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Abstract—In this paper we present a design methodology
and hardware implementations of lightweight post-processing
modules for debiasing random bit sequences. This work is based
on the iterated Von Neumann procedure (IVN). We present
a method to maximize the efficiency of IVN for applications
with area and throughput constraints. The resulting hardware
modules can be applied for post-processing raw numbers in
random number generators.

Index Terms—Random number generators (RNGs), Entropy,
Post-processing

I. INTRODUCTION

True random number generators (TRNGs) are essential

components in secure systems. TRNGs are used for gen-

erating session keys, challenges for authentication protocols

and masks for countermeasures against side-channel attacks

(SCA). The security of authentication protocols and SCA-

resistant hardware implementations often rely on the TRNG’s

ability to produce statistically perfect and independent random

bits.

Hardware entropy sources rarely provide perfect random

numbers. Produced bits usually suffer from statistical defects

such as bias and bit dependencies, so different post-processing

algorithms are required to compress the raw bit stream into a

statistically perfect, full-entropy bit stream. Special publication

by the National institute of Standards and Technology (NIST)

SP 800-90B [1] provides guidelines for TRNG design and

evaluation. This document recommends to use cryptographic

post-processing (hash function or a block cipher) unless

a provably-secure alternative is provided. German standard

AIS31 [2] requires arithmetic post-processing of the raw bits

to reach the entropy level of at least 0.997 Shannons per

bit before cryptographic post processing is used. Given the

high area and energy demands of the cryptographic primitives

as well as their throughput limitations, there is a need for

lightweight, high-throughput post-processing techniques.

Von Neumann (VN) post processing [3] is a famous method

for de-biasing bit sequences. This method guarantees the

full entropy output provided that there are no dependencies

between the raw bits, i.e. if the incoming bits are independent

and the bias is the only statistical defect of the input sequence.

The exact bias value doesn’t need to be known at design

time. One of the problems of this method is the fact that a

lot of entropy is wasted in the process, causing a substantial

reduction of throughput. An extension of the VN procedure

that achieves improved efficiency of entropy extraction was

proposed by Peter Elias in [4]. The theoretical paper of

Yuval Peres [5] proposes a more practical solution based on

the iterated Von Neumann (IVN) post-processing in order to

improve the efficiency. The central idea of the IVN is to

re-apply the VN post-processing on the information that is

discarded in the first run. By iterating the procedure to infinity,

it is possible to extract the theoretical maximum of entropy.

In this work, we explore the IVN under limited compu-

tational resources. The contributions of this paper are the

following:

• We show that improvements of the original IVN are

possible by changing the structure of the post-processing

circuits. We are the first to explore the incomplete binary

tree topologies of processing elements for throughput or

area optimization.

• We provide an algorithm for finding the optimal circuit

structure given the bias value and the hardware area

budget. The produced post-processing circuit is optimal

in terms of efficiency of the entropy extraction, which

can be used for throughput or area optimization.

• We explore the design space for various bias values.

This paper is organized as follows. In Section II we explain

the operation of the iterated Von Neumann post-processing. In

Section III, we explain our contribution of finding the optimal

configurations for performing the IVN with limited hardware

resources. In Section IV experiment results are presented using

the data from the FPGA implementation. Conclusion is given

in Section V.

II. IVN POST-PROCESSING

Here we provide an overview of the iterated Von Neumann

(IVN) procedure [5].This method takes advantage of the fact

that the information that is wasted during the classical Von

Neumann post-processing can be recycled by reapplying the

VN procedure on the discarded data.

We will use the following example to explain the principle

of operation. A 100Mb/s entropy source produces bits with

bias equal to b = 10%. In this paper, we use the following

definition of the bias:

b =
|p1 − p0|

2
, (1)



Fig. 1: Principle of operation of the iterated von Neumann post-processing.

where p1 and p0 are binary bit probabilities.

This source produces 97.1Mb/s of Shannon entropy. At

the top of the Figure 1, we see an example of a sequence S
generated by this source. We can decompose this sequence

into three sequences which are denoted as SV N , SXOR and

SR. The SV N sequence (shown in green) is constructed by

applying the classical Von Neumann procedure on the input

bits, i.e. by generating a bit 0 every time a bit pair 10 is

detected in the original sequence and generating a bit 1 when

01 is detected. SV N sequence is always unbiased and, in the

presented example, its throughput is 24Mb/s. In a general

case, the relative throughput of this sequence is given by:

rV N =
Throughput(SV N )

Throughput(S)
= (0.5− b)(0.5 + b), (2)

which reaches the maximal value of 0.25 for b = 0.

The SXOR sequence (shown in orange) is generated by

producing a bit 1 every time blocks 01 or 10 are detected and

producing a bit 0 when 00 or 11 is detected. This sequence has

bias equal to 2·b2 (2% in this example) and half the throughput

of the original bit sequence (rXOR = 0.5), in this example

50Mb/s. The SR sequence (shown in red) is the residual

sequence that contains all information that is not extracted

by the other 2 sequences. It is generated by producing a bit 1

whenever a block 11 is detected and producing 0 whenever 00

is detected in the original sequence. The bias of this sequence

is 2·b/(1+4·b2) (19.23% in this example) and the throughput

is 26Mb/s. In a general case, the relative throughput of the

residual sequence is given by:

rR =
Throughput(SR)

Throughput(S)
= 0.25 + b2. (3)

It is clear that no information (entropy) is lost during

the decomposition because the original sequence S can be

reconstructed from the sequences SV N , SXOR and SR.

During the classical Von Neumann post-processing, only

the SV N (the green sequence) is sent to the output while

the other two sequences are discarded. These two sequences

contain all the discarded information. In [5] it is shown that

these three sequences are independent and that Von Neumann

procedure can be applied again on the discarded information

(SXOR and SR). In the presented example, the SXOR has a

TABLE I: Elementary IVN operation.

S SV N SXOR SR

0 0 - 0 0
0 1 1 1 -
1 0 0 1 -
1 1 - 0 1

throughput of 50Mb/s and more than 0.99 bits of Shannon

entropy per output bit. Note that this sequence has lower bias

than the original one. The sequence SR, on the other hand has

higher bias. However, a substantial amount of information can

be extracted from this sequence as well. With a throughput

of 26Mb/s and around 0.89 bits of Shannon entropy per

output bit there is a Shannon entropy throughput of more than

23Mb/s.

The procedure can be iterated. SXOR and SR can be further

decomposed into three components and the same procedure

can be repeated. By iterating the procedure to infinity, the

theoretical maximum of 97.1Mb/s can be achieved, i.e. all

available entropy can be extracted. However, in order to extract

all available entropy, an infinite amount of computational

resources is required.

III. IVN OPTIMIZATION

In this section, we explore the efficiency of IVN, using finite

computational resources.

A. Elementary operation

VN is based on processing pairs of consecutive bits. The

elementary operation of VN consists of reading a pair of bits

and producing one or none output bits as the result. The

elementary operation of IVN is only slightly more complex.

Processing one pair of input bits results in exactly 2 bits at

the output (one at the SXOR and one at either SV N or SR)

as shown in Table I. Full IVN implementation is obtained by

cascading these elementary operations.

This work shows how to maximize the amount of extracted

entropy using a fixed amount of elementary operations. This

has applications in both hardware and software implementa-

tions. Elementary operations have a fixed cost in terms of

the number of cycles for software operations or the number

of processing modules operating in parallel for hardware

implementations. In hardware designs, the proposed method



Fig. 2: Processing element architecture.

can be used to maximize throughput within the given area

constraints. We will use hardware implementations to illustrate

the benefits of the proposed method.

B. HW Processing Module

Figure 2 shows the architecture of the hardware module

performing the IVN elementary operation. The design has 2

data inputs: signal S which represents the bit value and a

signal SV alid, which indicates that the value of S is valid.

The output consists of 3 data signals (SV N , SXOR and SR)

and 3 signals to indicate when the output is valid (SV NV alid,

SXORV alid and SRV alid). Hardware implementation of this

module requires only 2 flip-flops and several logic gates. On

Xilinx Spartan-6 the implementation consumes only 2 slices.

ASIC implementation using standard cell methodology in open

cell library NanGate 45nm consumes only 25 gate equivalents.

C. Optimization Strategy: An Example

To illustrate the benefits of the IVN optimization, we use

the example of a biased generator discussed in Section II.

A 100Mb/s data stream is post-processed using the IVN

procedure with 3 iterations. Figure 3a shows the post-

processing block implemented using 7 processing elements.

The throughput and bias of each branch is indicated in the

figure. The SV N output (shown in green) of each processing

element is sent to the output, while the other 2 outputs are

sent for recycling. It is immediately obvious that the elements

don’t contribute equally to the total output: the root node (clas-

sical 1-stage VN), contributes with 24Mb/s, while the lower

right element contributes with only 1.03Mb/s. Moreover, the

elements enclosed within the dashed line contribute with only

9.75Mb/s (out of 55.59Mb/s) while consuming more than

50% of the area. The area optimization can be performed
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(a) Classical IVN with 3 iterations. The part enclosed within the dashed
line contributes very little to the total throughput.
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(b) IVN structure with 7 processing elements, optimized for high
throughput.

Fig. 3: Different IVN post-processing structures. The numbers

indicate the throughput [Mb/s] and bias of each branch.

by removing these low-utilization elements, resulting in sig-

nificantly more compact design with around 20% reduction

in throughput. Throughput optimization can be performed by

finding the optimal post-processing structure with the given

number of processing elements. This optimal structure may

depend on the bias. The optimal structure for 10% bias and 7

processing elements is shown in Figure 3b.

D. Binary tree representation

Note that the post-processing block using classical IVN has

the structure of a complete binary tree of n levels where n is

the number of iterations. This block can be implemented using

exactly 2n − 1 processing elements. The optimized solution

shown in Figure 3b also has a structure of a binary tree,

however this tree is incomplete. The main contribution of

this paper is exploring the incomplete binary tree structures



TABLE II: Throughput results after post-processing 100 Mb/s biased entropy source using the Worst case (W), Classical (C)

and Optimal (O) IVN post-processing.

Bias
(%)

3 elements 7 elements 15 elements
W C O W C O W C O

1 32.79 43.73 43.74 33.28 57.79 59.36 33.28 68.33 69.51

5 32.22 43.31 43.50 32.5 57.24 58.96 32.5 67.70 69.01

10 30.57 42.02 42.73 30.67 55.59 57.68 30.67 65.83 67.40

20 25.14 36.98 39.43 25.15 49.26 52.05 25.15 58.61 61.75

30 17.94 28.76 33.03 17.94 38.74 41.80 17.94 46.55 51.02

40 9.5 16.87 21.58 9.5 23.33 27.89 9.5 28.49 32.80

(a) Binary Trees
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(b) Throughput efficiency of 3-element structures.
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(c) Throughput efficiency of 4-element structures.
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(d) Throughput efficiency of 5-element structures.

Fig. 4: Optimal binary trees and the corresponding throughput efficiency.

for IVN and providing the algorithm for finding the optimal

structure for each bias value. Our results show that the classical

IVN (complete binary tree) is rarely the optimal solution for

any bias value. Note that using the incomplete binary trees

enables us to use any number of processing elements, not only

numbers of the form 2n − 1.

In the remainder of this paper we will use binary trees to

represent different post-processing structures. Each node of

the binary tree represents one processing element. The left

branch of the node corresponds to the output SXOR and the

right branch corresponds to the output SR. We will use the

following notation to represent binary trees using strings of 1s

and 0s. An empty tree is represented using the empty string

’ ’. Any other tree is represented using the following recursive

definition:

< Tree >=′ 1′ < LTree >′ 0′ < RTree >, (4)

where < LTree > and < RTree > stand for the sub-

trees connected to the left (SXOR) and right (SR) branch

of the root node respectively. For example, a tree consisting

of only one node is represented using a string ’10’. More

examples of binary trees and their string representations are

shown in Figure 4a. For better readability, digits corresponding

to the root node are shown using bold font and the digits

corresponding to the leaf nodes are shown using italic font

and a smaller font size.

Table II shows the achieved throughput for different bias

values using different post-processing structures, assuming the

100Mb/s raw bits rate. Classical IVN can be performed using

3, 7, and 15 elements, these throughput results are shown in

column (C). For the same number of elements, the optimal

and the worst case binary trees were found, the corresponding

throughput results are shown in columns (O) and (W). It can be

seen that for low bias value and the high number of elements



there is little benefit over the classical IVN. This benefit

is significantly higher for high bias and the low number of

elements. Worst case throughput is always significantly lower

than the optimal throughput so one needs to be careful when

choosing the binary tree for post-processing.

For a small number of elements it is easy to find the optimal

binary tree by searching through all combinations. The optimal

post-processing methods using 3, 4 and 5 processing elements

were explored and the results are summarized in Figure 4.

Throughput efficiency of the 3-element binary trees (shown

in Figure 4a) are computed for different bias values and the

results are summed up in Figure 4b. Dashed line shows the

Shannon entropy available in the sequence (maximal through-

put efficiency) and the dotted line shows the efficiency of the

Von Neumann procedure. Both binary trees show significant

improvement of the post-processing efficiency over the VN

procedure. The complete 3-element binary tree represents the

classical IVN with one iteration of recycling, it is therefore

denoted as Original IVN. The other binary tree is denoted as

Optimal IVN. It results in the highest efficiency for all bias

values. The other three 3-element trees were investigated, but

they all show lower efficiency than the optimal IVN.

When using more than 3 elements, the optimal tree depends

on the bias value. Two optimal trees can be constructed using 4

elements as shown in Figure 4a. One of these trees is optimal

for bias lower than 25% and the other one for higher bias

values, as shown in Figure 4c. Using 5 processing elements,

we can construct 4 binary trees that are optimal for different

bias intervals. Other 5-element trees are not optimal for any

bias value. Therefore, the designer can choose the optimal

post-processing configuration based on the bias of the original

sequence. If the bias is not known at design time or it cannot be

precisely estimated, wrong structure can be chosen. However,

this is not a big problem because the structure that is optimal

for one bias value has close-to-optimal performance for all bias

values. This can be clearly seen in Figures 4c and 4d where

all graphs corresponding to the optimal structures are clustered

together. Therefore, the wrong estimation of bias doesn’t cause

high throughput reduction as long as the chosen structure is

optimal for some bias value.

E. Finding the optimal trees

For higher number of elements, it becomes increasingly

difficult to find the optimal binary tree by exploring all

combinations. We propose an algorithm for finding the optimal

tree given the bias and the number of processing elements. The

intention is that the designer computes the available number of

elements from the area budget and to use the algorithm to find

the post-processing structure that extracts the most entropy.

Presented recursive function takes bias b and the number of

elements n as input and produces the maximal throughput rate

r and the corresponding binary tree structure T at the output.

The optimal binary tree is constructed by assigning the root

node and allocating the remaining n − 1 nodes to the left

and the right sub-trees. All n combinations are explored in a

loop and the optimal sub-trees are found using the FindTree

Algorithm 1 Algorithm for finding optimal trees.

function FINDTREE(b,n)

if n = 0 then

r = 0
T =′ ′

else

rV N = 0.25− b2

rXOR = 0.5
rR = 0.25 + b2

bXOR = 2b2

bR = (2b)/(1 + 4b2)
r = 0
for i = 0 to n− 1 do

(nrXOR, nTXOR) = FindTree(bXOR, i)
(nrR, nTR) = FindTree(bR, n− 1− i)
nr = rV N + rXOR · nrXOR + rR · nrR
if nr > r then

r = nr
T =′ 1′ ntXOR

′0′ ntR
end if

end for

end if

return (r, T )

end function

function. The recursion stops when the number of nodes is 0.

The combination resulting in maximal throughput is returned.

The tree structure is reported as a string of ones and zeros

according to the definition 4.

F. Results

Figure 5 shows the throughput efficiency for different bias

values and the number of elements ranging from 1 to 20.

The theoretical maximum is shown using dashed lines. This

maximum corresponds to the Shannon entropy. The same

trend is observed for all bias values: 1-stage post processing

(VN) extracts around one quarter of the available entropy.

Optimal configurations using 5 processing elements always

extract more than half of the available entropy. According

to the recommendations of NIST 800-90B [1], cryptographic

post-processing should be used in such way that the amount

of entropy at the input is twice the size of the output. Under

these restrictions, the maximal efficiency of cryptographic

post processing is equal to one half of the theoretical limit

(entropy). Given its low area requirements, the 5-element

IVN hardware module is always more beneficial for debiasing

than the cryptographic post-processing. Adding more elements

improves the throughput at smaller and smaller steps. After 15

elements are used, the additional contribution of each added

element is less than 1%.

IV. EXPERIMENT RESULTS

The presented methodology was tested on Xilinx Spartan-

6 FPGA. For testing purposes, we have produced biased

random numbers using a carry-chain based TRNG [6] and
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Fig. 5: Throughput efficiency given the number of elements for different bias values.

TABLE III: Relative Throughput.

Bias(%)
rV N (%)

3 elements 4 elements 5 elements
comp. meas. comp. meas. comp. meas.

12.5 42.14 42.07 47.31 47.2 50.47 50.3

25.0 36.69 36.69 39.82 39.7 42.63 42.4

37.5 25.11 25.11 28.20 28.0 29.76 29.8

a biasing circuit. The biasing circuit takes three random bits

at the input and produces one biased output bit. Bias can

be controlled in steps of 1/8. Biased sequences were post-

processed using the optimal tree structures of 3, 4, and 5

elements. Table III summarizes the expected and the measured

throughput values. Post-processed sequences pass all tests

from the NIST suite [7].

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a lightweight hardware

module for de-biasing binary data based on the iterated Von

Neumann procedure. The main novelty of this work is the

proposal to use the incomplete binary tree structures for

VN iterations, unlike the classical approach which only uses

complete binary tree structures. This approach gives us more

freedom in exploring the design space allowing us to achieve

area reductions with small penalties in throughput reduction.

In addition, we present an algorithm for finding the optimal

post-processing structure for any bias value and area budget.

It was found that the optimal post-processing structure

depends on the bias of the input sequence, therefore the

designer needs to estimate the bias of the raw numbers at

design phase. However, bias estimation doesn’t have to be very

precise, especially when using a small number of elements.

For example, for finding the optimal 4-element structure the

designer only needs to determine if the expected bias is below

or above 25%. Another observation is that the structures that

are optimal for some bias value are close-to-optimal for any

bias value. Therefore, a wrong bias estimation at the design

phase doesn’t result in high penalty in throughput reduction.

Throughput efficiency of optimal structures was evaluated

for different bias values and it was found that 5-element opti-

mal structures always extract more than half of the available

entropy making them a preferable choice over cryptographic

post-processing (used under restrictions of NIST 800-90B).

We note that restrictions of VN and IVN procedures also apply

on the proposed methods, i.e. the presented post-processing

structures should only be used on sequences without depen-

dencies between the generated bits. One possible direction

for future work is using the optimized IVN procedures for

debiasing PUF responses.
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