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Figure 1: System overview: left) SR-UNet is trained using a GAN-based framework, with an image content loss that combines
perceptual and signal based metrics; top right) the SR-UNet generator is used for visual quality improvement in real-time;
bottom right) the network can be fine tuned for a specific video, to further improve its performance.

ABSTRACT
In this paper, we address the problem of real-time video quality
enhancement, considering both frame super-resolution and com-
pression artifact-removal. The first operation increases the sam-
pling resolution of video frames, the second removes visual artifacts
such as blurriness, noise, aliasing, or blockiness introduced by lossy
compression techniques, such as JPEG encoding for single-images,
or H.264/H.265 for video data.

We propose to use SR-UNet, a novel network architecture based
on UNet, that has been specialized for fast visual quality improve-
ment (i.e. capable of operating in less than 40ms, to be able to
operate on videos at 25FPS). We show how this network can be
used in a streaming context where the content is generated live,
e.g. in video calls, and how it can be optimized when video to
be streamed are prepared in advance. The network can be used
as a final post processing, to optimize the visual appearance of a
frame before showing it to the end-user in a video player. Thus, it
can be applied without any change to existing video coding and
transmission pipelines.

Experiments carried on standard video datasets, also considering
the H.265 compression, show that the proposed approach is able
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to either improve visual quality metrics given a fixed bandwidth
budget, or video distortion given a fixed quality goal.
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1 INTRODUCTION
Video streaming has become the major source of Internet traffic
in the latest years, over desktop and mobile platforms, either for
work or entertainment. Videoconferencing has become an impor-
tant form of communication, especially after the emergence of
the COVID-19 pandemic, and video on demand (VOD) streaming
services like Netflix, Amazon Prime Video and Disney+ provide
an alternative to cable or satellite TV, offering movies and shows
along with broadcasters that offer their live programmes through
streaming apps. All of these applications require video compression
algorithms like H.264 or the more recent H.265, to optimize the
available bandwidth and reduce transmission costs. However, these
compression algorithms are usually lossy and they introduce visual
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artifacts like blocking, mosquito noise, posterization, etc. that may
hinder the user experience.

In this work, we propose to use a novel neural network, called
SR-UNet, to improve the visual quality of the decoded video on the
device of the end user in real-time, without requiring any change
in the video compression and delivery pipeline. This network is
designed to improve the visual quality while reducing the band-
width required to stream a video; it does so by performing both
super resolution, i.e. reconstructing high resolution frames from a
low resolution stream, and reducing video compression artifacts.
Considering the visual quality improved by these operations, in
order to reduce bandwidth consumption, videos may be streamed
at lower resolution or with a higher compression factor.

The main contributions of this work are: i) a novel network that
extends the UNet architecture by reducing its size and computa-
tional cost; ii) a loss that combines signal-based and perceptual-
based losses within a Generative Adversarial Network (GAN) frame-
work. Furthermore, we show how the proposed network can be
tailored on specific video clips, to further improve the performance
of the base SR-UNet model. This operating context is particularly
relevant for VOD services. They commonly aim to reduce the band-
width required to transmit videos, for instance, by looking for the
best encoding parameters of each video. Extensive experiments on
a standard video dataset encoded with H.265 show that the pro-
posed network outperforms baselines and other state-of-the-art
approaches; objective and subjective evaluations show that the net-
work is able to improve the visual appearance of videos at different
compression rates.

2 PREVIOUS WORK
Visual quality of images and videos can be improved addressing
different aspects, i.e. increasing the resolution (super resolution
- SR) and eliminating the compression artifacts or other quality
defects, such as noise.

2.1 Super resolution
In [30] has been proposed ESPCN, an architecture that operates in
the low-resolution feature space and performs the upsample just
in the last layer, reducing computational cost and yielding better
results. In [2], Caballero et al. introduce a novel technique which
consists in first training a small network for computing the optical
flow between two adjacent frames, and then applying the predicted
flow to “align” the low-res adjacent frames into the current one,
feeding them into the ESPCN SR-network. In [20], Ledig et al. train
an SR-ResNet as a Generative Adversarial Network, with also the
support of the perceptual VGG-loss. After noticing how their mod-
els yielded low similarity with signal-based metrics, they performed
extensive subjective tests proving how their perceptual-oriented
training was capable of producing more realistic upsamples, com-
pared to the former methodologies. In [29], Sajjadi et al. address
video SR proposing a RNN-based technique. A flow-net is used for
motion compensation between previous and current frame, and
they also train their architecture using the SR-frame generated at
the previous time-step along with the current LR-frame. Frames
are aligned with a predicted optical flow, similarly to [2], then spa-
tially compressed with a Space-to-Depth operation. In [3], Chu et

al. proposed a novel GAN-based technique for VSR. Starting from
the recurrent framework proposed in [29], they train the network
through a novel temporal-discriminator. The discriminator is fed
with a sequence of generated and ground-truth frames, to better
understand the temporal consistencies (and inconsistencies) be-
tween frames. The “Ping-Pong" loss is introduced: considering one
frame at a certain timestep, the result should not change if coming
from the previous or next timestep. This provides a powerful train-
ing constraint but could also be intended as a data-augmentation
technique.

2.2 Artifact removal and quality restoration
In [23], Maleki et al. propose Block CNN for JPEG artifact removal
and also for image compression. This architecture operates on the
typical 8 × 8-block JPEG artifacts: each block is restored by the
CNN separately, but considering also its adjacent blocks. Block-
CNN layers are structured on residual blocks since artifacts can be
modeled as a residual added on the original image. In [21], Li et
al. apply multiple context-based channel attentions to capture fea-
tures from different resolutions. The entire architecture is trained
progressively from the image space of low quality factor to that
of high quality factor. The employed architecture is a stack of 4
hourglass (UNet) networks. In [35], Xu et al. address video artifact
removal, proposing a novel end-to-end deep neural network called
“non-local ConvLSTM” (NL-ConvLSTM) that exploits multiple con-
secutive frames. This architecture is structured as an autoencoder.
However, between the two components, they collocated a ConvL-
STM to capture temporal information. Since ConvLSTM is not good
at handling large motions and blur, they also embed the non-local
(NL) mechanism, which can be seen as a special attention.

Several methods have used the Generative Adversarial Network
(GAN) approach. In [8], Galteri et al. apply adversarial training
methods for removal of artifact generated by lossy compression
algorithm for images and videos. A relevant novelty of the work is
the idea of learning the discriminator over sub-patches of a single
generated patch to reduce high frequency noise, such as mosquito
noise which is hard to remove using a full-patch discriminator, and
to train the models using larger batches. To tackle variable com-
pression factor, an ensemble of 𝑁 networks is adopting, to avoid
mode collapse phenomenon when using a single model. In [10]
and [11], Galteri et al. address the problem of artifact removal in
real-time. Respect to [8], the generator is inspired from the blocks
of MobileNetV2, after replacing the standard convolutional layer
with lighter depth-wise separable convolutions. In [24] Mameli et
al. applied the no-GAN approach for compression artifact removal
and also for super-resolution. The no-GAN approach is charac-
terized by an initial pre-training of generator and discriminator,
followed by fine-tuning the generator with very few GAN training
iterations. In [17], Kaneko et al. propose an architecture capable of
removing noise (NR-GAN), compression artifacts (CA-GAN) and
blurring artifacts (BR-GAN) from images. Since these issues may
occur in combination, the three models are merged into one single
BNCR-GAN architecture; in particular, they introduce an adaptive
consistency losses to handle the uncertainty caused by the combina-
tion. In [26], Pourreza et al. study how the quality loss due to video
compression causes a loss of accuracy in the action recognition



task, and propose a GAN-based quality enhancement method to
alleviate the issue. Their architecture employs a frame-recurrent
strategy to gather the temporal information in the enhancement
process: to improve the current frame, they add to the input also
the previous frame, warped (with spatial transformers [14]) in the
direction of the optical flow, estimated with a secondary network.
In [36], Yu et al. address HEVC compression-generated artifact
removal, proposing VR-GAN, a GAN-based architecture, that oper-
ates at inter-frame level. Tomaintain the coherence of the generated
frames, they use flow estimation based on the current and the previ-
ous frame. Location residuals, estimated by the flow net, are added
to the location of the previous frame as motion compensation. Then,
the prediction result and the current low-quality frame are input
to the generator. The estimated location is used to warp the image
reconstructed from the previous frame, and to produce an initial
estimation of the current frame, in a manner similar to [26]. In
[33], He et al. uses an adversarial loss combined with L1 loss to
enhance HEVC compressed videos. The first part of the loss lets
the generator to add missing high frequency details, the second is
the reconstruction term. The generator is a residual network, to
speed up convergence during training. During training, the image
is split in blocks of dimension 32 × 32. In [7], Galteri et al. propose
a full pipeline architecture composed of semantic deep encoding
and decoding. Semantic video encoding allocates more bits to the
regions that depict semantically interesting content, using a seman-
tic mask constructed via deep network for each frame. User studies
on videos crafted in this way have shown little or no damage on
the user experience [34]. On the decoding side, a Relativistic GAN
and a loss that accounts for the segmentation are used.

2.3 Quality metrics
In recent years, new perceptual quality metrics, based on deep
learning, have been proposed, to complement signal-based metrics
such as SSIM and PSNR. These metrics are particularly relevant
when evaluating generative models since. In fact, as reported in
[18] following a subjective study, images generated by GANs may
appear quite realistic and similar to an original, yet they may match
it poorly based on simple pixel comparisons; metrics based on
“naturalness" are thus more suitable in this case.

In [38], Zhang et al. collected a very large dataset of human
judgements about similarity between distorted images (photometric,
noise, blur, spatial and compression distortion), and proposed a
novel full-reference metric, called LPIPS (Learned Perceptual Image
Patch Similarity), that evaluates the distance between image patches
based on deep features; LPIPS outperforms traditional metrics like
SSIM by a large margin in a two alternative forced choice (2AFC)
test. This metric can be used as loss for training purposes.

In [1], Blau andMichaeli propose a generalization of rate-distortion
theory which takes perceptual quality into account. Incorporating
generative adversarial losses has been shown to lead to significantly
better perceptual quality, but at the cost of increased distortion:
their theoretical characterization leads to the fact that, to obtain
good perceptual quality, it is necessary to make a sacrifice in either
the distortion or the rate of the algorithm.

3 THE PROPOSED METHOD
Generative Adversarial Networks (GANs) work by putting in com-
petition two networks, a Generator, which produces fake data, and
a Discriminator, which is trained for discerning fake data (obtained
from the generator) from real data (picked from the training dataset).
As discussed in Sect. 2, GANs have been used for super-resolution
[19] or compression artifact removal, and although they are not
specialized in maximizing signal-based metrics such as PSNR or
SSIM about the enhanced image, the outputs are generally per-
ceived as better quality than those of architectures that do not use
perceptual-driven losses.

3.1 The network architecture
UNets were firstly proposed in [28] for fast and semantic segmen-
tation of biomedical images. The idea was modelling a fully convo-
lutional neural network capable of per-pixel classification or, more
in general, to address image-to-image tasks. The UNet architecture
can be subdivided in three section:

• Encoder : the input is first progressively encoded to smaller
spatial dimension but deeper channel dimension, to extract
higher-level features.

• Decoder: it follows the inverse path, transforming the en-
coded image progressively upsampling by enlarging the spa-
tial resolution and compressing the channel dimension.

• Skip connections: features at the same depth level are concate-
nated channel-wise, creating a direct connection between
the encoder and the decoder, enabling a better information
flow at training time, and providing also a better context to
the decoder, i.e. keeping lower lever features that could be
lost along the contracting path.

We selected UNet as the base for our image-enhancement method
not only because of the success of the architecture in other image-to-
image tasks beyond semantic segmentation, but also for engineer-
ing purposes. The network processes the input at multiple (lower)
scales with respect to the original size, enabling an improved fea-
ture detection, but also implying that this processing will occur at
smaller computational cost, since the convolution operation com-
plexity is squarely dependent to the spatial resolution (and linearly
to the channel depth). In fact, other more complex variants have
been proposed [39], but we base our work on the original version,
since it is simpler and more suited for our real-time constraint that
is particularly stringent when operating on high resolution frames.

Our proposed SR-UNet, an adaptation of UNet for Super-Resolution
and compression artifact removal, is based on a series of modifica-
tion: starting from a fixed number of filters 𝐹

2 , at each level of depth
we double the number of filters until it reaches 𝐹 = 64, meaning
that from the second to the fourth blocks, the number of filters is
limited to 𝐹 and does not increase. This is motivated by the fact
that typically SR models does not need a huge number of filters (dif-
ferently from more abstract tasks e.g. classification). This allowed
to reduce the total number of parameters (see Tab. 1), and stacking
more Conv-ReLU blocks, mostly compensating the lower number
of parameters. The difference between our architecture and the one
proposed in [12] are many: since we focused on producing a fast
model for video SR and not for image SR, the model only processes
the features from the low-resolution space to below, and also we



adopted different residual layers and upsampling techniques. We
also will see that we both train our model for robustness, but we
achieve this in different way: [12] randomly blur the training im-
ages, we encode the videos obtaining a series of artifacts, which
could even introduce some at high-frequency.

To perform the upscaling we employ pixel-shuffle (also known
as sub-pixel convolutional layer [30]), since it is the fastest up-
sample layer available: it comprises a depth-compression of the
output tensor into 12-channels via-convolution operation, and then
these features are reshuffled into an RGB image but at double reso-
lution. Alternatives, such as bilinear upsample with convolution,
the transposed convolution, or even the reshuffling to an higher
dimension with same depth (as in [19]), would add an exaggerated
overhead, since they would work in the high-resolution space. We
also added a direct residual connection between the input image
and the high-resolution output as in Eq. 1.

𝑥𝑆𝑅 = 𝐻𝑎𝑟𝑑 tanh(𝑈 (𝑥𝐿𝑅) + 𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒 (𝑥𝐿𝑅)) (1)

where 𝑥𝑆𝑅 is the super-resolved output, 𝑥𝐿𝑅 is the low-resolution
input,𝑈 is the convolutional SR-network,𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒 is an upsample
filter such as bilinear or bicubic interpolation, and 𝐻𝑎𝑟𝑑 tanh is for
clipping the output between the interval [−1, 1].

Modelling the problem as producing a residual on the top of
the upsampled image is particularly convenient. This forces the
model to focus on the high frequency patterns sharpening edges or
increasing texture details, since the low frequency patterns are still
from the upsampled image. Furthermore, a faster convergence of
the training process is ensured.

Table 1: Parameter comparison between UNet and the pro-
posed SR-UNet.

Architecture # parameters Binary size (MB)
SR-UNet (ours) 740,975 2.96
UNet 2,164,911 8.66

Fig. 2 shows the architecture of the proposed SR-UNet. As shown
in Tab. 1 it has a reduced number of parameters vs. the standard
UNet and its memory footprint is much smaller.

One further modification aimed to increase model capacity with-
out adding computational cost is how we modelled the in-block
skip connections. Skip connections are known to provide many
benefits during training, but cost both in terms of memory and pro-
cessing time, making them less attractive during inference phase.
However, in DiracNets [37] and RepVGG [5] has been proposed
a structural reparameterization for merging the skip connections
(and also batch-normalizations) into one single convolutional 3 × 3
layer. The formula in Eq. 2 represents the basic block employed in
our model.

𝑥 ′ = 𝑅𝑒𝐿𝑈 (W3×3 ∗ 𝑥 +W1×1 ∗ 𝑥 + 𝑥) (2)

where 𝑥 ′ is the output tensor, 𝑥 is the input, W𝑛×𝑛 are the weights
of a convolutional layer with kernel size 𝑛×𝑛. For simplicity, biases
are omitted. The arguments of the non-linear function can be easily
refactored into one single 3 × 3 layer, which filters are computed as
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Figure 2: Architecture of the proposed SR-UNet, with Pix-
elShuffle upsampling. The lower parameters count w.r.t. the
standard UNet is compensated with more layers stacked into
each block.

in Eq. 3:

Ŵ = W3×3 +W𝑝𝑎𝑑

1×1 + 𝑑𝑖𝑎𝑔(Id)3×3 (3)

where W3×3 are the 3 × 3 filters as before; to transform a layer
with 1 × 1 kernels into 3 × 3, it is enough to add a zero-padding
around the filters, and the identity skip connection can be easily
modelled as a layer containing diagonal identity. After reshaping
the skip-connections, the layers can be refactored via weight-sum.

3.2 The proposed loss
For training our models, we employed a multiple loss which com-
prises a weighted sum of LPIPS loss [38] for perceptual similarity,
L1 loss as signal based loss and the adversarial loss. The LPIPS loss
is intended as an improvement of the [16] perceptual loss.

The overall loss function is:

𝐿𝑃𝐼𝑃𝑆 (𝑦, 𝑥) − 𝑆𝑆𝐼𝑀 (𝑦, 𝑥) − 𝜆 log(𝐷 (𝑥)) (4)

where 𝑦 is the high-resolution ground-truth, 𝑥 is the generated
image, 𝜆 is a real parameter equal to 10−3. The LPIPS backbone is
the VGG16 network (thus comparable to the common Perceptual
Loss).We can consider both LPIPS and SSIM losses equally weighted
with 1. We opted for equally weighting LPIPS and SSIM losses, to
obtain a good balance between signal reconstruction and perceptual
quality (i.e. intended as similarity between the distribution of the
high-frequency patterns). We obtained these weights investigating
different combinations of weights for the loss components, and
evaluating their impact in terms of LPIPS and VMAF (for perceptual
quality) and SSIM (for signal-based quality) scores. The 𝜆 weight
for the Adversarial loss is experimentally standard and stable in
literature. Indeed, we tried changing this value, with 2 ∗ 10−3 and
5 ∗ 10−3, but the result was to drive away the network from the
convergence, making harder the entire training process.

3.3 Training details
For training our models, we employed the Adam optimizer with
learning rate 10−4, and trained the model for 80 epochs with the
batch composed of 32 image patches (randomly sampled from the



train set), which was large enough for stabilizing the entire training;
each epoch consists of 1280 iterations, thus the model weights
received slightly more than 100,000 updates. The train patch size
was 96 × 96, and each patch was obtained from one random-crop
per image. The only data-augmentation strategy we applied was
horizontal reflection.We avoided anywarping or rotation transform
for maintaining the consistency with the real frames encoded in
H.265 that do not suffer from such distortions. Training a model
took about 24 hours on a single NVIDIA Titan Xp.

We trained the proposed model using the BVI-DVC dataset [22],
a dataset designed for deep video compression tasks. The dataset is
made of 200 frame sequences, truncated at the 64𝑡ℎ frame regardless
of the frame-rate, that ranges from 25 to 120. The sequences include
a variety of content, from natural scenes to man-made objects and
city scenes, as shown in Fig. 3. The sequence resolution is 2160p,
but downscaled versions have been created by the authors of the
dataset, with resolutions of 1080p, 540p and 270p, leading to a
total of 800 sequences and a total of 51,200 frames. The original
BVI-DVC dataset constitutes the ground-truth for our training
dataset. The train set is randomly split for the 80% for training
and 20% for validating the models. To generate our input data, we
compressed each sequence with the H.265 codec with Constant
Rate Factor (CRF) 23 at half of the resolution. We fixed the CRF
in the attempt to avoid the mode-collapse issue described in [9].
However, it should be kept in mind that even a fixed CRF does
not imply that all the frames have the same quality: e.g. frames
presenting motion will present lower quality than steady ones.
Since we want to apply super-resolution on compressed videos
(thus perform both Artifact Reduction and Super Resolution), it is
fundamental to train the models on the compressed videos rather
than just on the downscaled version of the HQ videos. Training
the model only for SR would cause the model to fail to detect
the features to super-resolve, or to even enlarge the compression
artifacts and reducing the overall quality.

Figure 3: Example frames from the BVI-DVC dataset used to
train the proposed SR-UNet.

4 EXPERIMENTAL RESULTS
4.1 Dataset
Our test set is composed from clips downloaded from 14 non-
compressed clips of the Derf’s Collection [6], that is commonly
used to evaluate video coding and streaming [13], super resolu-
tion [15], compression artifact reduction [11] and visual quality
improvement tasks [4]. The clips were compressed from 1080p to

540p with the H.265 codec with CRF 23, preparing an analogue
setting as the train set. The clips are: Ducks take-off, Crowd run,
Controlled burn, Aspen, Snow mountain, Touchdown pass, Station 2,
Rush hour, Blue sky, Riverbed, Old town cross, Rush field, Into tree
and Sun flower.

4.2 Video quality metrics
To test the quality of our models we employed two signal based
metrics and one perceptual based: Structural Similarity Index Mea-
sure (SSIM) [40], Video Multimethod Assessment Fusion (VMAF)
[25, 27] and LPIPS with AlexNet backbone [38], which is reported to
work better to evaluate the enhancement after compression and/or
super resolution algorithms than using the VGG backbone. SSIM is
an objective full-reference metric and its index varies between 0
and 1, where 1 indicates perfect structural similarity, while 0 indi-
cates no structural similarity. VMAF is an objective full-reference
metric, originally proposed by Netflix, that fuses several existing
quality metrics and other features to predict video quality using a
SVM-based regression to provide a single output score in the range
of 0-100 per video frame; a score of 100 means that the quality is
identical to the reference video. LPIPS is a perceptual full-reference
metric that evaluates the distance between image patches; a higher
score means that two patches are more different perceptually, a
lower score means they are more similar.

4.3 Video quality improvement
In the first experiment we compare our SR-UNet with a UNet base-
line to assess the performance of our proposed changes and, with
a H.265+bicubic interpolation to assess the improvement of the
methods. We compare our method also with two other competing
approaches. In particular, both the base UNet, and a 6-layer ESPCN
[30] network implement Rep-VGG residual layers calibrated for
processing at the same frame-rate; the last competing state-of-the-
art approach is an 8-layer SR-ResNet [19], which is much slower
than the other architectures. All the models have been trained with
the same methodology; frames are rescaled from 540p to 1080p
(Full-HD).

Table 2 reports the results in terms of SSIM, LPIPS and VMAF,
reporting also the frames per second processed by each method,
as obtained on a NVIDIA GTX 1080Ti. We notice that our archi-
tecture largely improves the perceptual metric (LPIPS) over H.265,
thanks to the compression artifacts reduction and to the increase
of frequencies in the high-frequency spectrum, and the quality
improvement is also notable by the increase in VMAF. The SSIM
metric, although being more perception-oriented than PSNR, is
still based on the original signal, thus it is somehow predictable
how its score is reduced by the adversarial and perceptual-driven
training, as reported also in [18]. SR-UNet obtains a large speed-up
over the SR-ResNet while maintaining the same quality. This is
obtained since our model optimizes residual layers, compresses
the up-scaling layer, and removes non-useful batch-normalizations,
exploiting the particular U-Net architecture. An example of the
results is shown in Fig. 9.

In the second experiment we evaluate rate/distortion at different
CRF values, comparing the results of using our SR-Unet to scale
from a 720p (HD) source to 1080p (Full-HD), with that of the source



Table 2: Comparison between models performances. ↑ in-
dicates that higher values are better, ↓ indicates that lower
values are better. Best results are highlighted in bold, second
best are underlined.

Architecture SSIM ↑ LPIPS ↓ VMAF ↑ FPS ↑
SR-UNet (ours) 0.7190 0.2067 84.30 46.1
UNet 0.7273 0.2193 85.32 45.4
SR-ResNet-8 [19] 0.7278 0.2130 84.24 6.4
ESPCN-6 [30] 0.7159 0.2125 82.29 45.0
H.265 + bicubic 0.7209 0.2821 79.15 -

720p resolution and the target 1080p resolution. In this case, the
source 720p is upscaled by SR-UNet to 1440p, then bicubic sampling
is used to downscale to 1080p; this approach is similar in spirit
to that of supersampling anti-aliasing (SSAA), used in computer
graphics to improve the visual quality of renderings. To further
reduce the size and computational cost of the network we reduce
filters and layers by 1/4, resulting in a network size of only 1.1MB.
Fig. 4 reports the distortion in terms of VMAF, while Fig. 5 reports
distortion in terms of LPIPS. Table 3 reports a selection of visual
quality metrics and bitrate for some CRF values. Observing the
curves in Fig. 4 and 5 shows that using SR-UNet results in a visual
quality that is similar to, or better than, that of the 1080p resolution
but a much lower bitrate (20%-33% less bandwidth for the same
quality). This is clearly visible in the table: the bitrate is the same
of the 720p, since the network is applied as a filter before showing
the frame to the user there’s no change in the video stream that
is transmitted, but visual quality in terms of VMAF and LPIPS is
typically better. The table shows, again, that SSIM score is penalized
by the generative approach of our method.

Figure 4: Rate/VMAF-distortion curve the varying of the com-
pression CRF. We observe that after CRF 23-24, the 720p and
1080p curves merge. In this zone, the lower resolution of
720p is compensated from the lesser presence of compres-
sion artifacts, which instead may be visible on the original
resolution.

In the third experiment we fine tune our SR-UNet for each spe-
cific video clip. The idea is that of specializing the SR-UNet for each
video or part of a video that is streamed, sending the model weights

Figure 5: Rate/LPIPS-distortion curve at the varying of the
compression CRF. The LPIPS distance, is way more sensitive
to the higher frequencies sampled at higher resolution, how-
ever has a tendency to ignore some types of artifacts.

Table 3: Comparison of encoding methods performances.
Each triplet compares (from top to bottom): the super-
resolved video metrics, a 1080p reference of similar quality
and the low-quality video fed to the network. After enhance-
ment, the video has similar perceptual quality to the higher
resolution one, while preserving the bitrate fo the low reso-
lution.

Method SSIM ↑ LPIPS ↓ VMAF ↑ Bitrate (kb/s) ↓
720p CRF 18 + SR-UNet 0.7611 0.1251 95.3133 11,846
1080p CRF 22 0.8181 0.1237 94.8185 14,225
720p CRF 18 0.7987 0.1835 92.8792 11,846
720p CRF 21 + SR-UNet 0.7711 0.1494 92.864 7,585
1080p CRF 24 0.8016 0.1440 92.824 10,105
720p CRF 21 0.7793 0.2024 89.964 7,585
720p CRF 23 + SR-UNet 0.7611 0.16790 90.9682 5,678
1080p CRF 26 0.7836 0.1634 90.2208 7,290
720p CRF 23 0.7639 0.2161 87.33 5,678
720p CRF 25 + SR-UNet 0.7402 0.1798 88.174 4,243
1080p CRF 28 0.7737 0.1834 86.920 5,306
720p CRF 25 0.7461 0.2312 84.065 4,243

to the receiver along with the H.265 stream. This approach is feasi-
ble for streaming services like Netflix or Prime Video, that already
encode videos at different bitrates to account for different available
bandwidths; similarly to the creation of multiple encoded streams,
there’s necessity to overfit the network only once. The advantage
with respect to the previous method is we can obtain a better quality
(compared to the previous method) for the about the same bitrate,
maintaining the real-time requirements; the disadvantage is that
this approach can not be applied to live streams. This is possible
thanks to the reduced size of our SR-UNet, that can be compressed
to 1.1MB. It is important to note that the reported bitrate includes
the weights of the network. This approach based on overfitting the
network is similar in spirit to [31], by van Rozendaal et al. , but
differently from them, we do not employ a deep-compression model
as codec, relying instead on the industry standard H.265. Also, we
do not focus on minimizing a Rate-Distortion loss, but we train our
models and assess the results with perceptual metrics and losses.



Figure 6: Rate/VMAF-distortion curve at the varying of the
compression CRF, showing that before a certain threshold it
is possible to further improve the rate/distortion curve.

Figure 7: Rate/LPIPS-distortion curve for various techniques
at the varying of the compression CRF. The LPIPS distance,
is more sensitive to the lack of higher frequencies, however
has a tendency to ignore some types of artifacts.

In the curves represented in Fig. 7 and 6 is reported a comparison
between the overfit SR-UNet, the base SR-UNet and the source and
target resolutions (720p and 1080p). The LPIPS distortion curve
shows that overfitting is always beneficial in terms of quality and
bitrate, while the VMAF distortion curve shows this effect is true
up to CRF 23.

Tab. 4 shows a bitrate comparison between our proposed SR-
UNet overfitting technique, the base SR-Unet and a target 1080p
resolution, to achieve a specific quality. Both LPIPS and VMAF score
are improved and bitrate is further reduced w.r.t. base SR-Unet. An
example is shown in Fig. 10.

In the last experiment we conducted a subjective test based on
the two-alternative forced choice (2AFC) methodology, using the
Versus tool [32]. The proposed test included the inspection of 22
pairs of frames, structured as follows:

• 17 pairs were meant to validate the fidelity of the reconstruc-
tion. For this purpose, we first selected a pair composed of
a 720p low resolution (LR) frame and a 1080p high resolu-
tion (HR) one, in a such way that after the SR process the
two would have been very similar (according to the Fig. 4).

Table 4: Comparison of various encoding methods perfor-
mances. The bitrate related to the CRF 18 and 21 with overfit
depends from the video length in seconds. The weights trans-
mission overhead is already considered into the computation
of the bitrate.

Method SSIM ↑ LPIPS ↓ VMAF ↑ Bitrate (kb/s) ↓
720p CRF 21 + SR overfitted 0.7672 0.1036 94.25 8,250
720p CRF 20 + SR 0.7769 0.1423 93.88 8,786
1080p CRF 23 0.8099 0.1340 93.895 11,961
720p CRF 18 + SR overfitted 0.7840 0.0880 96.52 12,511
1080p CRF 20 0.8349 0.1012 96.27 20,617

Each couple was composed from the super-resolved (SR)
frame (starting from the LR) and the related HR version. The
frame were taken at various configurations (e.g. CRF 21/24,
CRF 24/27, CRF 23/26) to generalize the results on several
rate/distortion settings.

• 5 “trap" pairs were composed by the HR frame and a LR
frame sampled as just explained.

The goal is to evaluate if HR/SR pairs are practically indistinguish-
able, and thus that our proposed reconstruction method is reason-
ably effective. The purpose of the “trap" pairs was in fact to validate
that the user was actually able at least to discern the HR frames from
the LR ones, and also this would have implicitly proven that the en-
hancement operation was effective. Conducting a 2AFC was chosen
to force people to declare a preference for one of the high resolution
(whether HR or SR). The presented frames were randomly cropped
with a window size of 600x768, to avoid the automatic downscaling
operated by the browser. Before starting the test, we recommended
to use at least a Full HD screen of a reasonable display size (more
than 20 inches) and to carefully observe the pictures. For each pair,
the question asked was “Which image is the sharper?". 42 people
participated in the survey.

Figure 8: Results from the 2AFC subjective test, in percentage
for each HR/SR pair.

The results, summarized in Fig. 8, show that the generated images
were very competitivewith the real one, and a number of participant
in fact reported difficulties at choosing between the SR and the
HR, and surprisingly there was a general attitude towards the SR
generated images with 75.91% (vs. the 24.08% for the HR pictures)



Figure 9: Qualitative comparison between models. (a) bicubic filter, (b) our SR-UNet, (c) UNet, (d) ESPCN [30], (e) SR-ResNet-8
[19]. From Old Town Cross clip.

Figure 10: Qualitative comparison between encoded patches and upsampled. Row (1) 720p CRF 21 + overfitting SR, (2) 720p CRF
19 with Super Resolution, (3) 1080p H265 CRF 23. The three configurations have similar distortion factors, but different bitrate
requirements.

of overall preferences; no one had problems at correctly choosing
the HR image over the LR when the “trap" pairs occurred, so we
also proved the perceptual effectiveness of the enhancement. Must
be noticed that, given how we sampled the frames, also the slightly
higher VMAF similarity of the SR frame (see Fig. 4 and Tab. 3)
confirms the subjective results (and viceversa), while the LPIPS
metric would suggest the opposite (Fig. 5).

4.3.1 Qualitative examples. In the following are shown a few ex-
amples of SR-UNet. Fig. 9 compares the proposed network w.r.t. a
bicubic upsample baseline, a UNet baseline and two competing
approaches [19, 30]. Fig. 10 shows a comparison of the fine tuned
SR-Unet vs. the base SR-Unet and the 1080p baseline. The three
configurations have similar visual quality, but using SR-UNet re-
sults in a bandwidth reduction (with respect to the 1080p version)
of 20%, while the finetuned SR-Unet further reduces bandwidth
requirements by 35%.

5 CONCLUSIONS
In this work we have presented a novel network architecture, called
SR-UNet that can be used to perform super resolution and com-
pression artifact removal in videos, thanks to its reduced computa-
tional cost; we have proposed also a loss that combines perceptual
and signal-based losses, within a Generative Adversarial Network
framework. The network can be used to improve the visual quality
of videos compressed with H.265 codec, or to reduce the required
bandwidth while maintaining a specified visual quality. The effec-
tiveness has been demonstrated using both subjective and objective
metrics, considering both signal-based scores (like VMAF) or per-
ceptual ones like LPIPS. Its performance improves w.r.t. a UNet
baseline and other competing state-of-the-art approaches.
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