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Abstract—In this paper, an energy harvesting transmitter
operating in a point-to-point link through a discrete-time fading
channel is considered, where symbols can be transmitted through
several parallel independent streams. Taking into account the
different sources of energy consumption at the transmitter, the
resource allocation (in terms of power allocation and selection
of the active streams and channel accesses) that asymptotically
maximizes the mutual information is derived by assuming that
the transmitter has non-causal knowledge of the harvested energy
and channel state (offline approach). The Boxed Water-Flowing
graphical interpretation is presented, which intuitively depicts
the asymptotically optimal offline resource allocation. Moreover,
an online algorithm is proposed for the case in which the
transmitter only has causal (past and present) knowledge of the
harvested energy and channel state. Finally, the performance of
the proposed offline and online solutions is numerically evaluated
and the associated computational complexities are assessed and
compared.

Index Terms—Energy harvesting, mutual information, power
allocation, circuitry power consumption.

I. INTRODUCTION

Energy availability is becoming the major operational
bottleneck for devices with high mobility requirements (e.g.,
hand-held devices) or devices that have difficulties to access
the power grid (e.g., sensor nodes). Energy harvesting, i.e.,
the process by which energy of different kinds (e.g., light,
temperature, wind, etc.) is collected from the environment and
converted into usable electric power, is a potential technology
to increase the operational lifetime of battery powered devices.
Traditional power allocation strategies (e.g., Classical Water-
filling (CWF) [5]) are no-longer optimal when the transmitter
has the ability to harvest energy from the environment since
the transmitter must satisfy the Energy Causality Constraints
(ECCs), which impose that the energy used by the node must
be smaller than or equal to the energy harvested. Therefore, en-
ergy harvesting opens a new research paradigm in the design of
online and offline resource allocation strategies. The online ap-
proach accounts for the information causality at the transmitter
regarding both the dynamics of the energy harvesting process
and channel state (i.e., the transmitter only knows the past and
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current occurrences of these processes). In some situations, the
transmitter may also have statistical knowledge of the dynam-
ics of these processes. The offline approach assumes that the
node has full knowledge of the energy harvesting process and
channel state, which is only a realistic assumption under very
specific scenarios where the channel is static and the energy
source is controllable (e.g., in wireless power transmission
scenarios). In any case, the interest of studying the offline ap-
proach is that it provides analytical and intuitive solutions and
an upper bound on the performance of any online algorithm.
Therefore, the derivation of the optimal offline solution is a
good first step to gain insight for the later design and evalua-
tion of the online transmission strategy, which is the one that
can potentially be deployed in practical set ups. In this context,
[6]–[11] considered a point-to-point communication with an
energy harvesting transmitter. The Directional Water-Filling
(DWF), i.e., the power allocation strategy that maximizes the
mutual information by a deadline was derived in [9] as1

Pn =
(
Wj − 1

hn

)+
, ∀n ∈ τj , (1)

where n is the channel use index, hn is the channel gain, τj is
a set that contains the consecutive channel accesses between
two energy arrivals and Wj is the water level associated to
τj . The difference between CWF and DWF is that in the
latter the water level changes over time.

The result in (1) assumes that the radiated power is the
unique source of energy consumption. This is a reasonable
assumption when the link distance is large since the radiated
power dominates over other sources of energy consumption.
However, when energy efficient network topologies are con-
sidered, the trend is to reduce the transmission range by
implementing multiple hops and, then, the other sources of
energy consumption at the transmitter become relevant and
may even dominate over the radiated power [12], [13]. A more
realistic power consumption model is given in [1], [13], [14],
where the total consumed power at the n-th channel access is
modeled as

P (total)
n =


ξ

η
Pn + Pc if Pn > 0,

Po if Pn = 0,

(2)

1Notation: Matrices and vectors are denoted by upper and lower case bold
letters, respectively. [v]n denotes the n-th component of the vector v. [A]pq
is the component in the p-th row and q-th column of the matrix A. � denotes
the component wise “smaller than or equal to” inequality. Finally, (x)+ =
max{0, x}.
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Table I
STATE OF THE ART: CIRCUITRY ENERGY CONSUMPTION IN WIRELESS ENERGY HARVESTING NODES (WEHNS)

Continuous channel model Discrete channel model
Static Temporal fading Temporal fading

SISO [1] [2] [3], [4]
Frequency/space [1]: Circuitry cost per temporal access only This paper: Circuitry cost per
parallel channels temporal and frequency/spatial accesses

where Pn is the transmission radiated power; Pc is the
power consumption of the different components of the Radio
Frequency (RF) chain; ξ and η are the power amplifier output
back-off and drain efficiency, respectively; and Po models the
circuitry consumption when the transmitter is silent, which is
much smaller than Pc and it is commonly assumed to be zero.

In [15] and [16], the authors considered non-harvesting
wireless nodes, analyzed how CWF is modified when the
circuitry energy consumption is considered and showed that
bursty transmission achieves capacity.

The works that study the impact of the circuitry energy
consumption in point-to-point links with WEHNs are listed
in Table I. In [1] and [2], a continuous-time channel
was considered: the authors of [2] studied a Single-Input
Single-Output (SISO) channel and showed that the mutual
information maximization problem is convex when the channel
is continuous in time; whereas in [1], a system composed by
multiple parallel Additive White Gaussian Noise (AWGN)
channels was studied, but the channel was considered static
along time, which substantially simplifies the analysis since,
when the channel is static, there is no tradeoff between channel
gain and energy availability (see Section II). Additionally, Xu
et al. [1] considered a power consumption model that has a
fixed cost for activating the transmitter in a given time instant
independently of the number of active parallel channels.
Due to this, their model is only applicable to a limited set
of transmitter architectures as it is argued in Section II. In
opposition to [1] and [2], we consider a WEHN operating in a
discrete-time channel, composed of multiple parallel streams
at each channel use, and that is affected by temporal and spa-
tial/frequency fading. The fact of considering a discrete-time
channel model is key because it is the actual channel model
that is being used in current digital communication systems,
e.g., in Orthogonal Frequency Division Multiplexing (OFDM).
As it is later shown, the discreteness of the channel and the
temporal variations of the channel coefficients substantially
complicate the problem since it is no longer convex. In prior
preliminary works [3], [4], we studied a simplified scenario
where each channel use is modeled as a SISO AWGN
channel. In contrast, the major contributions of this paper are:
• Generalizing the power consumption model in (2) to

consider multiple parallel AWGN channels and showing
its applicability in practical transmitter architectures.

• Studying the resource allocation that maximizes the mu-
tual information over N channel accesses when there
are multiple parallel data streams by jointly considering
energy harvesting and the different sources of energy
consumption at the transmitter.

• Deriving an upper bound of the achievable mutual in-
formation and two asymptotically optimal solutions of

the offline maximization problem, i.e., solutions that tend
to the optimal when the number of streams or channel
accesses grows without bound.

• Proposing an intuitive graphical representation of the
asymptotically optimal offline solution, named Boxed
Water-Flowing.

• Implementing an online algorithm that achieves a mutual
information that is close to the one achieved by the
optimal offline solution.

• Evaluating and comparing the computational complexi-
ties of the proposed strategies.

This paper is structured as follows. In Section II, the system
model and problem formulation are presented. The offline
resource allocation problem is studied in Section III from two
perspectives: integer relaxation (Section III-A) and through
the dual problem (Section III-B). A graphical interpretation of
the offline solution is presented in Section III-C. In Section
IV, the online solution is presented. The mutual information
and computational requirements of the different algorithms
are evaluated in Section V. Finally, the paper is concluded
in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a WEHN transmitting in a point-to-point link in
which, at each channel access, the communication channel can
be decomposed into a set of K parallel non-interfering streams
by performing some joint signal processing at the transmitter
and receiver, e.g., by using OFDM or by diagonalizing a
Multiple-Input Multiple-Output (MIMO) channel. Let yk,n be
the channel output of the k-th stream at the n-th channel
access, i.e., yk,n =

√
Pk,ngk,nxk,n +wk,n, where xk,n is the

input symbol with E{|xk,n|2} = 1, Pk,n is the radiated power,
gk,n is the complex channel response with hk,n = |gk,n|2
being the channel power gain, and wk,n ∼ CN(0, 1) is the
noise. First, in Section III, we assume that the transmitter
has non-causal knowledge of all the channel gains. This
assumption is removed in Section IV for the design of the
online algorithm.

The energy harvesting process at the transmitter is com-
monly characterized by a packetized model, e.g., [7], [9],
where the node is able to collect a packet of energy containing
Ej Joules at the beginning of the ej-th channel access2 for
some ej ∈ [1, N ]. J denotes the total number of harvested
energy packets. The initial battery level of the node E1 is mod-
eled as the first harvested packet, thus, e1 = 1 and the battery

2We assume that the transmission strategy can only be changed in a channel
use basis. Thus, we can consider that, independently of the energy packet
arrival instant, it becomes available for the transmitter at the beginning of the
following channel use.
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Figure 1. Temporal representation of energy arrivals.

Figure 2. Example of MIMO and V-BLAST (A = IK ) transmitter
architectures.

capacity is assumed to be infinite. We use the term epoch τj ,
j = 1, . . . , J , to denote the set of channel accesses between
two energy arrivals, i.e., τj = {ej , ej + 1, . . . , ej+1 − 1} with
eJ+1 = N + 1 so that the last epoch is well defined. A
temporal representation is given in Figure 1. Throughout the
paper, j ∈ [1, J ] is the epoch index, n ∈ [1, N ] denotes the
channel access index, and k ∈ [1,K] is the stream index.

The power consumption at the transmitter depends on its
hardware and software architecture. As we focus on archi-
tectures with multiple data streams, it naturally follows that
the transmitter may experience either a power consumption
associated with the channel access activation, Pc, or a power
consumption associated with the activation of each of the
streams, Pd, or both simultaneously. In this context, we
propose a power consumption model that, as shown later,
can be applied to several transmitter architectures, which is a
generalization of (2) to scenarios in which there exist several
parallel streams. The total consumed power at the n-th channel
access is modeled as:

P (total)
n = (1−ρn)Po+ρn

(
Pc +

K∑
k=1

(
ξ

η
Pk,n + ψk,nPd

))
,

where ψk,n is the stream indicator variable that denotes
whether a certain stream is active, i.e., ψk,n = 1 if Pk,n > 0
or ψk,n = 0 if Pk,n = 0. Similarly, the channel access
indicator variable, ρn, denotes when a certain channel access
is active, i.e., ρn = 1 if

∑
k Pk,n > 0 or ρn = 0 if∑

k Pk,n = 0. The constants Po, Pc and Pd model the
idle state power consumption and the power consumptions
associated with the channel access and stream activation,
respectively. These constants have to accurately capture the
different sources of energy consumption and are dependent on
the transmitter hardware/software architecture. For example,
consider the following architectures:

MIMO linear precoding: The information of the different
streams is linearly processed by a precoding matrix, A, and

transmitted over the different antennas (see Figure 2). If the
channel access is active, the precoding operation usually3

activates all the RF chains at the transmitter independently
of the number of active streams. Thus, Pc would account for
the circuitry power consumption of all RF chains, whereas, the
number of active streams affects on the number of products
and summations required for the linear precoding. In this
context, Pd models the power consumption at the base band
processing boards of one of these products and additions.

V-BLAST: The information of the different streams
is directly sent over the channel without performing any
linear precoding, i.e., in Figure 2, set A = IK . In this
architecture, the number of active RF chains is equal to the
number of active streams and thus Pd accounts for the power
consumption of each RF chain and Pc = 0 since there is no
additional cost per channel access.

OFDM: The number of operations required for the Inverse
Fast Fourier Transform (IFFT) depends on the number of
active streams. Thus, the cost per operation of the IFFT can
be modeled through Pd and the cost of performing the serial
to parallel conversion is mapped in Pc.

As mentioned in the introduction, the previous results for
multi-stream communications with WEHNs [1], only consid-
ered architectures in which Pc 6= 0 and Pd = 0. Moreover, the
results in [1] only apply to time-static channels. Thus, we ex-
tend the results obtained in [1] to a broader class of transmitter
architectures and to consider time-varying fading channels.

Let P = [p1, . . . ,pN ] and Ψ = [ψ1, . . . ,ψN ] be the
K ×N matrices that contain the radiated powers and stream
indicator variables, where pn = [P1,n, . . . , PK,n]T and ψn =
[ψ1,n, . . . , ψK,n]T stack the transmission powers and stream
indicator variables of the different streams at the n-th channel
access. Similarly, ρ = [ρ1, . . . , ρN ] is a 1 × N vector that
contains the channel access indicator variables. The optimal
resource allocation must fulfill the ECCs, which impose that
the energy spent by the end of the `-th epoch, ` = 1, . . . , J ,

φ`(P,ρ,Ψ) = Ts
∑̀
j=1

∑
n∈τj

(
Pcρn +

K∑
k=1

(Pk,n + Pdψk,n)

)
,

(3)
cannot be greater than the energy harvested up to the beginning
of the epoch, β` =

∑`
j=1Ej . To simplify the problem notation

and without loss of generality we have assigned ξ/η = 1 and
Po = 0 (note that we can scale the constants Pc, Pd, and β`
of the ECCs to have ξ/η = 1 and Po = 0).4

Assuming Gaussian distributed input symbols, the mutual
information at the k-th stream of the n-th channel use is
log(1 + hk,nPk,n) and the accumulated mutual information is
I(P,ρ,Ψ) =

∑J
j=1

∑
n∈τj ρn

∑K
k=1 ψk,nlog(1 + hk,nPk,n).

The goal of this paper is to derive the resource allocation P,

3Excluding some specific precoder designs such as A = IK , the precoder
is generally designed to transmit through the channel eigenmodes and as a
result, if one stream is active, all the elements at the output of the precoding
matrix are “active” (different than zero).

4We assume that the node has enough energy to at least be kept in the idle
state during the whole transmission duration, i.e., Ts

∑`
j=1

∑
n∈τj Po ≤∑`

j=1 Ej ,∀` = 1, . . . , J, as otherwise the problem would not have a feasible
solution.
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ρ, and Ψ that maximizes the mutual information I(P,ρ,Ψ)
while satisfying the ECCs,

I? = max
P,ρ,Ψ∈F

I(P,ρ,Ψ) (4a)

subject to φ(P,ρ,Ψ) � β, (4b)

where φ(P,ρ,Ψ) = [φ1(P,ρ,Ψ), . . . , φJ(P,ρ,Ψ)]T and
β = [β1, . . . , βJ ]T. The feasible set of the optimization vari-
ables is F = {Pk,n ≥ 0, ρn ∈ {0, 1}, ψk,n ∈ {0, 1},∀k, n}.5
To simplify the notation and without loss of generality, the
remainder of the paper assumes that, within a given time
index n, the streams are sorted with non-increasing channel
gains, i.e., h1,n ≥ h2,n · · · ≥ hK,n, ∀n.

Note that (4) is not a convex optimization problem as
the feasible set F is not a convex set and the objective
function is not jointly convex in the optimization variables.
The complexity of (4) lies in the selection of the active channel
accesses and streams (ρ and Ψ), because once ρ and Ψ are
fixed, the optimal power allocation in the active streams is
given by the DWF in (1) [3].

The optimal stream and channel access selection depends
on the tradeoff between the magnitude of the channel gain
and the energy availability and is a hard combinatorial
problem [3], [4]. For instance, assuming that we knew in
advance that a single channel access and stream is active, then
we could wonder which would be the pair of indices (k, n)
among the KN possibilities that provides the highest mutual
information: the one with the best gain or some other pair
that has the highest energy availability but worse gain? The
answer depends on the specific values of the channel gains
and the energy arrival distribution and, hence, the derivation
of the optimal solution to (4) is not straight forward.

Remark 1. If the transmitter does not have energy harvesting
capabilities (which means that it is only powered by the initial
energy in the battery), then the presented system model still
applies by particularizing J = 1. To the best of our knowledge,
even for the particular case J = 1, this paper is the first
work to derive an asymptotically optimal power allocation for
battery operated nodes in a fading channel by considering both
the channel access and stream activation costs (Pc and Pd).

Remark 2. The system model and problem formulation could
also include: (i) instantaneous mask constraints on the trans-
mission power; and (ii) concave non-linearities of the RF
amplifier.6 Although the structure of the solution and its
graphical interpretation depend on the considered scenario, the
numerical algorithms proposed in the remaining of the paper
can be trivially extended to include (i) and (ii).

In this context, in the following section we study two differ-
ent offline feasible solutions that perform close to I?, whereas,

5Note that, by using non-continuous indicator functions on the ECCs, one
could formulate an equivalent problem to (4) in which P is the unique
optimization variable. In this paper, we have introduced the binary variables
ρ and Ψ, to avoid the discontinuities associated to the indicator functions.

6The objective function should be modified to∑J
j=1

∑
n∈τj ρn

∑K
k=1 ψk,nlog(1 + hk,ng(Pk,n)), where g(·) is

the non-linear concave function that returns the output power at the RF
amplifier as a function of the input power. Thus, the design variable would
be the input power at the RF amplifier.

in Section IV we propose an online resource allocation.

III. OFFLINE RESOURCE ALLOCATION

In this section, we analyze the offline resource allocation
from two different perspectives, namely, integer relaxation
(Section III-A) and duality (Section III-B). In Section III-C, we
present a graphical interpretation of the asymptotically optimal
offline resource allocation.

A. Integer relaxation

In this section, we relax the original problem in (4) and
formulate a similar convex optimization problem whose so-
lution upper bounds the solution to (4). Moreover, from the
optimal resource allocation of the relaxed problem, we derive
a feasible solution to the original problem in (4) whose mutual
information is close to I?.

In this context, we have modified the objective
function in (4) so that the new objective function, i.e.,
Ĩ(P,Ψ) =

∑J
j=1

∑
n∈τj

∑K
k=1 ψk,nlog(1 + hk,nPk,n/ψk,n),

is jointly concave in the optimization variables and we have
relaxed the binary constraint in the indicator variables, i.e.,
letting ρn and ψk,n to be in the interval [0, 1].7 The relaxed
problem to (4) is mathematically expressed as

Ĩ? = max
P,ρ,Ψ

Ĩ(P,Ψ) (5a)

subject to φ(P,ρ,Ψ) � β, (5b)
ψk,n ≤ ρn, ∀k, n, (5c)

ψk,n ≤ 1, −ψk,n ≤ 0, ∀k, n, (5d)
−Pk,n ≤ 0, ∀k, n. (5e)

Note that in order to have a jointly concave objective
function, we have removed the dependency on ρn from the
objective function; however, we have included the channel
access activation constraint in (5c) to ensure that the channel
access indicator variable is at least as large as the pointwise
maximum of the stream indicator variables. Therefore,
with (5c), we force that if any stream is active, ψk,n > 0,
the associated channel access circuitry consumption ρnPc
is correctly accounted for in the ECCs in (5b), where
φ`(P,ρ,Ψ) is defined in (3). In (5d) and (5e), we ensure
that ψk,n and Pk,n lie in their respective feasible sets. We
do not have any constraint in the feasible set of ρn; however,
note that the value of the optimal ρn is always in [0, 1] since,
in order to reduce the term ρnPc in the ECCs in (5b) (see
(3)), the optimal ρn takes the minimum allowed value in
(5c) that is the pointwise maximum of the optimal ψk,n,
i.e., ρ̃?n = max{ψ̃?1,n, . . . , ψ̃?K,n}, therefore, ρ̃?n is also in
the interval [0, 1]. Moreover, observe that if ψk,n = {0, 1}
and ρn = {0, 1}, ∀k, n, then the value of the new objective
function Ĩ(P,Ψ) is equal to the value of the original
function I(P,ρ,Ψ). This implies that the optimal solution
to (4) is a feasible solution to (5) and, hence, the solution

7In this section, ρn can be viewed as if it represented the n-th channel
access usage fraction rather than just indicating if the channel access is “on”
or “off” and, similarly, ψk,n can be interpreted as the usage fraction of the
k-th stream.
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Table II
KKT OPTIMALITY CONDITIONS OF PROBLEM (5)

∀ k, n :
∂L̃
∂Pk,n

=
ψk,nhk,n

ψk,n + hk,nPk,n
+ ξk,n − Ts

J∑
`=j

λ` = 0. (6a)

∀ k, n :
∂L̃
∂ψk,n

= log

(
1 +

hk,nPk,n
ψk,n

)
− hk,nPk,n
ψk,n + hk,nPk,n

− Ts
J∑
`=j

λ`Pd − µk,n − η̌k,n + η̂k,n = 0. (6b)

∀ n :
∂L̃
∂ρn

= −Ts
J∑
`=j

λ`Pc +

K∑
k=1

µk,n = 0. (6c)

∀ ` = 1, . . . , J : λ`(φ`(P,ρ,Ψ)− β`) = 0. (6d)

∀ k, n : ξk,nPk,n = 0, (6e) η̂k,nψk,n = 0, (6f) η̌k,n(ψk,n − 1) = 0, (6g) µk,n(ψk,n − ρn) = 0. (6h)

∀ ` = 1, . . . , J, ∀ k, n : λ` ≥ 0, ξk,n ≥ 0, η̂k,n ≥ 0, η̌k,n ≥ 0, µk,n ≥ 0. (6i)

to (5) upper-bounds the solution to (4). The Lagrangian
of (5) is L̃ = Ĩ(P,Ψ) −

∑J
`=1 λ`(φ`(P,ρ,Ψ) − β`) +∑J

j=1

∑
n∈τj

∑K
k=1−µk,n(ψk,n − ρn) − η̌k,n(ψk,n − 1) +

η̂k,nψk,n + ξk,nPk,n, where λ` and µk,n are the Lagrange
multipliers associated with the ECCs and the channel
access activation constraints, respectively; η̂k,n, η̌k,n are the
multipliers associated with the feasible set of ψk,n; and ξk,n
is the multiplier associated with the feasible set of Pk,n.

Since Ĩ(P,Ψ) is jointly concave (it is easy to check that its
Hessian matrix is negative semidefinite) and the constraints are
affine, (5) is a convex optimization problem and can be solved
by, e.g., interior point methods [17]. In the following lines,
we study the KKT sufficient optimality conditions, which are
given in Table II, to gain some knowledge on the structure of
the optimal solution to (5). This structural knowledge of the
solution is later used in Section III-C to devise the graphical
interpretation of the asymptotically optimal solution and in
Section IV to design the online resource allocation algorithm.
From (6a), we obtain that

Pk,n = ψk,n

(
1

−ξk,n + Ts
∑J
`=j λ`

− h−1k,n

)
= ψk,n

(
Wj − h−1k,n

)+
, (7)

where Wj = (Ts
∑J
`=j λ`)

−1 is the j-th epoch water level that
is equal for all the active streams contained in some channel
access n ∈ τj and where we have used the slackness condition
in (6e).

The j-th epoch water level, Wj , is related to the available
energy at the transmitter through the dependence with the
Lagrange multipliers λ`, ` = j, . . . , J . As it is later shown in
Lemma 1, when the available energy is very low, then Wj → 0
to satisfy the ECCs, the n-th channel access is “off” (ρn = 0),
and the mutual information of the n-th channel access is zero.
Then, if the available energy grows, Wj increases and there
is a point that we refer to as the n-th channel access cutoff
water level, Ŵn(M?

n), in which the obtained reward in terms
of mutual information becomes higher than the activation cost.

As it is shown next, Ŵn(M?
n) depends on Pc, Pd, the number

of streams that contribute to the channel access activation,
M?
n ∈ [1,K], which is a priori unknown, and the channel

gains of these streams. Thus, when the available energy and the
other system parameters are such that Wj = Ŵn(M?

n), the n-
th channel access becomes “partially active”, i.e., ρn ∈ (0, 1).
Finally, if the available energy is very high, the channel access
is completely active, i.e., ρn = 1. In the following lemma, we
derive the expression of the channel access cutoff water level
as a function of M?

n and later, in Proposition 1, we propose a
low complexity method to obtain M?

n.

Lemma 1. The optimal channel access indicator variable
satisfies that

ρ̃?n =


1 if Wj > Ŵn(M?

n),

(0, 1) if Wj = Ŵn(M?
n),

0 if Wj < Ŵn(M?
n),

n ∈ τj ,

where the n-th channel access cutoff water level reads as

Ŵn(Mn) =
1
Mn

(Pc +MnPd −
∑Mn

k=1 h
−1
k,n)

W0

(∏Mn
k=1 h

1
Mn
k,n

eMn
(Pc +MnPd −

∑Mn

k=1 h
−1
k,n)

) ,
(8)

and depends on Pc, Pd, the number of streams that contribute
to the channel access activation Mn and on the channel gains
of these streams. W0(·) is the positive branch of the Lambert
function [18]. Thus, the optimal resource allocation of the
streams k ∈ [1,M?

n] satisfies that

P̃ ?k,n =


(
Wj − h−1k,n

)
if Wj > Ŵn(M?

n),

ψ̃?k,n

(
Wj − h−1k,n

)
if Wj = Ŵn(M?

n),

0 if Wj < Ŵn(M?
n),

ψ̃?k,n =


1 if Wj > Ŵn(M?

n),

(0, 1) if Wj = Ŵn(M?
n),

0 if Wj < Ŵn(M?
n),

n ∈ τj .
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Proof: See Appendix A-1.
Remark 3. Ŵn(Mn) increases with both Pc and Pd, and
decreases with hk,n, ∀k ∈ [1,Mn] (the proof follows from
Lemma 4.b in Appendix B).

Note that, in Lemma 1, we have used that the M?
n streams

that contribute to the channel access activation are the ones
with the best channel gains, i.e., h1,n, . . . , hM?

n,n
, because

these streams are the ones that contribute the most to the
objective function. Intuitively, the M?

n streams that become
active first share the cost of using the channel access Pc.
Once the channel access is being used, the remaining streams,
k > M?

n, may become active by just paying their own stream
circuitry cost, Pd. As a result of this, the streams k ∈ (M?

n,K]
experience different activation water levels as shown in the
following lemma:

Lemma 2. The optimal resource allocation of the streams
k ∈ (M?

n,K] satisfies that

P̃ ?k,n =


(
Wj − h−1k,n

)
if Wj > W̄k,n,

ψ̃?k,n

(
Wj − h−1k,n

)
if Wj = W̄k,n,

0 if Wj < W̄k,n,

ψ̃?k,n =


1 if Wj > W̄k,n,

(0, 1) if Wj = W̄k,n,

0 if Wj < W̄k,n,

n ∈ τj ,

where the k-th stream cutoff water level at the n-th channel
use reads as

W̄k,n =
Pd − h−1k,n

W0

(
Pdhk,n−1

e

) , k ∈ (M?
n,K], (9)

and depends on the stream circuitry consumption, Pd, and the
stream gain hk,n.

Proof: See Appendix A-2.
Remark 4. When Pd → 0, the cutoff water level in DWF
is recovered, i.e., W̄k,n = h−1k,n (see (1)). Moreover, W̄k,n

increases with Pd and decreases with hk,n (this can be proved
similarly as in the proof of Lemma 4.b in Appendix B).

Note that for coherence, W̄k,n > Ŵn(M?
n), ∀k > M?

n,
which implies that the streams with higher gains are activated
first. However, from the expressions (8) and (9), this is not
obvious. Indeed, if W̄k′,n < Ŵn(M?

n) for some k′ > M?
n, then

the stream k′ would become active before the channel access
was active, which is a logical contradiction. If such a situation
happens, the stream k′ should also contribute to activate the
channel access, which means that actually M?

n is not the
optimal number of streams to activate the channel access.
Since the mutual information of the n-th channel access is zero
until the channel access becomes active, the optimal number
of active streams at the channel access cutoff water level is the
one that allows to activate the channel access with the lowest
water level, i.e., M?

n = arg minMn
Ŵn(Mn). To find M?

n,
an exhaustive search over Mn could be performed. However,
this may require a high computational complexity (especially
when K � 1) that can be reduced by means of the following

Algorithm 1 Close to optimal solution to (4) from integer
relaxation
Input: {P̃?, ρ̃?, Ψ̃?} and γ ∈ (0, 1)
1: Let S be the set that contain the partially used streams, i.e., S =
{{k, n}|[ψ̃?]k,n ∈ (0, 1)} and let S1 = {{k, n}|[Ψ̃?

]k,n ∈ [γ, 1)}
and S0 = {{k, n}|[Ψ̃?

]k,n ∈ (0, γ)} be a partition of S, where γ is a
constant in (0, 1).

2: if |S| = 0 then
3: {P̂, ρ̂, Ψ̂} = {P̃?, ρ̃?, Ψ̃?}

. {P̂, ρ̂, Ψ̂} is the optimal solution to (4).
4: else
5: [P̂]k,n = [P̃?]k,n, [Ψ̂]k,n = [Ψ̃

?
]k,n, ∀{k, n} /∈ S.

. Assign the resource allocation in {P̃?, ρ̃?, Ψ̃?} to all the
streams not contained in S.

6: [P̂]k,n = [P̃?]k,n and [Ψ̂]k,n = 1, ∀{k, n} ∈ S1;
[P̂]k,n = 0 and [Ψ̂]k,n = 0, ∀{k, n} ∈ S0.

. Round up or down the stream indicator variables.
7: [ρ̂]n = maxk[Ψ̂]k,n, ∀n = 1, . . . , N .

. Compute the channel access indicator variables.
8: Ensure the feasibility of {P̂, ρ̂, Ψ̂} by scaling down the transmission

radiated power of the channel accesses that produce some ECC violation.
9: end if

10: return {P̂, ρ̂, Ψ̂}

procedure:

Proposition 1. The n-th channel access cutoff water level,
Ŵn(M?

n), can be found by performing a forward search over
Mn, i.e.,

1) Initially, set Mn := 1.
2) Compute Ŵn(Mn) and W̄Mn+1,n.
3) Check if Ŵn(Mn) < W̄Mn+1,n: if the condition is true,

then M?
n = Mn and the algorithm ends; otherwise,

increase Mn, i.e., Mn := Mn + 1 and go back to step
2.

Proof: See Appendix B.
Until now, we have derived Lemmas 1, 2 and Proposition

1 to gain some knowledge on the structure of the optimal
solution to (5). As mentioned before, since (5) is a convex
optimization problem, the resource allocation that maximizes
(5), {P̃?, ρ̃?, Ψ̃

?
}, can be found by, e.g., interior point meth-

ods [17]. In Algorithm 1, we propose a procedure to derive
a feasible resource allocation of (4), {P̂, ρ̂, Ψ̂}, from the
solution to (5), {P̃?, ρ̃?, Ψ̃

?
}, whose mutual information,

Î = I(P̂, ρ̂, Ψ̂), performs close to I?, as argued in the
following lines.

Note that in general Î ≤ I? ≤ Ĩ?. However, these
inequalities are tight (Î = I? = Ĩ?), when, in Algorithm 1,
we have that S = {∅}, or, equivalently, if Wj 6= Ŵn(M?

n)
and Wj 6= W̄k,n, ∀n ∈ τj ,∀j,∀k > M?

n. This means
that {P̃?, ρ̃?, Ψ̃

?
} is the optimal resource allocation to (4).

Alternatively, when S 6= {∅}, we know that the optimality
gap, i.e., I? − Î, is at most Ĩ? − Î and is closely related to
the cardinality of S. Since for most of the streams and channel
accesses the water level is different to the cutoff water level,
we know that |S| � KN , which implies that the optimal
resource allocation to (5) is used in the majority (KN − |S|)
of the streams. This discussion is later continued in Remark 7
once the graphical representation of the asymptotically optimal
solution is presented.

Remark 5. Observe that {P̃?, ρ̃?, Ψ̃
?
} is the optimal solution
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to the time continuous channel problem. Hence, if we particu-
larize K = 1, then our solution reduces to the directional glue
pouring algorithm introduced in [2].

In the following section, we solve the dual problem to (4).
Interestingly, the concept of the cutoff water level also appears
when solving the dual problem, which is indeed surprising due
to the great difference between the relaxed and dual problem
approaches.

B. Duality

In this section, we study the Lagrange dual problem to (4)
and show that, even though (4) is not a convex optimization
problem, the duality gap tends asymptotically to zero as the
number of streams or channel accesses per epoch grows
without bound.

The Lagrangian of (4) is L(P,ρ,Ψ,λ) = I(P,ρ,Ψ) −
λT(φ(P,ρ,Ψ) − β), where λ = [λ1, . . . , λJ ]T is the dual
variable that contains the Lagrange multipliers associated
with the ECCs. The dual function is defined for λ � 0 as
g(λ) = maxP,ρ,Ψ ∈ F L(P,ρ,Ψ,λ) (see [17]) and yields to
upper bounds to the maximum achievable mutual information
I? obtained by maximizing the primal problem (4), i.e., I? ≤
g(λ). The Lagrange dual problem, D? = minλ�0 g(λ), is a
convex program that determines the best upper bound on I? as
I? ≤ D? ≤ g(λ). The duality gap is defined as D?−I? and it
is zero if Slater qualification constraints are satisfied. However,
in our problem the Slater qualification constraints are not
satisfied as F is not a convex set and, therefore, the duality gap
might not be zero. The time-sharing condition introduced in
[19] provides a condition under which the duality gap is zero
even though the primal optimization problem is not convex.
In the following proposition, we demonstrate that the time-
sharing condition is asymptotically satisfied as the number of
streams or channel accesses per epoch grows without bound.

Proposition 2. The time-sharing condition is asymptotically
satisfied when, within each epoch, every channel realization
is observed a sufficiently large number of times.8

Proof: See Appendix C.
Thanks to the previous proposition, when the number of

streams or channel accesses per epoch is high and the channel
variations in one of the dimensions (time, space or frequency)
are slow, the duality gap tends to zero and, consequently, the
solution to D? asymptotically tends to I?. At this stage, it is
important to highlight that, in practice, it is not necessary that
the number of streams or channel accesses per epoch grows
without bound; a small duality gap is already observed for

8The time sharing condition has been broadly used in different non-
harvesting scenarios where the nodes have to satisfy a single sum-power
constraint. In such non-harvesting scenarios, the requirement for the asymp-
totic fulfillment of the time sharing condition is that every channel realization
must be observed a large number of times [19]. When energy harvesting is
considered, the problem is constrained by a set of ECCs and the time-sharing
condition is asymptotically satisfied if, within each epoch, every channel
realization is observed a sufficiently large number of times. When K = 1, it
is necessary that every channel realization is observed in a sufficiently large
number of channel accesses. This situation happens, for instance, when the
number of channel accesses per epoch is large, i.e., ej+1− ej � 1, ∀j, and
Tc � Ts. Whereas when K > 1, this condition is more likely to be fulfilled
due to the additional (space or frequency) dimension.

Algorithm 2 Projected subgradient
Initialization:

Set q := 0 and initialize λ(0) to any value such that λ(0) � 0.
For all n = 1, . . . , N , compute Ŵn(M?

n) according to (8) with M?
n

obtained from the forward search in Proposition 1.
Step 1: If a termination condition is met, the algorithm stops.
Step 2: Compute the optimal primal variables at the q-th iteration that are

[P(q),ρ(q),Ψ(q)] = arg maxP,ρ,Ψ∈F L(P,ρ,Ψ,λ(q))

by means of Algorithm 3 that requires λ(q) and Ŵn(M?
n).

Step 3: Update the dual variable following the subgradient, i.e.,
[λ(q+1)]j = λ

(q+1)
j , j = 1, . . . , J , with

λ
(q+1)
j =

(
λ
(q)
j − s

(q)
(
βj − φj(P(q),ρ(q),Ψ(q))

))+
.

Step 4: Set q := q + 1 and go to Step 1.

small values of these magnitudes as verified in the simulations
results (see Section V) where K = 8 and the mean number of
channel accesses per epoch is 5. This behavior was previously
observed in scenarios without energy harvesting in, e.g., [19].

To solve the dual problem we have implemented the pro-
jected subgradient method [20], presented in Algorithm 2,
that guarantees convergence if the updating step size s(q)

is correctly chosen. In this context, we have used s(q) =
Q/(
√
q||β−φ(P(q),ρ(q),Ψ(q))||) that satisfies the diminish-

ing conditions s(q) ≥ 0, limq→∞ s(q) = 0 and
∑∞
q=1 s

(q) =∞
[20], where Q > 0 is an arbitrary constant. When the algorithm
converges to the optimal dual variable, λ?, all the ECCs are
satisfied, which is ensured by the termination condition in Step
1. In the next subsection, we explain Step 2 of Algorithm 2,
i.e., how to obtain the primal variables P(q), ρ(q) and Ψ(q) at
the q-th iteration of the subgradient method.

1) Maximizing the Lagrangian for a given λ(q): At every
iteration of the subgradient algorithm, it is necessary to
compute the optimal primal variables given the dual vari-
ables of the iteration, i.e., λ(q). From the expression of
g(λ), the optimal primal variables at the q-th iteration are
[P(q),ρ(q),Ψ(q)] = arg maxP,ρ,Ψ∈F L(P,ρ,Ψ,λ(q)). Note
that the maximization of the Lagrangian is not a convex
problem as F is not a convex set. To solve the maximization
of the Lagrangian we apply decomposition as shown in (10).

We have reordered the sums over j and ` to decompose
the Lagrangian maximization in N independent maximiza-
tion problems, one for each channel use, where the objec-
tive function is gn(pn, ρn,ψn) = ρn

(∑K
k=1 ψk,nlog(1 +

hk,nPk,n)
)
−
(
ρnPc +

∑K
k=1 Pk,n + ψk,nPd

)
/W

(q)
j with

W
(q)
j = (Ts

∑J
`=j λ

(q)
` )−1 being the water level of the j-th

epoch at the q-th iteration.
Note that maxpn,ρn,ψn∈F gn(pn, ρn,ψn) is still a non-

convex problem due to the binary variables. However, after
applying decomposition, it is feasible to perform an exhaustive
search over ρn as there are only two possibilities either ρn = 0
or ρn = 1. Thus, we can solve two separated maximization
problems and select the pointwise maximum of the two, i.e.,

max
pn,ρn,ψn∈F

gn(pn, ρn,ψn) = (11)

max
{

max
pn,ψn∈F

gn(pn, 0,ψn)︸ ︷︷ ︸
(SP 1)

, max
pn,ψn∈F

gn(pn, 1,ψn)︸ ︷︷ ︸
(SP 2)

}
.
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maxP,ρ,Ψ∈F L(P,ρ,Ψ,λ(q)) = max
P,ρ,Ψ∈F

I(P,ρ,Ψ)−
J∑
`=1

λ
(q)
`

−β` + Ts
∑̀
j=1

∑
n∈τj

(
ρnPc +

K∑
k=1

Pk,n + ψk,nPd

)
=

J∑
`=1

λ
(q)
` β` + max

P,ρ,Ψ∈F

J∑
j=1

∑
n∈τj

ρn( K∑
k=1

ψk,nlog(1 + hk,nPk,n)
)
− Ts

(
ρnPc +

K∑
k=1

Pk,n + ψk,nPd
) J∑
`=j

λ
(q)
`


=

J∑
`=1

λ
(q)
` β` +

J∑
j=1

∑
n∈τj

max
pn,ρn,ψn∈F

gn(pn, ρn,ψn). (10)

Table III
OPTIMAL SOLUTION TO THE SUBPROBLEMS IN (11).

Subproblem Maximum value Optimal pn Optimal ψn
(SP 1) 0 p(SP 1)

n = 0 ψ(SP 1)
n = 0

(SP 2) − Pc

W
(q)
j

+
∑A

(q)
n

k=1

(
log(W

(q)
j hk,n) [p(SP 2)

n ]
k∈[1,A(q)

n ]
= W

(q)
j − h−1

k,n [ψ(SP 2)
n ]

k∈[1,A(q)
n ]

= 1

−1 + 1

W
(q)
j hk,n

− Pd

W
(q)
j

)
[p(SP 2)
n ]

k∈(A(q)
n ,K]

= 0 [ψ(SP 2)
n ]

k∈(A(q)
n ,K]

= 0

Table IV
OPTIMAL SOLUTION TO THE SUBPROBLEMS IN (12).

Subproblem Maximum value Optimal Pk,n
(SP 2.1) 0 P (SP 2.2)

k,n = 0

(SP 2.2) log(W
(q)
j hk,n)− 1 + 1

W
(q)
j hk,n

− Pd

W
(q)
j

P (SP 2.2)
k,n = W

(q)
j − h−1

k,n

These two problems are solved in the following lines and
Table III summarizes the obtained results.

Solution to (SP 1): By observing the objective function of
(SP 1), i.e.,

gn(pn, 0,ψn) = −
∑K
k=1 Pk,n + ψk,nPd

W
(q)
j

and by noting that W (q)
j is positive, it is straight-forward to

show that the optimal transmitted powers and stream indicator
variables of the n-th channel access are p(SP 1)

n = ψ(SP 1)
n = 0

and the maximum value of the objective function is 0, as
expected since ρn = 0.

Solution to (SP 2): To solve the second subproblem, which
is nonconvex due to the stream indicator variables, we can
again apply decomposition as follows:

max
pn,ψn∈F

gn(pn, 1,ψn) =

− Pc

W
(q)
j

+

K∑
k=1

max
Pk,n,ψk,n∈F

gk,n(Pk,n, ψk,n),

where gk,n(Pk,n, ψk,n) = ψk,nlog(1 + hk,nPk,n) − (Pk,n +

ψk,nPd)/W
(q)
j . As before, after applying decomposition, we

can perform an exhaustive search over ψk,n since there are
only two possibilities, i.e., either ψk,n = 0 or ψk,n = 1. Thus,
maxPk,n,ψk,n∈F gk,n(Pk,n, ψk,n) =

max
{

max
Pk,n∈F

gk,n(Pk,n, 0)︸ ︷︷ ︸
(SP 2.1)

, max
Pk,n∈F

gk,n(Pk,n, 1)︸ ︷︷ ︸
(SP 2.2)

}
. (12)

Now, both subproblems are convex and can be easily solved.
Table IV summarizes the maximum achieved value and the

optimal transmission power of each subproblem. Thus, the k-
th stream is active if log(W

(q)
j hk,n) − 1 + 1/(W

(q)
j hk,n) −

Pd/W
(q)
j > 0. Solving the previous equation (set M := 1,

Ŵ := W̄k,n, H1 := hk,n and P := Pd in Appendix D), we
obtain an equivalent condition for the k-th stream activation,
i.e., W (q)

j > W̄k,n, where W̄k,n is the stream cutoff water
level given in (9). Thus, after evaluating the condition W (q)

j >
W̄k,n, ∀k, we obtain the number of streams that are activated
if the channel access is active, A(q)

n .
Now that both (SP 1) and (SP 2) are solved (Ta-

ble III summarizes the obtained results), we can conclude
that the n-th channel access is active if −Pc/W (q)

j +∑A(q)
n

k=1

(
log(W

(q)
j hk,n)− 1 + 1/(W

(q)
j hk,n)− Pd/W (q)

j

)
>

0 or, equivalently, if W (q)
j > Ŵn(A

(q)
n ) (set M := A

(q)
n ,

Ŵ := Ŵn(A
(q)
n ), Hk := hk,n, and P := A

(q)
n Pd + Pc in

Appendix D to show this equivalence).9

In summary, the optimal primal variables at the q-th iteration
of the subgradient can be obtained by checking the condition
W

(q)
j > W̄k,n, ∀k, to obtain the number of streams that

would become active if the channel access becomes active,
A

(q)
n , and then checking the condition W

(q)
j > Ŵn(A

(q)
n )

to find out whether the channel access is active or not. If
the channel access is active, the optimal primal variables
at the q-th iteration of the subgradient are p

(q)
n = p

(SP2)
n ,

ψ(q)
n = ψ(SP2)

n , and ρ
(q)
n = 1. Otherwise, we have that

p
(q)
n = 0, ψ(q)

n = 0, and ρ
(q)
n = 0. However, this procedure

might be quite inefficient when the number of streams is large

9Note that when W (q)
j = W̄k,n (or W (q)

j = Ŵn(A
(q)
n )) it is equivalent

to activate or not the stream (or channel access) since both achieve the same
value of the objective function.
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Algorithm 3 Maximization of the Lagrangian
Data: λ(q), Ŵn(M?

n).
1: Compute W (q)

j = (Ts
∑J
`=j λ

(q)
` )−1, ∀j = 1, . . . , J .

. Compute the water level in all the epochs given λ(q).
2: for n ∈ τj , j := 1, . . . , J do . For all the channel accesses.
3: if W (q)

j > Ŵn(M?
n) then . Check if the channel access is active.

4: A
(q)
n := M?

n; . The channel access is active.
. Count the number of active streams.

5: for k := M?
n + 1, . . . ,K do

6: if W (q)
j > W̄k,n then

7: A
(q)
n := A

(q)
n + 1;

. The k-th stream is active at the q-th iteration water level.
8: end if
9: end for . End of counting.

10: p
(q)
n = p

(SP2)
n , ψ(q)

n = ψ
(SP2)
n , and ρ(q)n = 1;

11: else
12: p

(q)
n = 0, ψ(q)

n = 0, and ρ(q)n = 0;
. The n-th channel access is turned off.

13: end if
14: end for

(K � 1) and it can be avoided by first checking whether the
channel access is active. Note that for any value of A(q)

n the
channel access is active if and only if W (q)

j > Ŵn(M?
n).10 In

this context, the procedure in Algorithm 3 is equivalent to the
proposed above, but more computationally efficient.

Remark 6. The resource allocation obtained by solving the
dual problem is almost equal to the one obtained by means
of the relaxed problem, which is given in Lemmas 1 and 2.
The channel access or stream activation conditions obtained
in this section only differ from the ones in Lemmas 1 and 2
when the water level is equal to the stream or channel access
cutoff water levels. In this section we have seen that if Wj =
Ŵn(M?

n) or Wj = W̄k,n for k ∈ (M?
n,K], it is indifferent to

have the channel access active or inactive since both situations
achieve the same value of the dual function, whereas, in the
relaxed problem we obtained that a partial use of the channel
access or the stream is optimal, which is not allowed in the
problem considered in this section due to the binary feasible
set of the indicator variables.

C. The Boxed Water-Flowing interpretation

In this section, we provide a graphical representation of
the asymptotically optimal offline solution named the Boxed
Water-Flowing interpretation, which is depicted in Figure 3.
This interpretation follows directly from the concept of the
cutoff water levels and it generalizes the DWF interpretation in
[9] by considering the different sources of energy consumption
at the transmitter. The interpretation is the following:

1) Each stream is represented with a water-porous vessel
with base equal to Ts.11 There are two types of boxes,

10By using the definition of M?
n and Lemmas 3 and 4 in Appendix B,

it is easy to show that: if A(q)
n > M?

n, then Ŵn(M?
n) < Ŵn(A

(q)
n ) <

W̄
A

(q)
n ,n

< Wj ; and if A(q)
n < M?

n, then Ŵn(A
(q)
n ) ≥ Ŵn(M?

n) ≥
W̄M?

n,n
≥ Wj > W̄

A
(q)
n ,n

. Thus, from these inequalities, we can compare

Wj directly with Ŵn(M?
n) to determine whether the channel access is active

or not.
11The vessel boundaries are not depicted in Figure 3 for the sake of

simplicity.

namely, the channel access box and the stream box.
At the n-th channel access, the channel access box
with height Ŵn(M?

n) is shared among the streams
k = 1, . . . ,M?

n. The remaining streams, i.e., k > M?
n,

have their own stream box with height equal to W̄k,n.12

A water right-permeable material is used to separate the
different epochs.

2) Each box is filled by a solid substance up to a height
equal to h−1k,n and the boxes are closed by a lid. The cost
(in terms of water) of opening the channel access box
is (Pc + M?

nPd)Ts, whereas, the cost of opening each
stream box is PdTs.

3) The water level is progressively increased to all epochs
at the same time by adding the necessary amount of
water to each epoch. The maximum amount of water
that can be externally added at some epoch is given
by the epoch’s harvested energy (depicted with the top-
down arrows in Figure 3).13 When some epoch runs out
of water, it uses water that flows from previous epochs
(if any is available) in order to continue increasing the
water level simultaneously. When the water level reaches
the lid of some box, check if there is enough available
water (in the current and previous epochs) to pay the
cost of opening the lid and to fill in the whole box with
water: If there is enough water, remove the lid (which
means that the amount of water associated with the lid
opening cost is lost), let the water fill the box and go
back to Step 3; otherwise, keep the lid in the box and
go back to Step 3.

4) When all the available water has been poured, the
optimal power allocation is found as the amount of
water in each of the vessels divided by Ts or, equiv-
alently, as the height of the water in each vessel, i.e.,
Pk,n = (Wj − h−1k,n)+.

Interestingly, by particularizing the Boxed Water-Flowing
interpretation to the case in which there is no circuitry con-
sumption (Pc = 0 and Pd = 0), the heights of the boxes
reduce to its minimum possible value, i.e., h−1k,n, (set Pc = 0
and Pd = 0 in Lemmas 1 and 2) and the DWF graphical
interpretation in [9] is recovered.

Remark 7. Having the graphical representation of the asymp-
totically optimal solution in mind, it is easy to understand why
its performance is close to I?. In the representation shown
in Figure 3, all the streams are using the optimal resource
allocation to (5), except the second stream of τ1. After solving
the integer relaxation problem, we would have obtained that
a fractional use of this stream would be optimal. However,
as this fractional use is not allowed in a discrete channel
model, we do not know where to optimally allocate the small
remaining energy in τ1. In summary, the following arguments
justify why the optimality gap of the Boxed Water-Flowing
solution is small:

• As mentioned before, if the water level is different than

12Thus, the n-th channel access has K−M?
n stream boxes and one channel

access box.
13The amount of water corresponds to energy, whereas, the water level, i.e.,

the height of the water, corresponds to power.
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Figure 3. The Boxed Water-Flowing interpretation. For graphical simplicity, only one channel access is contained in each epoch. Figures (a) and (b) depict
steps 1 and 2 of the explanation, respectively. Figures (c) to (e) depict step 3 where the water level is progressively increased and different situations occur:
in (c), the box is opened because, by using water from τ2 and τ3, there is enough water to fill the box and pay the opening cost of the channel access box;
in (d), when the water level reaches the stream box (n = 1, k = 2) the remaining water in the first epoch is not enough to pay the opening cost and fill in
the whole box with water (see Remark 7 for a discussion on what happens with this remaining water); finally, (e) depicts the obtained resource allocation
once all the available water has been poured.

the cutoff water level of all the boxes (ρ̃?n ∈ {0, 1}
and ψ̃?k,n ∈ {0, 1} ∀k, n), then the Boxed Water-Flowing
solution is optimal and the optimality gap is zero.

• Otherwise, when some stream or slot is partially used
(ρ̃?n ∈ (0, 1) or ψ̃?k,n ∈ (0, 1)), the remaining energy in
the epoch is very small and can be allocated in any of
the active channels without having a relevant impact on
the total mutual information.

– Within each epoch, the water level can only be equal
to one specific box height, which might be present
in different channels as far as they have the same
channel gain. This means that all the channels with
different box heights (or different channel gains) are
using the optimal resource allocation to (5).

– If this specific box height is present in several
channel accesses or streams of that same epoch, then
the time sharing argument can be used to allocate
the little remaining energy in the epoch, i.e., a
fraction ρ̃?n (ψ̃?k,n) of channel access (stream) boxes
are opened and the remaining ones are kept closed.

Due to this, we can expect a small optimality gap as it is
confirmed by the conducted experimental results presented in
Section V.

IV. ONLINE RESOURCE ALLOCATION

Up to now, we have assumed that the transmitter has non-
causal knowledge of both the channel state and the energy
harvesting process, which is only a realistic assumption under
very specific scenarios, e.g., when the channel is static and the
energy source is controllable. In this section, we develop an
online algorithm, which does not require future knowledge of
neither the energy arrivals nor the channel state, that is based
on the structure of the Boxed Water-Flowing, the asymptoti-
cally optimal offline resource allocation that we derived in the
previous section.

Let Fw be the flowing window that is an input parameter
of the online algorithm that refers to the number of channel
accesses in which the water is allowed to flow, which can
be obtained by a previous training under the considered (or
measured) energy harvesting profile, and let an event, st,

denote the time index of a channel access in which either a
change in the channel state is produced or an energy packet
is harvested (or both events take place at the same time), i.e.,
st = ∪Kk=1{n|hk,n−1 6= hk,n} ∪ {n|n = ej , j = 1, . . . , J},
t = 1, . . . , T , where T ∈ [J,N ]. In this context, the proposed
online algorithm proceeds as follows: (1.) The initial energy
in the battery, E1, is allocated to the different streams
of the first Fw channel accesses according to the Boxed
Water-Flowing where the channel is expected to be static
and equal to the observed channel at the first channel use,
i.e., we assume as if hk,n = hk,1,∀n ∈ [1, Fw], ∀k. (2.)
When the transmitter detects an event, it updates the allocated
power of the channel accesses n ∈ [st,min{st +Fw − 1, N}]
by using the Boxed Water-Flowing with the remaining
energy in the battery and with the energy of the
harvested packet (if the event is an energy arrival), i.e.,∑
j|ej≤st Ej − Ts

∑st−1
n=1 (Pcρn +

∑
k (Pk,n + Pdψk,n)),

and by assuming that the channel remains constant
during the flowing window, i.e., hk,n = hk,st ,
∀n ∈ [st,min{st + Fw − 1, N}], ∀k.14 Step (2.) is
repeated until the N -th channel access is reached. A natural
requirement of WEHNs is that they operate perpetually. Note
that the proposed online algorithm can operate in an infinite
time window, i.e., N →∞, where the algorithm continuously
remains in Step (2.). The proposed online algorithm
satisfies the ECCs and, as pointed out, does not require future
information of neither the channel state nor the energy arrivals.

The mutual information that can be achieved by any online
algorithm is inherently limited by the partial knowledge of the
harvested energy and channel state. By using sophisticated
prediction algorithms, the transmitter can have an estimation
of the future harvested energy, which can be used to design
online algorithms that perform close to the optimal offline
algorithm. However, the use of these prediction algorithms has

14Note that the transmitter may stay silent in some channel accesses if
the difference between two consecutive incoming energy packets is greater
than the flowing window, ej − ej−1 > Fw . This situation rarely takes
place in practice since, in most common situations, Fw is several times the
mean number of channel accesses per epoch. For example, in the simulated
framework presented in Section V, we have obtained that Fw is 5 times the
mean number of channel accesses per epoch.
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two major drawbacks: (i) currently, there is a lack of models
and prediction algorithms of the energy harvesting process;
(ii) the computational complexity required for the prediction
has to be as low as possible since the energy spent in the
computation of the prediction cannot be used for transmission,
which directly affects the achievable mutual information. We
believe that our proposed online algorithm correctly balances
these two points since it is a low-complexity online algorithm
(the estimation of Fw can be done during the node deployment
when the node is not limited by the harvested energy) that
achieves a remarkably high fraction of the mutual information
as shown by numerical simulation in the next section.

V. SIMULATION RESULTS

By numerical simulation, in this section we evaluate
the performance of the different solutions presented in the
previous sections. We have considered a total of N = 100
channel accesses in which symbols are transmitted through
K = 8 parallel streams. The channel access duration is
Ts = 10 ms. The power consumptions associated with the
channel access and stream activation are Pc = 100 mW and
Pd = 10 mW, respectively [1]. A Rayleigh fading channel
has been considered where the channel power gain satisfies
E{hk,n} = 1. The energy harvesting process is modeled
as a compound Poisson process as done in [9], where the
packet arrival instants follow a Poisson distribution with rate
1/5 and the energy in the packets is drawn from a uniform
distribution and normalized by the total harvested energy that
varies along the x-axis of Figures 4-8.

In the setup above, Figure 4 shows the achieved mutual
information with the different presented resource allocation
strategies: Ĩ? is the upper bound obtained in Section III-A
by relaxing the feasible set of the stream and channel access
indicator variables to the integer interval [0, 1]; Î is the mu-
tual information achieved by the feasible resource allocation
{P̂, ρ̂, Ψ̂} that is obtained by projecting ρn and ψk,n into
the set {0, 1} as explained in Section III-A, where we have
used γ = 0.5 as it provides a good performance; Duality
shows the mutual information achieved by solving the dual
problem as explained in Section III-B; and Online depicts the
mutual information achieved by the online algorithm presented
in Section IV. Additionally, to assess the impact of energy
harvesting versus traditional non-harvesting nodes, we have
evaluated the performance of a virtual non-harvesting node in
which the battery of the node is replaced by a new battery
containing Ej Joules at the channel access ej . Although this
battery replacement is not feasible in practice, it allows us
to fairly compare the performance of the energy harvesting
node and the virtual battery operated node since both nodes
have the same energy levels. For the non-harvesting node, we
have designed a resource allocation strategy, named Epoch
by Epoch (EbE), that uses the Boxed Water-Flowing in each
epoch independently, i.e., water is not allowed to flow between
epochs (due to the virtual battery replacement). Finally, we
also compare our strategies with DWF & PP that uses the
DWF in (1) with an additional post processing stage that scales
the transmission powers to guarantee that the ECCs containing
the circuitry power consumption are satisfied.
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Figure 4. Achieved mutual information versus total harvested energy for the
different algorithms.

In the magnified plot in Figure 4, one can observe that the
optimality gap is almost zero since the difference between
the upper bound, Ĩ?, and the strategies Î and Duality is
almost zero (remember that I? − Î ≤ Ĩ? − Î and the
same applies for Duality). As expected, the proposed online
algorithm has performance loss in comparison to the optimal
offline solution as it has no knowledge of the future channel
state and energy arrivals. This performance loss is evaluated
in Figure 5 both in absolute (left y-axis) and relative (right
y-axis) terms. It is observed that when the harvested energy
is above 1 J, the relative performance loss is around 10%.
The Boxed Water-flowing solutions (I? and Duality) also
outperform the EbE scheme (for the battery operated node)
and the DWF & PP. It is observed that the performance of
the EbE scheme drops down for high energy levels because
water is not allowed to flow across epochs. In opposition, DWF
& PP has a very poor performance for low energy levels since
the circuitry power consumption has not been accounted for
in the optimization and plays an important role specially for
low levels of harvested energy.

Figure 6 shows the percentage of the total har-
vested energy that is expended in the circuitry, i.e.,
Ts
∑N
n=1

(
Pcρn +

∑K
k=1 Pdψk,n

)
100/βJ . It is observed that

when the harvested energy is low, the amount of energy spent
in the circuitry components is a relatively high fraction of
the total harvested energy. Additionally, when the harvested
energy is high the different strategies show a similar per-
centage of circuitry energy consumption. However, the Boxed
Water-Flowing strategies (I? and Duality) achieve a higher
mutual information as seen in Figure 4. This is because the
Boxed Water-Flowing solutions are able to activate the channel
accesses and streams that contribute the most to the mutual
information.

The computational complexities of the different strategies
are compared in Figure 7 in terms of measured execution
time versus harvested energy.15 Observe that Duality requires
a much lower execution time than Î. However, to obtain such
a good performance, the step size to update the dual variable
must be carefully selected depending on the energy harvesting
profile. In some manner, Î is more robust to variations of the

15Note that the execution time is approximately proportional to the algo-
rithmic computational complexity.
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Figure 5. Performance loss of the proposed online algorithm versus the
optimal offline solution.
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Figure 6. Percentage of the total harvested energy expended in the circuitry.

energy harvesting profile; however, at a cost of having a higher
computational complexity. Moreover, the complexity of the
proposed Online solution is remarkably low, which makes it a
good candidate solution to be implemented in wireless devices.

As pointed out in Remark 2, the Boxed Water-Flowing
algorithms in Algorithms 1 and 2, can be trivially extended to
include mask constraints. Figure 8 evaluates the impact of two
different mask constraints on the achieved mutual information
for K = 80 parallel streams where Pd = 1 mW (the
remaining system parameters are the ones mentioned above).
We have considered two different mask constraints: the first
mask, Mask 1, limits the transmission power in each stream
as Pk,n ≤ 25 mW, ∀k, n; in the second mask, Mask 2, the
transmission power of the external streams is further limited
to avoid interferences to other possible transmissions, i.e.,
Pk,n ≤ 5 mW, k ∈ [1, 20]∪ [61, 80],∀n, and Pk,n ≤ 25 mW,
∀k ∈ [21, 60],∀n. As expected, at low energy levels, the mask
constraint does not have a significant impact on the achieved
mutual information because the transmission power in the
different subchannels is low; however, when the harvested
energy increases, the mask constraint limits the transmission
power in the different subchannels and, as a result, the mutual
information is reduced.

VI. CONCLUSIONS

In this paper, we have studied the resource allocation for a
WEHN that maximizes the mutual information along N inde-
pendent channel accesses in which symbols are sent through
K parallel streams. The main contribution with respect to
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Figure 7. Mean execution time versus total harvested energy.
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Figure 8. Mutual information of the Boxed Water-Flowing solution given
different mask constraints.

previous works is that we not only account for the transmission
radiated power but we also consider the remaining sources of
energy consumption at the transmitter. First, we have studied
the offline maximization problem (where the transmitter has
full knowledge of the harvested energy and channel state)
and we have shown that it is not a convex optimization
problem. Due to this lack of convexity, we have proposed
and studied two different problems (the integer relaxation
and the dual problem) from which we have obtained two
suboptimal solutions of the offline maximization problem that
asymptotically tend to the optimal solution when the number
of channel accesses or streams per epoch is large. From these
two problems, we have obtained a common condition for
the activation of the channel access and streams, i.e., if the
epoch water level is greater than the corresponding cutoff
water level. Based on the cutoff water level concept, we have
devised the Boxed Water-Flowing, a novel graphical represen-
tation of the asymptotically optimal offline resource allocation.
Additionally, we have proposed a practical online algorithm
that does not require knowledge of the future energy arrivals
nor the channel state. From the simulation results, we have
confirmed that the Boxed Water-Flowing resource allocation
is the asymptotically optimal offline resource allocation and
that the performance loss of the proposed online solution is
very small. Moreover, we have evaluated the computational
complexity of the different resource allocation strategies and
obtained that the online solution is the one that requires the
lowest execution time.
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APPENDIX

A. Proofs of Lemmas 1 and 2

1) Proof of Lemma 1: We know that the M?
n streams that

contribute to the channel access activation are the ones with
the best channel gains, i.e., h1,n, . . . , hM?

n,n
, because these

streams are the ones that contribute the most to the objective
function. Given M?

n, the following two conditions must be
satisfied at the cutoff water level, i.e., when Wj = Ŵn(M?

n):
(C1) ∀k ≤ M?

n, the following relations must be fulfilled: (i)
Pk,n > 0; (ii) ψk,n ∈ (0, 1); (iii) η̂k,n = 0; (iv) η̌k,n = 0; and
(v) ξk,n = 0.16

(C2) ∀k > M?
n, the following conditions must be satisfied: (i)

Pk,n = 0; (ii) ψk,n = 0; (iii) η̌k,n = 0; and (iv) µk,n = 0.17

Going back to (7), the radiated power of the streams
k ≤ M?

n at the channel access cutoff water level is Pk,n =

ψk,n

(
Ŵn(M?

n)− h−1k,n
)

, where we have used that Wj =

Ŵn(M?
n) = (Ts

∑J
`=j λ`)

−1. Plugging this into the KKT
condition in (6b), we have that all the streams that contribute to
the n-th channel access activation, i.e., k ≤M?

n, must satisfy:

∂L̃
∂ψk,n

= log(hk,nŴn(M?
n))− 1 + (13)

1

Ŵn(M?
n)hk,n

− Pd

Ŵn(M?
n)
− µk,n = 0, ∀k ≤M?

n.

Note that we cannot isolate Ŵn(M?
n) in the previous equation

due to the dependence on the Lagrange multiplier µk,n. To
get rid of this dependence, we can use the KKT condition in
(6c) evaluated at the cutoff water level, i.e.,

K∑
k=1

µk,n =

M?
n∑

k=1

µk,n =
Pc

Ŵn(M?
n)
, (14)

where we have used that µk,n = 0 ,∀k > M?
n, which follows

from (C2).
With this, we can obtain an equation that does not depend

on µk,n by adding the equations ∂L̃/∂ψk,n = 0, ∀k ≤ M?
n.

Thus, the n-th channel access cutoff water level, Ŵn(M?
n), is

obtained by solving
∑M?

n

k=1 ∂L̃/∂ψk,n = 0, which is performed
in Appendix D (set M := M?

n, Ŵ := Ŵn(M?
n), Hk := hk,n,

and P := M?
nPd + Pc), and is the one given in (8).

Up to now, we have shown that if Wj = Ŵn(M?
n), the

channel access is “partially on”, i.e., ρn ∈ (0, 1), ψk,n ∈
(0, 1),∀k ≤ M?

n and ψk,n = 0,∀k > M?
n. Note that

if Wj = Ŵn(M?
n) + ε, with ε > 0, then we have that

log(hk,nWj)−1+1/(Wjhk,n)−Pd/Wj−µk,n > 0. Thus, in
order to satisfy (6b), we must have η̌k,n > 0, ∀k ≤M?

n. Then,
from the slackness condition (6g), we know that ψk,n = 1,
∀k ≤M?

n, and hence ρn = 1. A similar approach can be used
to show that if Wj < Ŵn(M?

n), then ψk,n = 0, ∀k, and hence
ρn = 0.

16Where (i) and (ii) follow from the fact that the stream must contribute to
the channel access activation and (iii), (iv), and (v) follow from the slackness
conditions (6f), (6g), and (6e), respectively.

17Where (i) and (ii) follow from the fact that the stream must not contribute
to the channel access activation and (iii) and (iv) follow from the slackness
conditions (6g) and (6h).

2) Proof of Lemma 2: Now, we derive the expression of
the k-th stream cutoff water level, W̄k,n, i.e., the water level
at which the k-th stream becomes partially active, where now
k > M?

n. Similarly as in the proof of Lemma 1, in the k-
th stream cutoff water level, we must have that Pk,n > 0,
ψk,n ∈ (0, 1), ρn = 1, and from the slackness conditions
we know that η̌k,n = 0, η̂k,n = 0, ξk,n = 0, µk,n = 0.
The k-th stream cutoff water level is obtained by solving the
equation obtained from the KKT condition in (6b) for W̄k,n

(set M := 1, Ŵ := W̄k,n, H1 := hk,n and P := Pd in
Appendix D) and is the one given in (9). Following the same
procedure as in the last paragraph of the proof of Lemma
1, it can be shown that if Wj > W̄k,n, k ∈ (M?

n,K], then
ψk,n = 1. Alternatively, if Wj < W̄k,n, k ∈ (M?

n,K], then
ψk,n = 0.

B. Proof of Proposition 1

In this appendix, we prove that M?
n can be found by

performing a forward search over Mn and that it is the smallest
Mn that satisfies the condition Ŵn(Mn) < W̄Mn+1,n. To
prove Proposition 1, we need to make use of the following
two lemmas:

Lemma 3. If Ŵn(Mn) = W̄Mn+1,n, then Ŵn(Mn + 1) =
Ŵn(Mn).

Proof: See Appendix B-1.

Lemma 4. If Ŵn(Mn) ≥ W̄Mn+1,n, then: (a) Ŵn(Mn +
1) ≥ W̄Mn+1,n; (b) the function Ŵn(Mn+1) is monotonically
decreasing with hMn+1,n.

Proof: See Appendixes B-2 and B-3.
Observe that W̄Mn+1,n is a function of hMn+1,n in oppo-

sition to Ŵn(Mn) that does not depend on hMn+1,n. In this
context, let h̃Mn+1,n be the specific value of the channel gain
of the stream k = Mn+1 that satisfies W̄Mn+1,n = Ŵn(Mn).

We first show that any Mn smaller than M?
n is suboptimal.

We know that Ŵn(Mn) ≥ W̄Mn+1,n, ∀Mn < M?
n, since

the condition Ŵn(Mn) < W̄Mn+1,n is not satisfied until
Mn := M?

n. Since W̄Mn+1,n is decreasing with the channel
gain (see Remark 4), the condition Ŵn(Mn) ≥ W̄Mn+1,n

implies hMn+1,n ≥ h̃Mn+1,n. From Lemma 3, we have that
at h̃Mn+1,n, Ŵn(Mn+1) = Ŵn(Mn) and from Lemma 4.b if
hMn+1,n ≥ h̃Mn+1,n, then Ŵn(Mn+1) ≤ Ŵn(Mn), ∀Mn <
M?
n or, equivalently, Ŵn(1) ≥ Ŵn(2) ≥ · · · ≥ Ŵn(M?

n).
Therefore, any Mn in [1, M?

n) is suboptimal.
Now, we prove the suboptimality of any Mn greater than

M?
n. From the structure of the forward search, the following re-

lationship is satisfied Ŵn(Mn) < W̄Mn+1,n, ∀Mn ∈ [M?
n,K].

Thus, the streams k > M?
n cannot contribute to the channel

access activation since these streams are not active at the cutoff
water level.

Finally, we must show that the streams k ≤M?
n are active in

the channel access cutoff water level, i.e., W̄k,n ≤ Ŵn(M?
n),

which is verified as proved in Lemma 4.a.
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(
∏Mn
k=1 h

1
Mn
k,n )W̄Mn+1,n

e
log

 (
∏Mn
k=1 h

1
Mn
k,n )W̄Mn+1,n

e

 =

∏Mn
k=1 h

1
Mn
k,n

eMn
(Pc +MnPd −

Mn∑
k=1

h−1
k,n)⇒ (16)

X̃Mn+1 =

∏Mn+1
k=1 h

1
Mn+1

k,n

e(Mn + 1)

MnW̄Mn+1,nlog

 (
∏Mn
k=1 h

1
Mn
k,n )W̄Mn+1,n

e

+ Pd − h−1
Mn+1,n

⇒ (17)

X̃Mn+1 =
(
∏Mn+1
k=1 h

1
Mn+1

k,n )MnW̄Mn+1,n

e(Mn + 1)

log
 (
∏Mn
k=1 h

1
Mn
k,n )W̄Mn+1,n

e

+
W0(

PdhMn+1,n−1

e
)

Mn

⇒ (18)

X̃Mn+1 =
(
∏Mn+1
k=1 h

1
Mn+1

k,n )W̄Mn+1,n

e(Mn + 1)
log

(
(
∏Mn
k=1 hk,n)W̄Mn

Mn+1,n

eMn
eW0(

PdhMn+1,n−1

e
)

)
⇒ (19)

X̃Mn+1 =
(
∏Mn+1
k=1 h

1
Mn+1

k,n )W̄Mn+1,n

e
log

 (
∏Mn+1
k=1 h

1
Mn+1

k,n )W̄Mn+1,n

e

 (20)

1) Proof of Lemma 3: Let the channel access cutoff water
level for a given Mn be expressed as

Ŵn(Mn) =
XMn

1
e
(
∏Mn
k=1 h

1
Mn
k,n )W0(XMn)

,

where XMn is the argument of the Lambert function, i.e.,

XMn
=

∏Mn

k=1 h
1

Mn

k,n

eMn
(Pc +MnPd −

Mn∑
k=1

h−1k,n). (15)

In (16)-(20), we impose the condition W̄Mn+1,n = Ŵn(Mn),
and, after some algebra, we obtain the argument of the
Lambert function in Ŵn(Mn + 1), i.e., X̃Mn+1, where the
tilde denotes that it is the argument that satisfies W̄Mn+1,n =
Ŵn(Mn). To obtain (17), we have multiplied both sides in
(16) by

Mn

∏Mn+1
k=1 h

1
Mn+1

k,n∏Mn
k=1 h

1
Mn
k,n

and used the definition of X̃Mn+1, which follows from (15).
In (20), we have used that eW(z) = z/W(z), which directly
follows from the definition of the Lambert function. The cutoff
water level for Mn + 1 active streams is

Ŵn(Mn + 1) =
X̃Mn+1

1
e

(
∏Mn+1
k=1 h

1
Mn+1

k,n )W0(X̃Mn+1)

. Thus, X̃Mn+1 =

∏Mn+1
k=1 h

1
Mn+1

k,n

e
Ŵn(Mn + 1)log

∏Mn+1
k=1 h

1
Mn+1

k,n

e
Ŵn(Mn + 1)

 .

By comparing this expression with (20), we have that
Ŵn(Mn + 1) must be equal to W̄Mn+1,n and, thus, we have
Ŵn(Mn + 1) = Ŵn(Mn).

2) Proof of Lemma 4.a : Following similar steps as in (16)-
(20), it is easy to show that if Ŵn(Mn) ≥ W̄Mn+1,n, then
XMn+1 ≥ X̃Mn+1. From where, it follows

XMn+1

W0(XMn+1)
≥

(
∏Mn+1
k=1 h

1
Mn+1

k,n )W̄Mn+1,n

e

and, therefore, we also have Ŵn(Mn + 1) ≥ W̄Mn+1,n.

3) Proof of Lemma 4.b: In the following lines, we demon-
strate that ∂Ŵn(Mn + 1)/∂hMn+1,n ≤ 0 for Ŵn(Mn) ≥
W̄Mn+1,n or, equivalently, for XMn+1 ≥ X̃Mn+1. Thus, in
(21)-(24) we analyze the sign of the derivative. In (22), we
have used that

∂XMn+1

∂hMn+1,n
=

XMn+1

(Mn + 1)hMn+1,n
+

∏Mn+1
k=1 h

1
Mn+1

k,n

e(Mn + 1)h2
Mn+1,n

.

In (23), we have defined

m , ehMn+1,n

(
Mn+1∏
k=1

h
1

Mn+1

k,n

)−1

and evaluated the derivative of the Lambert function, i.e.,
dW0(XMn+1)

dXMn+1
=

W0(XMn+1)

XMn+1(1 +W0(XMn+1))
.

From (24), we see that the sign of the derivative depends on
the product of the Lambert function (which is positive for
XMn+1 > 0 and negative for XMn+1 < 0) and the difference
between the Lambert function and a line with slope m. To
demonstrate that Ŵn(Mn + 1) is monotonically decreasing
with hMn+1,n for XMn+1 ≥ X̃Mn+1, we must show that

W0(XMn+1)
(a)
< m̄XMn+1

(b)

≤ mXMn+1,

∀XMn+1 > max{0, X̃Mn+1}, (25)

W0(XMn+1)
(a)
> m̄XMn+1

(b)

≥ mXMn+1,

∀X̃Mn+1 < XMn+1 < 0, (26)

where m̄ is an arbitrary constant. Observe that when m̄ ≤ m,
inequalities (b) in (25) and (26) are satisfied. In the following
lines, we propose a specific m̄ that allows us to prove
inequalities in (a) and thus to demonstrate that Ŵn(Mn + 1)
is monotonically decreasing with hMn+1,n.

Note that, by replacing m in (20), we obtain

X̃Mn+1 =
W̄Mn+1,nhMn+1,n

m
log

(
W̄Mn+1,nhMn+1,n

m

)
.

From this relation, we can express m as a function of
X̃Mn+1, i.e., m = W̄Mn+1,nhMn+1,nW0(X̃Mn+1)/X̃Mn+1.
Note that W̄Mn+1,nhMn+1,n ≥ 1 because W̄Mn+1,n ∈
[h−1Mn+1,n,∞) as pointed out in Remark 4. Thus, m ≥
W0(X̃Mn+1)/X̃Mn+1. Let m̄ denote the minimum slope, i.e.,
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sign

h−2
Mn+1,n

Mn + 1
W0(XMn+1)−

1

Mn + 1

(Mn + 1)Pd + Pc −
Mn+1∑
k=1

h−1
k,n

 dW0(XMn+1)

dXMn+1

∂XMn+1

∂hMn+1,n

 (21)

= sign

W0(XMn+1)−XMn+1

1 +
ehMn+1,nXMn+1∏Mn+1

k=1 h
1

Mn+1

k,n

 dW0(XMn+1)

dXMn+1

 (22)

= sign

[
W0(XMn+1)−XMn+1 (1 +mXMn+1)

W0(XMn+1)

XMn+1(1 +W0(XMn+1))

]
(23)

= sign [W0(XMn+1) (W0(XMn+1)−mXMn+1)] (24)

Ŵ

(
M∏
k=1

H
1
M
k

)[
log

(
Ŵ

M∏
k=1

H
1
M
k

)
− loge

]
+

1

M

(
M∏
k=1

H
1
M
k

)(
M∑
k=1

H−1
k

)
−
P

M

(
M∏
k=1

H
1
M
k

)
= 0⇒ (27)

Ŵ
∏M
k=1H

1
M
k

e
log

Ŵ
∏M
k=1H

1
M
k

e

 =

∏M
k=1H

1
M
k

Me
(P −

M∑
k=1

H−1
k )⇒ Ŵ =

P −
∑M
k=1H

−1
k

MW0

(∏M
k=1

H
1
M
k

Me
(P −

∑M
k=1H

−1
k )

) (28)

m̄ =W0(X̃Mn+1)/X̃Mn+1. Since m̄ ≤ m the inequalities (b)
in (25) and (26) are satisfied. Note that the Lambert function,
W0(XMn+1), and the line m̄XMn+1 cross both at the origin
(XMn+1 = 0) and at the point XMn+1 = X̃Mn+1, i.e.,
W0(X̃Mn+1) = m̄X̃Mn+1. Finally, by using the concavity
of the positive branch of the Lambert function [18] and these
two crossing points, it is straight forward to show that the
inequalities (a) in (25) and (26) are satisfied.

C. Proof of Proposition 2

Let β1 and β2 be two different energy harvesting profiles,
where the energy packet arrival instants are the same but
the amount of energy in the packets is different, and let{

P?
β1
,ρ?β1

,Ψ?
β1

}
and

{
P?
β2
,ρ?β2

,Ψ?
β2

}
be the associated

optimal solutions to (4), respectively. Therefore, showing
that the time-sharing condition is fulfilled is equivalent to
demonstrating that

I(P?
θβ1+(1−θ)β2

,ρ?θβ1+(1−θ)β2
,Ψ?

θβ1+(1−θ)β2
) ≥

I(Pθβ1+(1−θ)β2
,ρθβ1+(1−θ)β2

,Ψθβ1+(1−θ)β2
) ≥

θI(P?
β1
,ρ?β1

,Ψ?
β1

) + (1− θ)I(P?
β2
,ρ?β2

,Ψ?
β2

),

where θ ∈ [0, 1],
{
P?
θβ1+(1−θ)β2

,ρ?θβ1+(1−θ)β2
,

Ψ?
θβ1+(1−θ)β2

}
is the optimal resource allocation for

an energy harvesting profile equal to θβ1 + (1 − θ)β2

and
{
Pθβ1+(1−θ)β2

,ρθβ1+(1−θ)β2
,Ψθβ1+(1−θ)β2

}
is any

feasible resource allocation.
In the following lines, we construct a feasible resource

allocation{
Pθβ1+(1−θ)β2

,ρθβ1+(1−θ)β2
,Ψθβ1+(1−θ)β2

}
that satisfies the time sharing condition in an epoch by epoch
basis. In this context, since the procedure is the same for
all the epochs, we just explain how to obtain the resource
allocation of the streams contained in a generic epoch τj . Let
x = 1, . . . ,X be an index used to indicate the different channel
realizations observed within the streams in τj . Thus, X is the
number of different channel realizations within the epoch.

Let the set sx contain all the streams in τj that have channel
gain equal to h̄x, i.e., sx = {{k, n}|hk,n = h̄x, n ∈ τj}. Kx

denotes the cardinality of sx, which is a large number since,
in the proposition statement, we have considered that within
each epoch every channel realization is observed a sufficiently
large number of times. In the following lines, we explain how
to construct the resource allocation of the channel accesses in
sx. Since Kx is large, θ can be approximated as θ u N̄x/Kx,
where N̄x is an integer in the interval [0,Kx]. Due to the
nature of DWF, the power allocated by the optimal solution
given some energy harvesting profile is equal for all the
streams in sx because when a certain channel access is active
the transmission power in (1) only depends on the epoch
water level and on the channel gain. We construct the resource
allocation in the streams in sx by assigning the resource
allocation in {[P?

β1
]{k′,n′}, [ρ

?
β1

]{k′,n′}, [Ψ
?
β1

]{k′,n′}}
to N̄x streams of sx and the resource allocation in
{[P?

β2
]{k′,n′}, [ρ

?
β2

]{k′,n′}, [Ψ
?
β2

]{k′,n′}} to the remaining
Kx − N̄x streams, where {k′, n′} is any stream contained
in sx. This procedure is repeated for the different channel
realizations to obtain the resource allocation in all the
streams of τj , then the total power consumption in τj is
equivalent to θ times the power consumption in τj given by{

P?
β1
,ρ?β1

,Ψ?
β1

}
and (1 − θ) times the power consumption

in τj given by
{

P?
β2
,ρ?β2

,Ψ?
β2

}
. After repeating this

process for all the epochs, the constructed resource allocation{
Pθβ1+(1−θ)β2

,ρθβ1+(1−θ)β2
,Ψθβ1+(1−θ)β2

}
is a feasible

solution as the ECCs are satisfied and the obtained mutual
information is θI(P?

β1
,ρ?β1

,Ψ?
β1

)+(1−θ)I(P?
β2
,ρ?β2

,Ψ?
β2

).
Therefore, we have shown that the time-sharing condition is
satisfied.

D. Derivation of the cutoff water level

In this appendix, we use a generic notation that serves us to
derive both Ŵn(Mn) and W̄k,n. Thus, Ŵ denotes the cutoff
water level for the case of considering M active streams at the
cutoff region with gains Hk, k ∈ [1,M ], and when the cir-
cuitry power consumption is P . Specifically, Ŵ is obtained by
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solving the equation
∑M
k=1

[
log(ŴHk)− 1 + 1/(ŴHk)

]
−

P/Ŵ = 0 as done in (27)-(28). In (27), we have multiplied by
Ŵ
(∏M

k=1H
1
M

k

)
/M . In (28), we have used that blogb = a⇔

b = a/W(a), which follows from the definition of the Lambert
function [18]. Moreover, since Ŵ > H−1k , ∀k = [1,M ], so
that the streams are active in the cutoff region, the term b is
always greater than e−1 and, thus, the positive branch of the
Lambert function, which is denoted by W0(·), is used.
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