n [3]. The
Robin inequality has been proved for all integers n not divisible by 2 (which are
bigger than 10) [3]. Hence, we only need to prove the Robin inequality is true when
2 | n′. In addition, we know that Robins(n) holds for every n > 5040 when ν2(n)≤ 19
according to the lemma 3.1 [5]. Consequently, we only need to prove that Robins(n)
holds for n > 5040 when 220 | n and thus,

eγ ×n′× log log(219× n′

2
)≤ eγ ×n′× log logn

because of 219× n′
2 ≤ n where 220 | n and 2 | n′. So,

π2

6
×σ(n′)≤ eγ ×n′× log log(219× n′

2
).

According to the formula (6.3) for the square free numbers and 2 | n′, then,

π2

6
×3×σ(

n′

2
)≤ eγ ×2× n′

2
× log log(219× n′

2
)

which is the same as

π2

6
× 3

2
×σ(

n′

2
)≤ eγ × n′

2
× log log(219× n′

2
)

where this is true according to the lemma 6.3 when 3 - n′
2 . In addition, we know that

Robins(n) holds for every n > 5040 when ν3(n)≤ 12 according to the lemma 3.1 [5].
Hence, we only need to prove that Robins(n) holds for every n > 5040 when 220 | n
and 313 | n. To sum up, the proof is complete.

Let’s state the following known properties:
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Lemma 7.2 σ(n) and f (n) are multiplicatives [3]. Besides, for a prime number q
and a positive integer a≥ 0, we have that σ(qa) = qa+1−1

q−1 [3]. We know that f (qa)<
q

q−1 and f (qa+1)> f (qa) for all primes q and all a≥ 0.

Lemma 7.3 Robins(n) holds for all n > 5040 when 5 - n or 7 - n.

Proof We need to prove
f (n)< eγ × log logn

when (220×313) | n. Suppose that n = 2a×3b×m, where a≥ 20, b≥ 13, 2 - m, 3 - m
and 5 - m or 7 - m. Therefore, we need to prove

f (2a×3b×m)< eγ × log log(2a×3b×m).

We know
f (2a×3b×m) = f (3b)× f (2a×m)

since f is multiplicative [3]. In addition, we know f (3b)< 3
2 for every natural number

b [3]. In this way, we have

f (3b)× f (2a×m)<
3
2
× f (2a×m).

However, that would be equivalent to

3
2
× f (2a×m) =

9
8
× f (3)× f (2a×m) =

9
8
× f (2a×3×m)

where f (3) = 4
3 since f is multiplicative [3]. Nevertheless, we have

9
8
× f (2a×3×m)< f (5)× f (2a×3×m) = f (2a×3×5×m)

and
9
8
× f (2a×3×m)< f (7)× f (2a×3×m) = f (2a×3×7×m)

where 5 - m or 7 - m, f (5) = 6
5 and f (7) = 8

7 . We know the Robin inequality is true
for 2a×3×5×m and 2a×3×7×m when a≥ 20, since this is true for every natural
number n > 5040 when ν3(n)≤ 12 according to the lemma 3.1 [5]. Hence, we would
have

f (2a×3×5×m)< eγ × log log(2a×3×5×m)< eγ × log log(2a×3b×m)

and

f (2a×3×7×m)< eγ × log log(2a×3×7×m)< eγ × log log(2a×3b×m)

when b≥ 13.

Lemma 7.4 Robins(n) holds for all n > 5040 when a prime number 11 ≤ q ≤ 47
complies with q - n.



The Complete Proof of the Riemann Hypothesis 11

Proof We know that Robins(n) holds for every n > 5040 when ν7(n)≤ 6 according
to the lemma 3.1 [5]. We need to prove

f (n)< eγ × log logn

when (220×313×77) | n. Suppose that n = 2a×3b×7c×m, where a≥ 20, b≥ 13,
c≥ 7, 2 - m, 3 - m, 7 - m, q - m and 11≤ q≤ 47. Therefore, we need to prove

f (2a×3b×7c×m)< eγ × log log(2a×3b×7c×m).

We know
f (2a×3b×7c×m) = f (7c)× f (2a×3b×m)

since f is multiplicative [3]. In addition, we know f (7c)< 7
6 for every natural number

c [3]. In this way, we have

f (7c)× f (2a×3b×m)<
7
6
× f (2a×3b×m).

However, that would be equivalent to

7
6
× f (2a×3b×m) =

49
48
× f (7)× f (2a×3b×m) =

49
48
× f (2a×3b×7×m)

where f (7) = 8
7 since f is multiplicative [3]. In addition, we know

49
48
× f (2a×3b×7×m)< f (q)× f (2a×3b×7×m) = f (2a×3b×7×q×m)

where q -m, f (q)= q+1
q and 11≤ q≤ 47. Nevertheless, we know the Robin inequality

is true for 2a× 3b× 7× q×m when a ≥ 20 and b ≥ 13, since this is true for every
natural number n > 5040 when ν7(n)≤ 6 according to the lemma 3.1 [5]. Hence, we
would have

f (2a×3b×7×q×m)< eγ × log log(2a×3b×7×q×m)

< eγ × log log(2a×3b×7c×m)

when c≥ 7 and 11≤ q≤ 47.

Lemma 7.5 Robins(n) holds for all n > 5040 when a prime number 53 ≤ q ≤ 953
complies with q - n.

Proof We know that Robins(n) holds for every n > 5040 when ν31(n)≤ 3 according
to the lemma 3.5. We need to prove that

f (n)< eγ × log logn

when (220×313×314) | n. Suppose that n = 2a×3b×31c×m, where a≥ 20, b≥ 13,
c≥ 4, 2 - m, 3 - m, 31 - m, q - m and 53≤ q≤ 953. Therefore, we need to prove that

f (2a×3b×31c×m)< eγ × log log(2a×3b×31c×m).
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We know that

f (2a×3b×31c×m) = f (31c)× f (2a×3b×m)

since f is multiplicative [3]. In addition, we know that f (31c)< 31
30 for every natural

number c [3]. In this way, we have that

f (31c)× f (2a×3b×m)<
31
30
× f (2a×3b×m).

However, that would be equivalent to

31
30
× f (2a×3b×m) =

961
960
× f (31)× f (2a×3b×m) =

961
960
× f (2a×3b×31×m)

where f (31) = 32
31 since f is multiplicative [3]. In addition, we know that

961
960
× f (2a×3b×31×m)< f (q)× f (2a×3b×31×m) = f (2a×3b×31×q×m)

where q - m, f (q) = q+1
q and 53 ≤ q ≤ 953. Nevertheless, we know the Robin in-

equality is true for 2a×3b×31×q×m when a≥ 20 and b≥ 13, since this is true for
every natural number n > 5040 when ν31(n)≤ 3 according to the lemma 3.5. Hence,
we would have that

f (2a×3b×31×q×m)< eγ × log log(2a×3b×31×q×m)

< eγ × log log(2a×3b×31c×m)

when c≥ 4 and 53≤ q≤ 953.

8 Helpful Lemmas

In mathematics, the Chebyshev function θ(x) is given by

θ(x) = ∑
q≤x

logq

where q≤ x means all the prime numbers q that are less than or equal to x.

Lemma 8.1 [8]. For x≥ 41:

θ(x)> (1− 1
log(x)

)× x.

Besides, we know that

Lemma 8.2 [8]. For x≥ 286:

∏
q≤x

q
q−1

< eγ × (logx+
1

2× log(x)
).

For the counting prime function π(x), we know that
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Lemma 8.3 [8]. For x≥ 17:

x
logx

< π(x)< 1.25506× x
logx

.

The following lemma is crucial in our proof

Lemma 8.4 [6]. For x >−1:

x
x+1

≤ log(1+ x)≤ x.

The smallest counterexample of the Robin inequality greater than 5040 complies with

Lemma 8.5 If n > 5040 is the smallest counterexample of the Robin inequality, then
q < logn where q denotes the largest prime factor of n [3].

We show some tools that could help us in the final proof.

Lemma 8.6 Let q≥ 2 be a prime and let b≥ 0 be a positive integer. If qa‖n, then

f (qb×n) = f (n)× qa+b+1−1
qa+b+1−qb

where qa‖n signifies that qa divides n, but qa+1 does not divide n.

Proof We assume that qa‖n. Since σ(n) and f (n) are multiplicatives according to
the lemma 7.2, then we would only need to study f (qa+b) where we know from the
lemma 7.2 that σ(qa) = qa+1−1

q−1 . Then,

f (qa+b) =
qa+b+1−1

qa+b× (q−1)
× qa+1−1

qa× (q−1)
× qa× (q−1)

qa+1−1

= f (qa)× qa+b+1−1
qa+b× (q−1)

× qa× (q−1)
qa+1−1

= f (qa)× qa+b+1−1
qb × 1

qa+1−1

= f (qa)× qa+b+1−1
qa+b+1−qb .

Let’s see another inequalities:

Lemma 8.7 If n > 5040 is the smallest counterexample of the Robin inequality, then

log logn
logq

<

(
1+

1
2× log2 q

)
and

log loglogn
logq

<
log logq

logq
+

1
2× log3 q

when we assume that q≥ 953 is the largest prime factor of n.
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Proof Let ∏
m
i=1 qai

i be the representation of n as a product of the first m consecutive
primes q1 < · · ·< qm with natural numbers as exponents a1, . . . ,am. According to the
theorems 1.3 and 1.4, the primes q1 < · · ·< qm must be the first m consecutive primes
since n > 5040 should be an Hardy-Ramanujan integer. We assume that qm ≥ 953.
For qm ≥ 953, we have that

∏
q≤qm

q
q−1

< eγ × (logqm +
1

2× log(qm)
)

because of the lemma 8.2. We use that lemma 2.1 to show that

eγ × log logn≤ f (n)< ∏
q≤qm

q
q−1

< eγ × (logqm +
1

2× log(qm)
)

since we assume that n is a counterexample of the Robin inequality. In this way, we
obtain that

log logn < (logqm +
1

2× log(qm)
)

which is the same as
loglogn
logqm

< (1+
1

2× log2(qm)
).

Besides, if we apply the logarithm to the both sides of the inequality, then

logloglogn < log
(

logqm× (1+
1

2× log2(qm)
)

)
that is equivalent to

log loglogn < log logqm + log(1+
1

2× log2(qm)
).

We use that lemma 8.4 to show that

log(1+
1

2× log2(qm)
)≤ 1

2× log2(qm)
.

Therefore, we finally have that

log loglogn
logqm

<
log logqm

logqm
+

1
2× log3 qm

.

Let’s show another inequality

Lemma 8.8 For all primes qm ≥ 953, we have that

∑
q≤qm

log logq
qm

>
1

logqm
.
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Proof This is the same as

∑
q≤qm

log logq >
qm

logqm
.

According to the lemma 8.3, it is enough to show that

∑
q≤qm

log logq≥ π(qm)>
qm

logqm

when qm ≥ 953. We know that for all primes p > qm ≥ 953, then

loglog p > 1.

Hence, it is enough to prove that

∑
q≤qm

log logq≥ ∑
q≤953

log logq≥ π(953).

We compute that
∑

q≤953
log logq > 274.

However, we know that q274 = 1759 > 953 and thus,

274≥ π(953).

Therefore, the proof is done.

9 Proof of Main Theorems

Theorem 9.1 Robins(n) holds for all n > 5040 when a prime number q≤ 953 com-
plies with q - n.

Proof This is a compendium of the results from the theorem 1.2 and the lemmas 7.1,
7.3, 7.4 and 7.5.

Theorem 9.2 Let ∏
m
i=1 qai

i be the representation of n as a product of the first m con-
secutive primes q1 < · · ·< qm with natural numbers as exponents a1, . . . ,am. We ob-
tain a contradiction just assuming that n > 5040 is the smallest integer such that
Robins(n) does not hold.

Proof According to the theorems 1.3 and 1.4, the primes q1 < · · · < qm must be the
first m consecutive primes since n > 5040 should be an Hardy-Ramanujan integer.
From the theorem 9.1, we know that necessarily qm ≥ 953. Under our assumption,
we know that

f (n)≥ eγ × log logn.

For b = 2 and the lemma 8.6, we know that

f (n×Nm) = f (q2
i ×m′) = f (m′)×

qai+2
i −1

qai+2
i −qi
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for every prime qi that divides n where m′ = n
qi

and Nm = ∏
m
i=1 qi is the primorial

number of order m. In addition, we know that f (n×Nm) > f (n) due to the lemma
7.2. Under this result, if we subtract f (m′) to both sides of the inequality, then we
obtain that

f (n×Nm)− f (m′)> f (n)− f (m′)≥ eγ × log logn− f (m′).

Then,

f (n×Nm)− f (m′) = f (m′)×
qai+2

i −1

qai+2
i −qi

− f (m′)

= f (m′)×

(
qai+2

i −1

qai+2
i −qi

−1

)

= f (m′)× (
qi−1

qai+2
i −qi

)

= f (m′)× (
qi−1

qi× (qai+1
i −1)

)

= f (m′)× (
1

qi×σ(qai
i )

)

= f (m′′)× f (qai−1
i )× (

1
qi×σ(qai

i )
)

= f (m′′)×
σ(qai−1

i )

qai−1
i

× (
1

qi×σ(qai
i )

)

< f (m′′)×
σ(qai

i )

qai
i
× (

1
qi×σ(qai

i )
)

= f (m′′)× 1

qai+1
i

where m′′ = n
q

ai
i

and we know that qai
i ‖n and σ(q

ai
i )

q
ai
i

>
σ(q

ai−1
i )

q
ai−1
i

because of the lemma

7.2. In this way, we have that

f (m′′)× 1

qai+1
i

> eγ × log logn− f (m′).

We know that Robins(m′) and Robins(m′′) hold, since n> 5040 is the smallest integer
such that Robins(n) does not hold. Consequently, we only need to prove that

eγ × log logm′′× 1

qai+1
i

> f (m′′)× 1

qai+1
i

> eγ × log logn− f (m′)

> eγ × log logn− eγ × log logm′.
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As result, we have that

log logm′′× 1

qai+1
i

> log log(qi×m′)− log logm′

since m′ = n
qi

. We know that

log log(qi×m′)− log logm′ = log
(
logqi + logm′

)
− log logm′

= log
(

logm′× (1+
logqi

logm′
)

)
− log logm′

= log logm′+ log(1+
logqi

logm′
)− log logm′

= log(1+
logqi

logm′
).

In addition, we know that

log(1+
logqi

logm′
)≥ logqi

logn

using the lemma 8.4. Certainly, we will have that

log(1+
logqi

logm′
)≥

logqi
logm′

logqi
logm′ +1

=
logqi

logqi + logm′
=

logqi

logn
.

As a consequence, we would have

loglogm′′× 1

qai+1
i

>
logqi

logn

which is equivalent to

logn× log logm′′ > qai+1
i × logqi.

However, we know that

logn× log logn > logn× log logm′′

and thus
logn× log logn > qai+1

i × logqi.

For n > 101010
, we have that logn× log logn > 1 according to the lemma 3.4. More-

over, for qi ≥ 3, then qai+1
i × logqi > 1. In addition, for q1 = 2, we have that qa1+1

1 ×
logq1 > 1 since a1≥ 20 due to the lemma 3.1. Since the both sides of the inequality is
greater that 1 for all primes qi which divides n, then we can multiply the inequalities
to obtain

(logn× log logn)π(qm) > n×Nm×
m

∏
i=1

logqi.
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If we apply the logarithm to the both sides of the inequality, then we would have

π(qm)× (log logn+ log loglogn)> logn+ logNm +
m

∑
i=1

log logqi

which is equivalent to

π(qm)× (log logn+ log loglogn)> logn+θ(qm)+
m

∑
i=1

log logqi.

If we apply the lemma 8.3, then we would have

1.25506× qm

logqm
× (log logn+ log loglogn)> logn+θ(qm)+

m

∑
i=1

log logqi.

Let’s introduce the lemma 8.1 in this inequality and thus

1.25506× qm

logqm
×(log logn+log loglogn)> logn+(1− 1

logqm
)×qm+

m

∑
i=1

log logqi.

In addition, we can transform this into

1.25506× qm

logqm
×(log logn+ log loglogn)> qm+(1− 1

logqm
)×qm+

m

∑
i=1

log logqi

because of the lemma 8.5. If we divide the both sides by qm, then

1.25506× 1
logqm

× (log logn+ log loglogn)> 1+1− 1
logqm

+
m

∑
i=1

log logqi

qm
.

According to the lemma 8.8, we know that

− 1
logqm

+
m

∑
i=1

log logqi

qm
= α > 0.

Consequently, we would have that

1.25506× (
log logn
logqm

+
log loglogn

logqm
)> 2+α.

If we use the lemma 8.7, then

1.25506× (1+
1

2× log2 qm
+

log logqm

logqm
+

1
2× log3 qm

)> 2+α.

We know that

1.25506× (1+
1

2× log2 qm
+

log logqm

logqm
+

1
2× log3 qm

)

≤ 1.25506× (1+
1

2× log2 953
+

log log953
log953

+
1

2× log3 953
)
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and we have that

1.25506× (1+
1

2× log2 953
+

log log953
log953

+
1

2× log3 953
)≈ 1.62266460495.

Consequently, we have that

2 > 1.25506× (1+
1

2× log2 qm
+

log logqm

logqm
+

1
2× log3 qm

)> 2+α > 2

and
2 > 2

is a contradiction. To sum up, we obtain a contradiction just assuming that n > 5040
is the smallest integer such that Robins(n) does not hold.

Theorem 9.3 Robins(n) holds for all n > 5040.

Proof Due to the theorem 9.2, we can assure there is not any natural number n> 5040
such that Robins(n) does not hold.

Theorem 9.4 The Riemann Hypothesis is true.

Proof This is a direct consequence of theorems 1.1 and 9.3
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