
Cache Template Attacks:
Automating Attacks on Inclusive Last-Level Caches

Daniel Gruss, Raphael Spreitzer, and Stefan Mangard
Graz University of Technology, Austria

Abstract
Recent work on cache attacks has shown that CPU
caches represent a powerful source of information leak-
age. However, existing attacks require manual identifi-
cation of vulnerabilities, i.e., data accesses or instruction
execution depending on secret information. In this pa-
per, we present Cache Template Attacks. This generic
attack technique allows us to profile and exploit cache-
based information leakage of any program automatically,
without prior knowledge of specific software versions or
even specific system information. Cache Template At-
tacks can be executed online on a remote system without
any prior offline computations or measurements.

Cache Template Attacks consist of two phases. In the
profiling phase, we determine dependencies between the
processing of secret information, e.g., specific key inputs
or private keys of cryptographic primitives, and specific
cache accesses. In the exploitation phase, we derive the
secret values based on observed cache accesses. We il-
lustrate the power of the presented approach in several
attacks, but also in a useful application for developers.
Among the presented attacks is the application of Cache
Template Attacks to infer keystrokes and—even more
severe—the identification of specific keys on Linux and
Windows user interfaces. More specifically, for lower-
case only passwords, we can reduce the entropy per char-
acter from log2(26) = 4.7 to 1.4 bits on Linux systems.
Furthermore, we perform an automated attack on the T-
table-based AES implementation of OpenSSL that is as
efficient as state-of-the-art manual cache attacks.

1 Introduction

Cache-based side-channel attacks have gained increas-
ing attention among the scientific community. First, in
terms of ever improving attacks against cryptographic

Original publication in the Proceedings of the 24th Annual
USENIX Security Symposium (USENIX Security ’15) [15].

implementations, both symmetric [4, 6, 17, 40, 42, 54] as
well as asymmetric cryptography [3, 7, 9, 55], and sec-
ond, in terms of developing countermeasures to prevent
these types of attacks [32, 35]. Recently, Yarom and
Falkner [56] proposed the Flush+Reload attack, which
has been successfully applied against cryptographic im-
plementations [3, 18, 23]. Besides the possibility of
attacking cryptographic implementations, Yarom and
Falkner pointed out that their attack might also be used
to attack other software as well, for instance, to collect
keystroke timing information. However, no clear indica-
tion is given on how to exploit such vulnerabilities with
their attack. A similar attack has already been suggested
in 2009 by Ristenpart et al. [45], who reported being
able to gather keystroke timing information by observ-
ing cache activities on an otherwise idle machine.

The limiting factor of all existing attacks is that sophis-
ticated knowledge about the attacked algorithm or soft-
ware is necessary, i.e., access to the source code or even
modification of the source code [7] is required in order
to identify vulnerable memory accesses or the execution
of specific code fragments manually.

In this paper, we make use of the Flush+Reload at-
tack [56] and present the concept of Cache Template At-
tacks,1 a generic approach to exploit cache-based vul-
nerabilities in any program running on architectures with
shared inclusive last-level caches. Our attack exploits
four fundamental concepts of modern cache architectures
and operating systems.

1. Last-level caches are shared among all CPUs.
2. Last-level caches are inclusive, i.e., all data which

is cached within the L1 and L2 cache must also be
cached in the L3 cache. Thus, any modification of
the L3 cache on one core immediately influences
the cache behavior of all other cores.

3. Cache lines are shared among different processes.
4. The operating system allows programs to map any

1The basic framework can be found at https://github.com/
IAIK/cache_template_attacks.

other program binary or library, i.e., code and static
data, into their own address space.

Based on these observations, we demonstrate how to per-
form Cache Template Attacks on any program automat-
ically in order to determine memory addresses which
are accessed depending on secret information or specific
events. Thus, we are not only able to attack crypto-
graphic implementations, but also any other event, e.g.,
keyboard input, which might be of interest to an attacker.

We demonstrate how to use Cache Template Attacks
to derive keystroke information with a deviation of less
than 1 microsecond from the actual keystroke and an
accuracy of almost 100%. With our approach, we are
not only able to infer keystroke timing information, but
even to infer specific keys pressed on the keyboard, both
for GTK-based Linux user interfaces and Windows user
interfaces. Furthermore, all attacks to date require so-
phisticated knowledge of the attacked software and the
executable itself. In contrast, our technique can be ap-
plied to any executable in a generic way. In order to
demonstrate this, we automatically attack the T-table-
based AES [10, 36] implementation of OpenSSL [38].

Besides demonstrating the power of Cache Template
Attacks to exploit cache-based vulnerabilities, we also
discuss how this generic concept supports developers in
detecting cache-based information leaks within their own
software, including third party libraries. Based on the in-
sights we gained during the development of the presented
concept, we also present possible countermeasures to
mitigate specific types of cache attacks.

Outline. The remaining paper is organized as follows.
In Section 2, we provide background information on
CPU caches, shared memory, and cache attacks in gen-
eral. We describe Cache Template Attacks in Section 3.
We illustrate the basic idea on an artificial example pro-
gram in Section 4 and demonstrate Cache Template At-
tacks against real-world applications in Section 5. In
Section 6, we discuss countermeasures against cache at-
tacks in general. Finally, we conclude in Section 7.

2 Background and Related Work

In this section, we give a basic introduction to the con-
cept of CPU caches and shared memory. Furthermore,
we provide a basic introduction to cache attacks.

2.1 CPU Caches
The basic idea of CPU caches is to hide memory ac-
cesses to the slow physical memory by buffering fre-
quently used data in a small and fast memory. Today,
most architectures employ set-associative caches, mean-
ing that the cache is divided into multiple cache sets and

each cache set consists of several cache lines (also called
ways). An index is used to map specific memory loca-
tions to the sets of the cache memory.

We distinguish between virtually indexed and physi-
cally indexed caches, which derive the index from the
virtual or physical address, respectively. In general, vir-
tually indexed caches are considered to be faster than
physically indexed caches. However, the drawback of
virtually indexed caches is that different virtual addresses
mapping to the same physical address are cached in dif-
ferent cache lines. In order to uniquely identify a spe-
cific cache line within a cache set, so-called tags are
used. Again, caches can be virtually tagged or physically
tagged. A virtual tag has the same drawback as a virtual
index. Physical tags, however, are less expensive than
physical indices as they can be computed simultaneously
with the virtual index.

In addition, there is a distinction between inclusive and
exclusive caches. On Intel systems, the L3 cache is an
inclusive cache, meaning that all data within the L1 and
L2 caches are also present within the L3 cache. Further-
more, the L3 cache is shared among all cores. Due to
the shared L3 cache, executing code or accessing data on
one core has immediate consequences for all other cores.
This is the basis for the Flush+Reload [56] attack as de-
scribed in Section 2.3.

Our test systems (Intel Core i5-2/3 CPUs) have
two 32 KB L1 caches—one for data and one for
instructions—per core, a unified L2 cache of 256 KB,
and a unified L3 cache of 3 MB (12 ways) shared among
all cores. The cache-line size is 64 bytes for all caches.

2.2 Shared Memory

Operating systems use shared memory to reduce memory
utilization. For instance, libraries used by several pro-
grams are shared among all processes using them. The
operating system loads the libraries into physical mem-
ory only once and maps the same physical pages into the
address space of each process.

The operating system employs shared memory in sev-
eral more cases. First, when forking a process, the mem-
ory is shared between the two processes. Only when
the data is modified, the corresponding memory regions
are copied. Second, a similar mechanism is used when
starting another instance of an already running program.
Third, it is also possible for user programs to request
shared memory using system calls like mmap.

The operating system tries to unify these three cate-
gories. On Linux, mapping a program file or a shared
library file as a read-only memory with mmap results
in sharing memory with all these programs, respec-
tively programs using the same shared library or pro-
gram binary. This is also possible on Windows using the

2

LoadLibrary function. Thus, even if a program is stat-
ically linked, its memory is shared with other programs
which execute or map the same binary.

Another form of shared memory is content-based page
deduplication. The hypervisor or operating system scans
the physical memory for pages with identical content.
All mappings to identical pages are redirected to one
of the pages while the other pages are marked as free.
Thus, memory is shared between completely unrelated
processes and even between processes running in differ-
ent virtual machines. When the data is modified by one
process, memory is duplicated again. These examples
demonstrate that code as well as static data can be shared
among processes, even without their knowledge. Never-
theless, page deduplication can enhance system perfor-
mance and besides the application in cloud systems, it is
also relevant in smaller systems like smartphones.

User programs can retrieve information on their virtual
and physical memory using operating-system services
like /proc/<pid>/maps on Linux or tools like vmmap

on Windows. The list of mappings typically includes all
loaded shared-object files and the program binary.

2.3 Cache Attacks

Cache attacks are a specific type of side-channel attacks
that exploit the effects of the cache memory on the execu-
tion time of algorithms. The first theoretical attacks were
mentioned by Kocher [29] and Kelsey et al. [27]. Later
on, practical attacks for DES were proposed by Page [42]
as well as Tsunoo et al. [51]. In 2004, Bernstein [4]
proposed the first time-driven cache attack against AES.
This attack has been investigated quite extensively [37].

A more fine-grained attack has been proposed by Per-
cival [43], who suggested to measure the time to access
all ways of a cache set. As the access time correlates with
the number of occupied cache ways, an attacker can de-
termine the cache ways occupied by other processes. At
the same time, Osvik et al. [40] proposed two fundamen-
tal techniques that allow an attacker to determine which
specific cache sets have been accessed by a victim pro-
gram. The first technique is Evict+Time, which consists
of three steps. First, the victim program is executed and
its execution time is measured. Afterwards, an attacker
evicts one specific cache set and finally measures the ex-
ecution time of the victim again. If the execution time
increased, the cache set was probably accessed during
the execution.

The second technique is Prime+Probe, which is sim-
ilar to Percival’s attack. During the Prime step, the at-
tacker occupies specific cache sets. After the victim pro-
gram has been scheduled, the Probe step is used to deter-
mine which cache sets are still occupied.

Later on, Gullasch et al. [17] proposed a significantly

more powerful attack that exploits the fact that shared
memory is loaded into the same cache sets for differ-
ent processes. While Gullasch et al. attacked the L1
cache, Yarom and Falkner [56] presented an improve-
ment called Flush+Reload that targets the L3 cache.

Flush+Reload relies on the availability of shared mem-
ory and especially shared libraries between the attacker
and the victim program. An attacker constantly flushes
a cache line using the clflush instruction on an ad-
dress within the shared memory. After the victim has
been scheduled, the attacker measures the time it takes
to reaccess the same address again. The measured time
reveals whether the data has been loaded into the cache
by reaccessing it or whether the victim program loaded
the data into the cache before reaccessing. This allows
the attacker to determine the memory accesses of the vic-
tim process. As the L3 cache is shared among all cores,
it is not necessary to constantly interrupt the victim pro-
cess. Instead, both processes run on different cores while
still working on the same L3 cache. Furthermore, the
L3 cache is a unified inclusive cache and, thus, even al-
lows to determine when a certain instruction is executed.
Because of the size of the L3 cache, there are signifi-
cantly fewer false negative cache-hit detections caused
by evictions. Even though false positive cache-hit detec-
tions (as in Prime+Probe) are not possible because of the
shared-memory-based approach, false positive cache hits
can still occur if data is loaded into the cache acciden-
tally (e.g., by the prefetcher). Nevertheless, applications
of Flush+Reload have been shown to be quite reliable
and powerful, for example, to detect specific versions of
cryptographic libraries [24], to revive supposedly fixed
attacks (e.g., Lucky 13) [25] as well as to improve at-
tacks against T-table-based AES implementations [18].

As shared memory is not always available between
different virtual machines in the cloud, more recent cache
attacks use the Prime+Probe technique to perform cache
attacks across virtual machine borders. For example, Ira-
zoqui et al. [21] demonstrated a cross-VM attack on a
T-Table-based AES implementation and Liu et al. [33]
demonstrated a cross-VM attack on GnuPG. Both attacks
require manual identification of exploitable code and
data in targeted binaries. Similarly, Maurice et al. [34]
built a cache-index-agnostic cross-VM covert channel
based on Prime+Probe.

Simultaneous to our work, Oren et al. [39] devel-
oped a cache attack from within sandboxed JavaScript
to attack user-specific data like network traffic or mouse
movements. Contrary to existing attack approaches, we
present a general attack framework to exploit cache vul-
nerabilities automatically. We demonstrate the effective-
ness of this approach by inferring keystroke informa-
tion and, for comparison reasons, by attacking a T-table-
based AES implementation.

3

3 Cache Template Attacks

Chari et al. [8] presented template attacks as one of
the strongest forms of side-channel attacks. First, side-
channel traces are generated on a device controlled by the
attacker. Based on these traces, the template—an exact
model of signal and noise—is generated. A single side-
channel trace from an identical device with unknown key
is then iteratively classified using the template to derive
the unknown key.

Similarly, Brumley and Hakala [7] described cache-
timing template attacks to automatically analyze and ex-
ploit cache vulnerabilities. Their attack is based on
Prime+Probe on the L1 cache and, thus, needs to run on
the same core as the spy program. Furthermore, they
describe a profiling phase for specific operations exe-
cuted in the attacked binary, which requires manual work
or even modification of the attacked software. In con-
trast, our attack only requires an attacker to know how
to trigger specific events in order to attack them. Subse-
quently, Brumley and Hakala match these timing tem-
plates against the cache timing observed. In contrast,
we match memory-access templates against the observed
memory accesses.

Inspired by their work we propose Cache Template At-
tacks. The presented approach of Cache Template At-
tacks allows the exploitation of any cache vulnerability
present in any program on any operating system executed
on architectures with shared inclusive last-level caches
and shared memory enabled. Cache Template Attacks
consist of two phases: 1) a profiling phase, and 2) an ex-
ploitation phase. In the profiling phase, we compute a
Cache Template matrix containing the cache-hit ratio on
an address given a specific target event in the binary un-
der attack. The exploitation phase uses this Cache Tem-
plate matrix to infer events from cache hits.

Both phases rely on Flush+Reload and, thus, attack
code and static data within binaries. In both phases the
attacked binary is mapped into read-only shared mem-
ory in the attacker process. By accessing its own vir-
tual addresses in the allocated read-only shared memory
region, the attacker accesses the same physical memory
and the same cache lines (due to the physically-indexed
last level cache) as the process under attack. Therefore,
the attacker completely bypasses address space layout
randomization (ASLR). Also, due to shared memory, the
additional memory consumption caused by the attacker
process is negligible, i.e., in the range of a few megabytes
at most.

In general, both phases are performed online on the
attacked system and, therefore, cannot be prevented
through differences in binaries due to different versions
or the concept of software diversity [12]. However, if
online profiling is not possible, e.g., in case the events

must be triggered by a user or Flush+Reload is not pos-
sible on the attacked system, it can also be performed in a
controlled environment. Below, we describe the profiling
phase and the exploitation phase in more detail.

3.1 Profiling Phase
The profiling phase measures how many cache hits occur
on a specific address during the execution of a specific
event, i.e., the cache-hit ratio. The cache-hit ratios for
different events are stored in the Cache Template matrix
which has one column per event and one row per address.
We refer to the column vector for an event as a profile.
Examples of Cache Template matrices can be found in
Section 4 and Section 5.1.

An event in terms of a Cache Template Attack can be
anything that involves code execution or data accesses,
e.g., low-frequency events, such as keystrokes or receiv-
ing an email, or high-frequency events, such as encryp-
tion with one or more key bits set to a specific value. To
automate the profiling phase, it must be possible to trig-
ger the event programmatically, e.g., by calling a func-
tion to simulate a keypress event, or executing a program.

The Cache Template matrix is computed in three steps.
The first step is the generation of the cache-hit trace and
the event trace. This is the main computation step of the
Cache Template Attack, where the data for the Template
is measured. In the second step, we extract the cache-hit
ratio for each trace and store it in the Cache Template
matrix. In a third post-processing step, we prune rows
and columns which contain redundant information from
the matrix. Algorithm 1 summarizes the profiling phase.
We explain the corresponding steps in detail below.

Algorithm 1: Profiling phase.
Input: Set of events E, target program binary B,

duration d
Output: Cache Template matrix T

Map binary B into memory
foreach event e in E do

foreach address a in binary B do
while duration d not passed do

simultaneously
Trigger event e and save event trace g(E)a,e
Flush+Reload attack on address a

and save cache-hit trace g(H)
a,e

end
Extract cache-hit ratio Ha,e from g(E)a,e

and g(H)
a,e and store it in T

end
end
Prune Cache Template matrix T

4

0 0.1 0.2

Miss

Hit

TIME IN CYCLES

2.24 2.25 2.26

·107

Event trace Cache-hit trace

E
ve

nt
st

ar
t

C
ac

he
-h

it
ph

as
e

E
ve

nt
en

d

Figure 1: Trace of a single keypress event for address
0x4ebc0 of libgdk.so.

Cache-Hit Trace and Event Trace. The generation of
the cache-hit trace and the event trace is repeated for each
event and address for the specified duration (the while
loop of Algorithm 1). The cache-hit trace g(H)

a,e is a binary
function which has value 1 for every timestamp t where
a cache hit has been observed. The function value re-
mains 1 until the next timestamp t where a cache miss has
been observed. We call subsequent cache hits a cache-hit
phase. The event trace g(E)a,e is a binary function which has
value 1 when the processing of one specific event e starts
or ends and value 0 for all other points.

In the measurement step, the binary under attack is
executed and the event is triggered constantly. Each ad-
dress of the attacked binary is profiled for a specific du-
ration d. It must be long enough to trigger one or more
events. Therefore, d depends only on the execution time
of the event to be measured. The more events triggered
within the specified duration d, the more accurate the re-
sulting profile is. However, increasing the duration d in-
creases the overall time required for the profiling phase.

The results of this measurement step are a cache-hit
trace and an event trace, which are generated for all ad-
dresses a in the binary and all events e we want to profile.
An excerpt of such a cache-hit trace and the correspond-
ing event trace is shown in Figure 1. The start of the
event is measured directly before the event is triggered.
As we monitor library code, the cache-hit phase is mea-
sured before the attacked binary observes the event.

The generation of the traces can be sped up by two
factors. First, in case of a cache miss, the CPU always
fetches a whole cache line. Thus, we cannot distinguish
between offsets of different accesses within a cache line
and we can deduce the same information by probing only
one address within each cache-line sized memory area.

Second, we reduce the overall number of triggered
events by profiling multiple addresses at the same time.
However, profiling multiple addresses on the same page
can cause prefetching of more data from this page.

Therefore, we can only profile addresses on different
pages simultaneously. Thus, profiling all pages only
takes as long as profiling a single page.

In case of low-frequency events, it is possible to pro-
file all pages within one binary in parallel. However, this
may lead to less accurate cache-hit traces g(H)

a,e , i.e., tim-
ing deviations above 1 microsecond from the real event,
which is only acceptable for low-frequency events.

Hit-Ratio Extraction. After the cache-hit trace and
the event trace have been computed for a specific event e
and a specific address a (the while loop of Algorithm 1),
we derive the cache-hit ratio for each event and address.
The cache-hit ratio Ha,e is either a simple value or a time-
dependent ratio function. In our case it is the ratio of
cache hits on address a and the number of times the event
e has been triggered within the profiling duration d.

To illustrate the difference between a cache-hit ratio
with time dependency and without time dependency, we
discuss two such functions. The cache-hit ratio with
time dependency can be defined as follows. The event
traces contain the start and end points of the processing
of one event e. These start and end points define the rel-
evant parts (denoted as slices) within the cache-hit trace.
The slices are stored in a vector and scaled to the same
length. Each slice contains a cache-hit pattern relative to
the event e. If we average over this vector, we get the
cache-hit ratio function for event e.

The second, much simpler approach is to define the
cache-hit ratio without time dependency. In this case, we
count the number of cache hits k on address a and divide
it by the number of times n the event e has been triggered
within the profiling duration d. That is, we define Ha,e =
k
n . In case of a low-noise side channel and event detection
through single cache hits, it is sufficient to use a simple
hit-ratio extraction function.

Like the previous step, this step is repeated for all ad-
dresses a in the binary b and all events e to be profiled.
The result is the full Cache Template matrix T . We de-
note the column vectors ~pe as profiles for specific events.

Pruning. In the exploitation phase, we are limited re-
garding the number of addresses we can attack. There-
fore, we want to reduce the number of addresses in the
Cache Template. We remove redundant rows from the
Cache Template matrix and merge events which cannot
be distinguished based on their profiles ~pe.

As cache hits can be independent of an event, the mea-
sured cache-hit ratio on a specific address can be inde-
pendent of the event, i.e., code which is always executed,
frequent data accesses by threads running all the time,
or code that is never executed and data that is never ac-
cessed. In order to be able to detect an event e, the set

5

of events has to contain at least one event e′ which does
not include event e. For example, in order to be able to
detect the event “user pressed key A” we need to profile
at least one event where the user does not press key A.

The pruning happens in three steps on the matrix.
First, the removal of all addresses that have a small dif-
ference between minimum and maximum cache-hit ra-
tio for all events. Second, merging all similar columns
(events) into one set of events, i.e., events that cannot be
distinguished from each other are merged into one col-
umn. The similarity measure for this is, for example,
based on a mean squared error (MSE) function. Third,
the removal of redundant lines. These steps ensure that
we select the most interesting addresses and also allows
us to reduce the attack complexity by reducing the over-
all number of monitored addresses.

We measure the reliability of a cache-based side chan-
nel by true and false positives as well as true and false
negatives. Cache hits that coincide with an event are
counted as true positive and cache hits that do not coin-
cide with an event as false positive. Cache misses which
coincide with an event are counted as true negative and
cache misses which do not coincide with an event as false
negative. Based on these four values we can determine
the accuracy of our Template, for instance, by computing
the F-Score, which is defined as the harmonic mean of
the cache-hit ratio and the positive predictive value (per-
centage of true positives of the total cache hits). High
F-Score values show that we can distinguish the given
event accurately by attacking a specific address. In some
cases further lines can be pruned from the Cache Tem-
plate matrix based on these measures. The true positive
rate and the false positive rate for an event e can be de-
termined by the profile ~pe of e and the average over all
profiles except e.

Runtime of the Profiling Phase. Measuring the
cache-hit ratio is the most expensive step in our attack.
To quantify the cost we give two examples. In both
cases we want to profile a 1 MB library, once for a low-
frequency event, e.g., a keypress, and once for a high-
frequency event, e.g., an encryption. In both cases, we
try to achieve a runtime which is realistic for offline and
online attacks while maintaining a high accuracy.

We choose a profiling duration of d = 0.8 seconds for
the low-frequency event. During 0.8 seconds we can trig-
ger around 200 events, which is enough to create a highly
accurate profile. Profiling each address in the library for
0.8 seconds would take 10 days. Profiling only cache-
line-aligned addresses still takes 4 hours. Applying both
optimizations, the full library is profiled in 17 seconds.

In case of the high-frequency event, we attack an en-
cryption. We assume that one encryption and the cor-
responding Flush+Reload measurement take 520 cycles

on average. As in the previous example, we profile each
address 200 times and, thus, we need 40–50 microsec-
onds per address, i.e., d = 50µs. The basic attack takes
less than 55 seconds to profile the full library for one
event. Profiling only cache-line-aligned addresses takes
less than 1 second and applying both optimizations re-
sults in a negligible runtime.

As already mentioned above, the accuracy of the re-
sulting profile depends on how many times an event can
be triggered during profiling duration d. In both cases we
chose durations which are more than sufficient to create
accurate profiles and still achieve reasonable execution
times for an online attack. Our observations showed that
it is necessary to profile each event at least 10 times to
get meaningful results. However, profiling an event more
than a few hundred times does not increase the accuracy
of the profile anymore.

3.2 Exploitation Phase
In the exploitation phase we execute a generic spy pro-
gram which performs either the Flush+Reload or the
Prime+Probe algorithm. For all addresses in the Cache
Template matrix resulting from the profiling phase, the
cache activity is constantly monitored.

We monitor all addresses and record whether a cache
hit occurred. This information is stored in a boolean vec-
tor~h. To determine which event occurred based on this
observation, we compute the similarity S(~h,~pe) between
~h and each profile ~pe from the Cache Template matrix.
The similarity measure S can be based, for example, on
a mean squared error (MSE) function. Algorithm 2 sum-
marizes the exploitation phase.

Algorithm 2: Exploitation phase.
Input: Target program binary b,
Cache Template matrix T = (~pe1 ,~pe2 , ...,~pen)

Map binary b into memory
repeat

foreach address a in T do
Flush+Reload attack on address a
Store 0/1 in~h[a] for cache miss/cache hit

end
if ~pe equals~h w.r.t. similarity measure then

Event e detected
end

The exploitation phase has the same requirements as
the underlying attack techniques. The attacker needs to
be able to execute a spy program on the attacked sys-
tem. In case of Flush+Reload, the spy program needs
no privileges, except opening the attacked program bi-
nary in a read-only shared memory. It is even possible

6

1 i n t map [1 3 0] [1 0 2 4] = {{−1U} , . . . ,{ −1 3 0U}} ;
2 i n t main (i n t argc , char∗∗ a rgv) {
3 whi le (1) {
4 i n t c = g e t c h a r () ; / / u n b u f f e r e d
5 i f (map [(c % 128) + 1] [0] == 0)
6 e x i t (−1) ;
7 } }

Listing 1: Victim program with large array on Linux

to attack binaries running in a different virtual machine
on the same physical machine, if the hypervisor has page
deduplication enabled. In case of Prime+Probe, the spy
program needs no privileges at all and it is even possi-
ble to attack binaries running in a different virtual ma-
chine on the same physical machine, as shown by Irazo-
qui et al. [21]. However, the Prime+Probe technique is
more susceptible to noise and therefore the exploitation
phase will produce less reliable results, making attacks
on low-frequency events more difficult.

The result of the exploitation phase is a log file con-
taining all detected events and their corresponding times-
tamps. The interpretation of the log file still has to be
done manually by the attacker.

4 Attacks on Artificial Applications

Before we actually exploit cache-based vulnerabilities in
real applications in Section 5, we demonstrate the basic
working principle of Cache Template Attacks on two ar-
tificial victim programs. These illustrative attacks show
how Cache Template Attacks automatically profile and
exploit cache activity in any program. The two attack
scenarios we demonstrate are: 1) an attack on lookup
tables, and 2) an attack on executed instructions. Hence,
our ideal victim program or library either contains a large
lookup table which is accessed depending on secret in-
formation, e.g., depending on secret lookup indices, or
specific portions of program code which are executed
based on secret information.

Attack on Data Accesses. For demonstration pur-
poses, we spy on simple events like keypresses. In
our victim program, shown in Listing 1, each keypress
causes a memory access in a large array called map.
These key-based accesses are 4096 bytes apart from each
other to avoid triggering the prefetcher. The array is ini-
tialized with static values in order to place it in the data
segment and to guarantee that each page contains differ-
ent data and, thus, is not deduplicated in any way. It is
necessary to place it in the data segment in order to make
it shareable with the spy program.

In the profiling phase of the Cache Template Attack,
we simulate different keystroke events using the X11 au-

A
D

D
R

E
S

S

KEY
0 1 2 3 4 5 6 7 8 9

0x32040

0x33040

0x34040

0x35040

0x36040

0x37040

0x38040

0x39040

0x3a040

0x3b040

Figure 2: Cache Template matrix for the artificial victim
program shown in Listing 1. Dark cells indicate high
cache-hit ratios.

tomation library libxdo. This library can be linked stat-
ically into the spy program, i.e., it does not need to be
installed. The Cache Template matrix is generated as de-
scribed in Section 3. Within a duration of d = 0.8 sec-
onds we simulated around 700 keypress events. The re-
sulting Cache Template matrix can be seen in Figure 2
for all number keys. We observe cache hits on addresses
that are exactly 4 096 bytes apart, which is due to the data
type and the dimension of the map array. In our measure-
ments, there were less than 0.3% false positive cache hits
on the corresponding addresses and less than 2% false
negative cache hits. The false positive and false negative
cache hits are due to the high key rate in the keypress
simulation.

For verification purposes, we executed the generated
keylogger for a period of 60 seconds and randomly
pressed keys on the keyboard. In this setting we mea-
sured no false positives and no false negatives at all.
This results from significantly lower key rates than in the
profiling phase. The table is not used by any process
other than the spy and the victim process and the proba-
bility that the array access happens exactly between the
reload and the flush instruction is rather small, as we have
longer idle periods than during the profiling phase. Thus,
we are able to uniquely identify each key without errors.

Attack on Instruction Executions. The same attack
can easily be performed on executed instructions. The
source code for this example is shown in Listing 2. Each
key is now processed in its own function, as defined by
the CASE(X) macro. The functions are page aligned to
avoid prefetcher activity. The NOP1024 macro generates
1024 nop instructions, which is enough to avoid acciden-
tal code prefetching of function code.

Our measurements show that there is no difference
between Cache Template Attacks on code and data ac-
cesses.

Performance Evaluation. To examine the perfor-
mance limits of the exploitation phase of Cache Template
Attacks, we evaluated the number of addresses which can

7

1 # d e f i n e NOP1024 /∗ 1024 t i m e s asm (” nop ”) ; ∗ /
2 # d e f i n e CASE(X) case X:\
3 { ALIGN(0 x1000) void f ##X() { NOP1024 } ;\
4 f ##X() ; break ; }
5 i n t main (i n t argc , char∗∗ a rgv) {
6 whi le (1) {
7 i n t c = g e t c h a r () ; / / u n b u f f e r e d
8 sw i t ch (c) {
9 CASE (0) ;

10 / / . . .
11 CASE(1 2 8) ;
12 } } }

Listing 2: Victim program with long functions on Linux

be accurately monitored simultaneously at different key
rates. At a key rate of 50 keys per second, we man-
aged to spy on 16000 addresses simultaneously on an
Intel i5 Sandy Bridge CPU without any false positives or
false negatives. The first errors occurred when monitor-
ing 18000 addresses simultaneously. At a key rate of 250
keys per second, which is the maximum on our system,
we were able to spy on 4000 addresses simultaneously
without any errors. The first errors occurred when moni-
toring 5000 addresses simultaneously. In both cases, we
monitor significantly more addresses than in any practi-
cal cache attack today.

However, monitoring that many addresses is only pos-
sible if their position in virtual memory is such that the
prefetcher remains inactive. Accessing several consec-
utive addresses on the same page causes prefetching of
more data, resulting in cache hits although no program
accessed the data. The limiting effect of the prefetcher
on the Flush+Reload attack has already been observed
by Yarom and Benger [55]. Based on these observations,
we discuss the possibility of using the prefetcher as an
effective countermeasure against cache attacks in Sec-
tion 6.3.

5 Attacks on Real-World Applications

In this section, we consider an attack scenario where an
attacker is able to execute an attack tool on a targeted
machine in unprivileged mode. By executing this at-
tack tool, the attacker extracts the cache-activity profiles
which are exploited subsequently. Afterwards, the at-
tacker collects the secret information acquired during the
exploitation phase.

For this rather realistic and powerful scenario we
present various case studies of attacks launched against
real applications. We demonstrate the power of automat-
ically launching cache attacks against any binary or li-
brary. First, we launch two attacks on Linux user inter-
faces, including GDK-based user interfaces, and an at-
tack against a Windows user interface. In all attacks we

simulate the user input in the profiling phase. Thus, the
attack can be automated on the device under attack. To
demonstrate the range of possible applications, we also
present an automated attack on the T-table-based AES
implementation of OpenSSL 1.0.2 [38].

5.1 Attack on Linux User Interfaces
There exists a variety of software-based side-channel at-
tacks on user input data. These attacks either measure
differences in the execution time of code in other pro-
grams or libraries [49], approximate keypresses through
CPU and cache activity [45], or exploit system ser-
vices leaking user input data [57]. In particular,
Zhang et al. [57] use information about other processes
from procfs on Linux to measure inter-keystroke tim-
ings and derive key sequences. Their proposed coun-
termeasures can be implemented with low costs and
prevent their attack completely. We, however, employ
Cache Template Attacks to find and exploit leaking side-
channel information in shared libraries automatically in
order to spy on keyboard input.

Given root access to the system, it is trivial to write
a keylogger on Linux using /dev/input/event* de-
vices. Furthermore, the xinput tool can also be used to
write a keylogger on Linux, but root access is required to
install it. However, using our approach of Cache Tem-
plate Attacks only requires the unprivileged execution
of untrusted code as well as the capability of opening
the attacked binaries or shared libraries in a read-only
shared memory. In the exploitation phase one round of
Flush+Reload on a single address takes less than 100
nanoseconds. If we measure the average latency between
keypress and cache hit, we can determine the actual key-
press timing up to a few hundred nanoseconds. Com-
pared to the existing attacks mentioned above, our at-
tack is significantly more accurate in terms of both event
detection (detection rates near 100%) and timing devia-
tions.

In all attacks presented in this section we compute
time-independent cache-hit ratios.

Attack on the GDK Library. Launching the Cache
Template profiling phase on different Linux applications
revealed thousands of addresses in different libraries, bi-
naries, and data files showing cache activity upon key-
presses. Subsequently, we targeted different keypress
events in order to find addresses distinguishing the differ-
ent keys. Figure 3 shows the Cache Template of a mem-
ory area in the GDK library libgdk-3.so.0.1000.8,
a part of the GTK framework which is the default user-
interface framework on many Linux distributions.

Figure 3 shows several addresses that yield a cache
hit with a high accuracy if and only if a certain key is

8

A
D

D
R

E
S

S

KEY
g h i j k l m n o p q r s t u v w x y z

0x7c100

0x7c140

0x7c180

0x7c1c0

0x7c200

0x7c240

0x7c280

0x7c340

0x7c380

0x7c3c0

0x7c400

0x7c440

0x7c480

0x7c4c0

0x7c500

0x7c540

0x7c580

0x7c5c0

0x7c600

0x7c640

0x7c680

0x7c6c0

0x7c700

0x7c740

0x7c780

0x7c7c0

0x7c800

0x7c840

0x7c880

0x7c8c0

0x7c900

0x7c940

0x7c980

0x7c9c0

0x7ca00

0x7cb80

0x7cc40

0x7cc80

0x7ccc0

0x7cd00

0x7cd40

Figure 3: Excerpt of the GDK Cache Template. Dark
cells indicate key-address-pairs with high cache-hit ra-
tios.

pressed. For instance, every keypress on key n results in
cache hit on address 0x7c800, whereas the same address
reacts in only 0.5% of our tests on other keypresses. Fur-
thermore, we found a high cache-hit ratio on some ad-
dresses when a key is pressed (i.e., 0x6cd00 in libgdk),
the mouse is moved (i.e., 0x28760 in libgdk) or a mod-
ifier key is pressed (i.e., 0x72fc0 in libgdk). We also
profiled the range of keys a–f but it is omitted from Fig-
ure 3 because no high cache-hit ratios have been ob-
served for the shown addresses.

We use the spy tool described in Section 3.2 in order
to spy on events based on the Cache Template. We are
able to accurately determine the following sets of pressed
keys: {i},{ j},{n},{q},{v},{l,w},{u,z},{g,h,k, t}. That
is, we cannot distinguish between keys in the same set,
but keys in one set from keys in other sets. Similarly, we
can deduce whether a key is contained in none of these
sets.

Not as part of our attack, but in order to understand
how keyboard input is processed in the GDK library, we
analyzed the binary and the source code. In general,
we found out that most of the addresses revealed in the
profiling phase point to code executed while processing
keyboard input. The address range discussed in this sec-
tion contains the array gdk_keysym_to_unicode_tab

which is used to translate key symbols to unicode special

characters. The library performs a binary search on this
array, which explains why we can identify certain keys
accurately, namely the leaf nodes in the binary search.

As the corresponding array is used for keyboard input
in all GDK user-interface components, including pass-
word fields, our spy tool works for all applications that
use the GDK library. This observation allows us to use
Cache Template Attacks to build powerful keyloggers
for GDK-based user interfaces automatically. Even if
we cannot distinguish all keys from each other, Cache
Template Attacks allow us to significantly reduce the
complexity of cracking a password. In this scenario,
we are able to identify 3 keys reliably, as well as the
total number of keypresses. Thus, in case of a lower-
case password we can reduce the entropy per character
from log2(26) = 4.7 to 4.0 bits. Attacking more than
3 addresses in order to identify more keys adds a sig-
nificant amount of noise to the results, as it triggers the
prefetcher. First experiments demonstrated the feasibil-
ity of attacking the lock screen of Linux distributions.
However, further evaluation is necessary in order to reli-
ably determine the effectiveness of this approach.

Attack on GDK Key Remapping. If an attacker has
additional knowledge about the attacked system or soft-
ware, more efficient and more powerful attacks are pos-
sible. Inspired by Tannous et al. [49] who performed a
timing attack on GDK key remapping, we demonstrate a
more powerful attack on the GDK library, by examining
how the remapping of keys influences the sets of iden-
tifiable keypresses. The remapping functionality uses a
large key-translation table gdk_keys_by_keyval which
spreads over more than four pages.

Hence, we repeated the Cache Template Attack on the
GDK library with a small modification. Before mea-
suring cache activity for an address during an event,
we remapped one key to the key code at that address,
retrieved from the gdk_keys_by_keyval table. We
found significant cache activity for some address and
key-remapping combinations.

When profiling each key remapping for d = 0.8 sec-
onds, we measured cache activity in 52 cache-line-sized
memory regions. In verification scans, we found 0.2-
2.5% false positive cache hits in these memory regions.
Thus, we have found another highly accurate side chan-
nel for specific key remappings. The results are shown in
the F-score graph in Figure 4. High values allow accu-
rate detection of keypresses if the key is remapped to this
address. Thus, we find more accurate results in terms of
timing in our automated attack than Tannous et al. [49].

We can only attack 8 addresses in the profiled mem-
ory area simultaneously, since it spreads over 4 pages
and we can only monitor 2 or 3 addresses without trig-
gering the prefetcher. Thus, we are able to remap any 8

9

0x71000 0x72000 0x73000 0x74000
0

0.5

1

ADDRESS

F
-S

C
O

R
E

Figure 4: Excerpt of the F-score plot for the address
range of the gdk keys by keyval table. High values
reveal addresses that can be exploited.

keys to these addresses and reliably distinguish them. In
combination with the 3 addresses of our previous results,
we are able to distinguish at least 11 keys and observe
the timestamp of any keystroke in the system based on
cache accesses simultaneously.

It is also possible to remap more than one key to the
same key code. Hence, it is possible to distinguish be-
tween groups of keys. If we consider a lower-case pass-
word again, we can now reduce the entropy per character
from log2(26) = 4.7 to 1.4 bits.

We also profiled keypresses on capslock and shift. Al-
though we were able to log keypresses on both keys, we
did not consider upper case or mixed case input. The
exploitation phase automatically generates a log file con-
taining the information observed through the cache side
channel. However, interpretation of these results, such as
deriving a program state from a sequence of events (shift
key pressed or capslock active) and the influence of the
program state on subsequent events is up to analysis of
the results after the attack has been performed.

Tannous et al. [49] also described a login-detection
mechanism in order to avoid remapping keys unless the
user types in a password field. The spy program simply
watches /proc to see whether a login program is run-
ning. Then the keys are remapped. As soon as the user
pauses, the original key mappings are restored. The user
will then notice a password mismatch, but the next pass-
word entry will work as expected.

Our completely automated password keylogger is a
single binary which runs on the attacked system. It maps
the GDK library into its own address space and performs
the profiling phase. The profiling of each keypress re-
quires the simulation of the keypress into a hidden win-
dow. Furthermore, some events require the key remap-
ping we just described. Finally, the keylogger switches
into the exploit mode. As soon as a logon screen is de-
tected, for instance, after the screensaver was active or
the screen was locked, the keys are remapped and all key-
presses are logged into a file accessible by the attacker.
Thus, all steps from the deployment of the keylogger to
the final log file are fully automated.

5.2 Attacks on other Linux Applications

We also found leakage of accurate keypress timings in
other libraries, such as the ncurses library (i.e., off-
set 0xbf90 in libncurses.so), and in files used to
cache generated data related to user text input, such as
/usr/lib/locale/locale-archive. The latter one is
used to translate keypresses into the current locale. It is
a generated file which differs on each system and which
changes more frequently than the attacked libraries. In
consequence, it is not possible to perform an offline at-
tack, i.e., to use a pre-generated Cache Template in the
exploitation phase on another system. Still, our concept
of Cache Template Attacks allows us to perform an on-
line attack, as profiling is fully automated by generat-
ing keystrokes through libxdo or comparable libraries.
Thus, keystroke side channels are found within a few sec-
onds of profiling. All keypress-timing side channels we
found have a high accuracy and a timing deviation of less
than 1 microsecond to the actual keypress.

In order to demonstrate Cache Template Attacks on a
low-frequency event which is only indirectly connected
to keypresses, we attacked sshd, trying to detect when
input is sent over an active ssh connection. The received
characters are unrelated to the local user input. When
profiling for a duration of d = 0.8 seconds per address,
we found 428 addresses showing cache activity when
a character was received. We verified these results for
some addresses manually. None of these checked ad-
dresses showed false positive hits within a verification
period of 60 seconds. Thus, by exploiting the resulting
Cache Template matrix, we are able to gain accurate tim-
ings for the transmitted characters (significantly less than
1 microsecond deviation to the transmission of the char-
acter). These timings can be used to derive the transmit-
ted letters as shown by Zhang et al. [57].

5.3 Attack on Windows User Interfaces

We also performed Cache Template Attacks on Win-
dows applications. The attack works on Windows using
MinGW identically to Linux. Even the implementation
is the same, except for the keystroke simulation which
is now performed using the Windows API instead of the
libxdo library, and the file under attack is mapped using
LoadLibrary instead of mmap. We performed our attack
on Windows 7 and Windows 8.1 systems with the same
results on three different platforms, namely Intel Core
2 Duo, Intel i5 Sandy Bridge, and Intel i5 Ivy Bridge.
As in the attacks on Linux user interfaces, address space
layout randomization has been activated during both pro-
filing and exploitation phase.

In an automated attack, we found cache activity upon
keypresses in different libraries with reasonable accu-

10

racy. For instance, the Windows 7 common control li-
brary comctl32.dll can be used to detect keypresses
on different addresses. Probing 0xc5c40 results in cache
hits on every keypress and mouse click within text fields
accurately. Running the generated keypress logger in a
verification period of 60 seconds with keyboard input by
a real user, we found only a single false positive event
detection based on this address. Address 0xc6c00 reacts
only on keypresses and not on mouse clicks, but yields
more false positive cache hits in general. Again, we can
apply the attack proposed by Zhang et al. [57] to recover
typed words from inter-keystroke timings.

We did not disassemble the shared library and there-
fore do not know which function or data accesses cause
the cache hit. The addresses were found by starting the
Cache Template Attack with the same parameters as on
Linux, but on a Windows shared library instead of a
Linux shared library. As modern operating systems like
Windows 7 and Windows 8.1 employ an immense num-
ber of shared libraries, we profiled only a few of these
libraries. Hence, further investigations might even re-
veal addresses for a more accurate identification of key-
presses.

5.4 Attack on a T-table-based AES

Cache attacks have been shown to enable powerful at-
tacks against cryptographic implementations. Thus, ap-
propriate countermeasures have already been suggested
for the case of AES [16, 26, 31, 44]. Nevertheless, in or-
der to compare the presented approach of Cache Tem-
plate Attacks to related attacks, we launched an ef-
ficient and automated access-driven attack against the
AES T-table implementation of OpenSSL 1.0.2, which
is known to be insecure and susceptible to cache attacks
[2, 4, 5, 17, 22, 23, 40, 54]. Recall that the T-tables are ac-
cessed according to the plaintext p and the secret key k,
i.e., Tj[pi⊕ ki] with i ≡ j mod 4 and 0 ≤ i < 16, dur-
ing the first round of the AES encryption. For the sake of
brevity, we omit the full details of an access-driven cache
attack against AES and refer the interested reader to the
work of Osvik et al. [40, 50].

Attack of Encryption Events. In a first step, we pro-
filed the two events “no encryption” and “encryption
with random key and random plaintext”. We profiled
each cache-line-aligned address in the OpenSSL library
during 100 encryptions. On our test system, one encryp-
tion takes around 320 cycles, which is very fast compared
to a latency of at least 200 cycles caused by a single cache
miss. In order to make the results more deterministically
reproducible, we measure whether a cache line was used
only after the encryption has finished. Thus, the profiling

phase does not run in parallel and only one cache hit or
miss is measured per triggered event.

This profiling step takes less than 200 seconds. We
detected cache activity on 0.2%-0.3% of the addresses.
Only 82 addresses showed a significant difference in
cache activity depending on the event. For 18 of these
addresses, the cache-hit ratio was 100% for the encryp-
tion event. Thus, our generated spy tool is able to accu-
rately detect whenever an encryption is performed.

For the remaining 64 addresses the cache-hit ratio was
around 92% for the encryption event. Thus, not each of
these addresses is accessed in every encryption, depend-
ing on key and plaintext. Since we attack a T-table-based
AES implementation, we know that these 64 addresses
must be the T-tables, which occupy 4 KB respectively 64
cache lines. Although this information is not used in the
first generated spy tool, it encourages performing a sec-
ond attack to target specific key-byte values.

Attack on Specific Key-Byte Values. Exploiting the
knowledge that we attack a T-table implementation, we
enhance the attack by profiling over different key-byte
values for a fixed plaintext, i.e., the set of events consists
of the different key-byte values. Our attack remains fully
automated, as we change only the values with which the
encryption is performed. The result is again a log file
containing the accurate timestamp of each event moni-
tored. The interpretation of the log file, of course, in-
volves manual work and is specific to the targeted events,
i.e., key bytes in this case.

For each key byte ki, we profile only the upper 4 bits of
ki as the lower 4 bits cannot be distinguished because of
the cache-line size of 64 bytes. This means that we need
to profile only 16 addresses for each key byte ki. Fur-
thermore, on average 92% of these addresses are already
in the cache and the Reload step of the Flush+Reload at-
tack is unlikely to trigger the prefetcher. Thus, we can
probe all addresses after a single encryption. Two pro-
files for different values of k0 are shown in Figure 5. The
two traces were generated using 1000 encryptions per
key byte and address to show the pattern more clearly.
According to Osvik et al. [40] and Spreitzer et al. [47]
these plots (or patterns) reveal at least the upper 4 bits of
a key byte and, hence, attacking the AES T-table imple-
mentation works as expected. In our case, experiments
showed that 1 to 10 encryptions per key byte are enough
to infer these upper 4 bits correctly.

In a T-table-based AES implementation, the index of
the T-table is determined by pi⊕ ki. Therefore, the same
profiles can be generated by iterating over the different
plaintext byte values while encrypting with a fixed key.
Osvik et al. [40] show a similar plot, generated using the
Evict+Time attack. However, in our attack the profiles
are aggregated into the Cache Template matrix, as de-

11

V
A

L
U

E
O

F
p 0

ADDRESS
0

255

ADDRESS
0

255

Figure 5: Excerpt of the Cache Template (address range
of the first T-table). The plot is transposed to match [40].
In the left trace k0 = 0x00, in the right trace k0 = 0x51.

scribed in Section 3.1.
In the exploitation phase, the automatically generated

spy tool monitors cache hits on the addresses from the
Cache Template in order to determine secret key-byte
values. We perform encryptions using chosen plaintexts.
We attack the 16 key bytes ki sequentially. In each step
i = 0, . . . ,15, the plaintext is random, except for the up-
per 4 bits of pi, which are fixed to the same chosen value
as in the profiling phase. Hence, the encryption is per-
formed over a chosen plaintext. The spy tool triggers an
encryption, detects when the encryption actually happens
and after each encryption, reports the set of possible val-
ues for the upper 4 bits of key byte ki. As soon as only
one candidate for the upper 4 bits of key byte ki remains,
we continue with the next key byte.

Using Cache Template Attacks, we are able to infer
64 bits of the secret key with only 16–160 encryptions in
a chosen-plaintext attack. Compared to the work of Os-
vik et al. [40] who require several hundred or thousands
encryptions (depending on the measurement approach)
targeting the L1 cache, and the work of Spreitzer and
Plos [47] who require millions of encryptions targeting
the L1 cache on the ARM platform, we clearly observe a
significant performance improvement. More recent work
shows that full key recovery is possible with less than
30000 encryptions [18] using Flush+Reload.

The benefit of our approach, compared to existing
cache attacks against AES, is that our attack is fully auto-
mated. Once the binary is deployed on the target system,
it performs both profiling and exploitation phase auto-
matically and finally returns a log file containing the key
byte candidates to the attacker. Moreover, we do not need
prior knowledge of the attacked system or the attacked
executable or library.

AES T-table implementations are already known to
be insecure and countermeasures have already been in-
tegrated, e.g., in the AES implementation of OpenSSL.
Performing our attack on a non-T-table implementation
(e.g., by employing AES-NI instructions) did not show
key dependent information leakage, but still, we can ac-
curately determine the start and end of the encryption
through the cache behavior. However, we leave it as an
interesting open issue to employ the presented approach

of cache template attacks for further investigations of
vulnerabilities in already protected implementations.

Trace-Driven Attack on AES. When attacking an in-
secure implementation of a cryptographic algorithm, an
attacker can often gain significantly more information if
it is possible to perform measurements during the en-
cryption [2, 13], i.e., in case the exact trace of cache hits
and cache misses can be observed. Even if we cannot in-
crease the frequency of the Flush+Reload attack, we are
able to slow down the encryption by constantly flush-
ing the 18 addresses which showed cache activity in ev-
ery profile. We managed to increase the encryption time
from 320 cycles to 16000–20000 cycles. Thus, a more
fine-grained trace of cache hits and cache misses can be
obtained which might even allow the implementation of
trace-driven cache attacks purely in software.

6 Countermeasures

We have demonstrated in Section 5 that Cache Template
Attacks are applicable to real-world applications without
knowledge of the system or the application. Therefore,
we emphasize the need for research on effective coun-
termeasures against cache attacks. In Section 6.1, we
discuss several countermeasures which have been pro-
posed so far. Subsequently, in Section 6.2, we discuss
how Cache Template Attacks can be employed by de-
velopers to detect and eliminate cache-based information
leakage and also by users to detect and prevent cache
attacks running actively on a system. Finally, in Sec-
tion 6.3, we propose changes to the prefetcher to build a
powerful countermeasure against cache attacks.

6.1 Discussion of Countermeasures
Removal of the clflush Instruction is not Effective.
The restriction of the clflush instruction has been sug-
gested as a possible countermeasure against cache at-
tacks in [55, 56, 59]. However, by adapting our spy tool
to evict the cache line without using the clflush in-
struction (Evict+Reload instead of Flush+Reload), we
demonstrate that this countermeasure is not effective at
all. Thereby, we show that cache attacks can be launched
successfully even without the clflush instruction.

Instead of using the clflush instruction, the eviction
is done by accessing physically congruent addresses in
a large array which is placed in large pages by the op-
erating system. In order to compute physically congru-
ent addresses we need to determine the lowest 18 bits of
the physical address to attack, which can then be used to
evict specific cache sets.

The actual mapping of virtual to physical addresses
can be retrieved from /proc/self/pagemap. Even if

12

such a mapping is not available, methods to find con-
gruent addresses have been developed—simultaneously
to this work—by Irazoqui et al. [21] by exploiting large
pages, Oren et al. [39] by exploiting timing differences
in JavaScript, and Liu et al. [33] by exploiting timing
differences in native code.

The removal of the clflush instruction has also been
discussed as a countermeasure to protect against DRAM
disturbance errors (denoted as rowhammer bug). These
disturbance errors have been studied by Kim et al. [28]
and, later on, exploited by Seaborn et al. [46] to gain ker-
nel privileges. Several researchers have already claimed
to be able to exploit the rowhammer bug without the
clflush instruction [14], This can be done by exploit-
ing the Sandy Bridge cache mapping function, which has
been reverse engineered by Hund et al. [19], to find con-
gruent addresses.

Our eviction strategy only uses the lowest 18 bits and
therefore, we need more than 12 accesses to evict a cache
line. With 48 accessed addresses, we measured an evic-
tion rate close to 100%. For performance reasons we
use write accesses, as the CPU does not have to wait
for data fetches from the physical memory. In contrast
to the clflush instruction, which takes only 41 cycles,
our eviction function takes 325 cycles. This is still fast
enough for most Flush+Reload attacks.

While clflush always evicts the cache line, our evic-
tion rate is only near 100%. Therefore, false positive
cache hits occur if the line has not been evicted. Us-
ing Flush+Reload, there is a rather low probability for a
memory access on the monitored address to happen ex-
actly between the Reload step and the point where the
clflush takes effect. This probability is much higher
in the case of Evict+Reload, as the eviction step takes 8
times longer than the clflush instruction.

We compare the accuracy of Evict+Reload to
Flush+Reload using previously found cache vulnerabil-
ities. For instance, as described in Section 5.1, probing
address 0x7c800 of libgdk-3.so.0.1000.8 allows us
to detect keypresses on key n. The Flush+Reload spy
tool detects on average 98% of the keypresses on key n

with a 2% false positive rate (keypresses on other keys).
Using Evict+Reload, we still detect 90% of the key-
presses on key n with a 5% false positive rate. This
clearly shows that the restriction of clflush is not suf-
ficient to prevent this type of cache attack.

Disable Cache-Line Sharing. One prerequisite of
Flush+Reload attacks is shared memory. In cloud sce-
narios, shared memory across virtual machine borders is
established through page deduplication. Page dedupli-
cation between virtual machines is commonly disabled
in order to prevent more coarse-grained attacks like fin-
gerprinting operating systems and files [41, 48] as well

as Flush+Reload. Still, as shown by Irazoqui et al. [21],
it is possible to use Prime+Probe as a fallback. How-
ever, attacking low-frequency events like keypresses be-
comes infeasible, because Prime+Probe is significantly
more susceptible to noise.

Flush+Reload can also be prevented on a system by
preventing cache-line sharing, i.e., by disabling shared
memory. Unfortunately, operating systems make heavy
use of shared memory, and without modifying the operat-
ing system it is not possible for a user program to prevent
its own memory from being shared with an attacker, even
in the case of static linkage as discussed in Section 2.2.

With operating-system modifications, it would be pos-
sible to disable shared memory in all cases where a vic-
tim program cannot prevent an attack, i.e., shared pro-
gram binaries, shared libraries, shared generated files
(for instance, locale-archive). Furthermore, it would
be possible to provide a system call to user programs to
mark memory as “do-not-share.”

A hardware-based approach is to change cache tags.
Virtually tagged caches are either invalidated on context
switches or the virtual tag is combined with an address
space identifier. Therefore, shared memory is not shared
in the cache. Thus, Flush+Reload is not possible on vir-
tually tagged caches.

We emphasize that as long as shared cache lines are
available to an attacker, Flush+Reload or Evict+Reload
cannot be prevented completely.

Cache Set Associativity. Prime+Probe, Evict+Time
and Evict+Reload exploit set-associative caches. In all
three cases, it is necessary to fill all ways of a cache set,
either for eviction or for the detection of evicted cache
sets. Based on which cache set was reloaded (respec-
tively evicted), secret information is deduced. Fully as-
sociative caches have better security properties, as such
information deduction is not possible and cache eviction
can only be enforced by filling the whole cache. How-
ever, a timing attack would still be possible, e.g., due
to internal cache collisions [5] leading to different exe-
cution times. As fully associative caches are impractical
for larger caches, new cache architectures have been pro-
posed to provide similar security properties [30, 52, 53].
However, even fully associative caches only prevent at-
tacks which do not exploit cache-line sharing. Thus, a
combination of countermeasures is necessary to prevent
most types of cache attacks.

6.2 Proactive Prevention of Cache Attacks
Instrumenting cache attacks to detect co-residency [58]
with another virtual machine on the same physical ma-
chine, or even to detect cache attacks [59] and cache-
based side channels in general [11] has already been pro-

13

posed in the past. Moreover, Brumley and Hakala [7]
even suggested that developers should use their attack
technique to detect and eliminate cache vulnerabilities
in their programs. Inspired by these works, we present
defense mechanisms against cache attacks which can be
improved by using Cache Template Attacks.

Detect Cache Vulnerabilities as a Developer. Similar
to Brumley and Hakala [7], we propose the employment
of Cache Template Attacks to find cache-based vulner-
abilities automatically. Compared to [7], Cache Tem-
plate Attacks allow developers to detect potential cache
side channels for specifically chosen events automati-
cally, which can subsequently be fixed by the developer.
A developer only needs to select the targeted events (e.g.,
keystrokes, window switches, or encryptions) and to trig-
ger these events automatically during the profiling phase,
which significantly eases the evaluation of cache side
channels. Ultimately, our approach even allows devel-
opers to find such cache vulnerabilities in third party li-
braries.

Detect and Impede Ongoing Attacks as a User.
Zhang et al. [59] stated the possibility to detect cache
attacks by performing a cache attack on one of the vul-
nerable addresses or cache sets. We propose running a
Cache Template Attack as a system service to detect code
and data under attack. If Flush+Reload prevention is suf-
ficient, we simply disable page sharing for all pages with
cache lines under attack. Otherwise, we disable caching
for these pages as proposed by Aciiçmez et al. [1] and,
thus, prevent all cache attacks. Only the performance for
critical code and data parts is reduced, as the cache is
only disabled for specific pages in virtual memory.

Furthermore, cache attacks can be impeded by per-
forming additional memory accesses, unrelated to the se-
cret information, or random cache flushes. Such obfus-
cation methods on the attacker’s measurements have al-
ready been proposed by Zhang et al. [60]. The idea of the
proposed obfuscation technique is to generate random
memory accesses, denoted as cache cleansing. How-
ever, it does not address the shared last-level cache. In
contrast, Cache Template Attacks can be used to iden-
tify possible cache-based information leaks and then to
specifically add noise to these specific locations by ac-
cessing or flushing the corresponding cache lines.

6.3 Enhancing the Prefetcher

During our experiments, we found that the prefetcher in-
fluences the cache activity of certain access patterns dur-
ing cache attacks, especially due to the spatial locality
of addresses, as also observed in other work [17, 40, 55].

However, we want to discuss the prefetcher in more de-
tail as it is crucial for the success of a cache attack.

Although the profiling phase of Cache Template At-
tacks is not restricted by the prefetcher, the spy pro-
gram performing the exploitation phase might be unable
to probe all leaking addresses simultaneously. For in-
stance, we found 255 addresses leaking side-channel in-
formation about keypresses in the GDK library but we
were only able to probe 8 of them simultaneously in the
exploitation phase, because the prefetcher loads multi-
ple cache lines in advance and, thus, generates numerous
false positive cache hits.

According to the Intel 64 and IA-32 Architectures Op-
timization Reference Manual [20], the prefetcher loads
multiple memory addresses in advance if “two cache
misses occur in the last level cache” and the correspond-
ing memory accesses are within a specific range (the so-
called trigger distance). Depending on the CPU model
this range is either 256 or 512 bytes, but does not ex-
ceed a page boundary of 4 KB. Due to this, we are able
to probe at least 2 addresses per page.

We suggest increasing the trigger distance of the
prefetcher beyond the 4 KB page boundary if the corre-
sponding page already exists in the translation lookaside
buffer. The granularity of the attack will then be too high
for many practical targets, especially attacks on executed
instructions will then be prevented.

As cache attacks constantly reaccess specific memory
locations, another suggestion is to adapt the prefetcher
to take temporal spatiality into consideration. If the
prefetcher were to prefetch data based on that temporal
distance, most existing attacks would be prevented.

Just as we did in Section 4, an attacker might still be
able to establish a communication channel targeted to
circumvent the prefetcher. However, the presented coun-
termeasures would prevent most cache attacks targeting
real-world applications.

7 Conclusion

In this paper, we introduced Cache Template Attacks,
a novel technique to find and exploit cache-based side
channels easily. Although specific knowledge of the at-
tacked machine and executed programs or libraries helps,
it is not required for a successful attack. The attack is
performed on closed-source and open-source binaries in
exactly the same way.

We studied various applications of Cache Template
Attacks. Our results show that an attacker is able to in-
fer highly accurate keystroke timings on Linux as well as
Windows. For Linux distributions we even demonstrated
a fully automatic keylogger that significantly reduces the
entropy of passwords. Hence, we conclude that cache-
based side-channel attacks are an even greater threat for

14

today’s computer architectures than assumed so far. In
fact, even sensitive user input, like passwords, cannot be
considered secure on machines employing CPU caches.

We argue that fundamental concepts of computer ar-
chitectures and operating systems enable the automatic
exploitation of cache-based vulnerabilities. We observed
that many of the existing countermeasures do not pre-
vent such attacks as expected. Still, the combination of
multiple countermeasures can effectively mitigate cache
attacks. However, the fact that cache attacks can be
launched automatically marks a change of perspective,
from a more academic interest towards practical attacks,
which can be launched by less sophisticated attackers.
This shift emphasizes the need to develop and integrate
effective countermeasures immediately. In particular, it
is not sufficient to protect only specific cryptographic al-
gorithms like AES. More general countermeasures will
be necessary to counter the threat of automated cache at-
tacks.

8 Acknowledgments

We would like to thank the anonymous re-
viewers and our shepherd, Ben Ransford,
for their valuable comments and suggestions.

The research leading to these results
has received funding from the European
Union’s Horizon 2020 research and inno-
vation programme under grant agreement
No 644052 (HECTOR).

Furthermore, this work has been supported by the Aus-
trian Research Promotion Agency (FFG) and the Styrian
Business Promotion Agency (SFG) under grant number
836628 (SeCoS).

References
[1] ACIIÇMEZ, O., BRUMLEY, B. B., AND GRABHER, P. New

Results on Instruction Cache Attacks. In Cryptographic Hard-
ware and Embedded Systems – CHES (2010), vol. 6225 of LNCS,
Springer, pp. 110–124.

[2] ACIIÇMEZ, O., AND KOÇ, Ç. K. Trace-Driven Cache Attacks
on AES (Short Paper). In International Conference on Informa-
tion and Communications Security – ICICS (2006), vol. 4307 of
LNCS, Springer, pp. 112–121.

[3] BENGER, N., VAN DE POL, J., SMART, N. P., AND YAROM, Y.
”Ooh Aah... Just a Little Bit” : A Small Amount of Side Channel
Can Go a Long Way. In Cryptographic Hardware and Embedded
Systems – CHES (2014), vol. 8731 of LNCS, Springer, pp. 75–92.

[4] BERNSTEIN, D. J. Cache-Timing Attacks on AES, 2004. URL:
http://cr.yp.to/papers.html#cachetiming.

[5] BOGDANOV, A., EISENBARTH, T., PAAR, C., AND WIENECKE,
M. Differential Cache-Collision Timing Attacks on AES with
Applications to Embedded CPUs. In Topics in Cryptology – CT-
RSA (2010), vol. 5985 of LNCS, Springer, pp. 235–251.

[6] BONNEAU, J., AND MIRONOV, I. Cache-Collision Timing At-
tacks Against AES. In Cryptographic Hardware and Embedded

Systems – CHES (2006), vol. 4249 of LNCS, Springer, pp. 201–
215.

[7] BRUMLEY, B. B., AND HAKALA, R. M. Cache-Timing Tem-
plate Attacks. In Advances in Cryptology – ASIACRYPT (2009),
vol. 5912 of LNCS, Springer, pp. 667–684.

[8] CHARI, S., RAO, J. R., AND ROHATGI, P. Template Attacks.
In Cryptographic Hardware and Embedded Systems – CHES
(2002), vol. 2523 of LNCS, Springer, pp. 13–28.

[9] CHEN, C., WANG, T., KOU, Y., CHEN, X., AND LI, X. Im-
provement of Trace-Driven I-Cache Timing Attack on the RSA
Algorithm. Journal of Systems and Software 86, 1 (2013), 100–
107.

[10] DAEMEN, J., AND RIJMEN, V. The Design of Rijndael: AES
– The Advanced Encryption Standard. Information Security and
Cryptography. Springer, 2002.

[11] DOYCHEV, G., FELD, D., KÖPF, B., MAUBORGNE, L., AND
REINEKE, J. CacheAudit: A Tool for the Static Analysis of
Cache Side Channels. In USENIX Security Symposium (2013),
USENIX Association, pp. 431–446.

[12] FRANZ, M. E unibus pluram: Massive-Scale Software Diver-
sity as a Defense Mechanism. In Workshop on New Security
Paradigms – NSPW (2010), ACM, pp. 7–16.

[13] GALLAIS, J., KIZHVATOV, I., AND TUNSTALL, M. Improved
Trace-Driven Cache-Collision Attacks against Embedded AES
Implementations. IACR Cryptology ePrint Archive 2010/408.

[14] GOOGLE GROUPS. Rowhammer without CLFLUSH, 2015.
URL: https://groups.google.com/forum/#!topic/

rowhammer-discuss/ojgTgLr4q_M.

[15] GRUSS, D., SPREITZER, R., AND MANGARD, S. Cache tem-
plate attacks: Automating attacks on inclusive last-level caches.
In 24th USENIX Security Symposium (USENIX Security 15)
(Washington, D.C., Aug. 2015), USENIX Association.

[16] GUERON, S. White Paper: Intel Advanced Encryption Stan-
dard (AES) Instructions Set, 2010. URL: https://software.
intel.com/file/24917.

[17] GULLASCH, D., BANGERTER, E., AND KRENN, S. Cache
Games – Bringing Access-Based Cache Attacks on AES to Prac-
tice. In IEEE Symposium on Security and Privacy – S&P (2011),
IEEE Computer Society, pp. 490–505.

[18] GÜLMEZOĞLU, B., INCI, M. S., EISENBARTH, T., AND
SUNAR, B. A Faster and More Realistic Flush+Reload Attack
on AES. In Constructive Side-Channel Analysis and Secure De-
sign – COSADE (2015), LNCS, Springer. In press.

[19] HUND, R., WILLEMS, C., AND HOLZ, T. Practical Timing Side
Channel Attacks against Kernel Space ASLR. In IEEE Sympo-
sium on Security and Privacy – SP (2013), IEEE Computer Soci-
ety, pp. 191–205.

[20] INTEL CORPORATION. Intel R© 64 and IA-32 Architectures Opti-
mization Reference Manual. No. 248966-026. 2012.

[21] IRAZOQUI, G., EISENBARTH, T., AND SUNAR, B. S$A: A
Shared Cache Attack that Works Across Cores and Defies VM
Sandboxing – and its Application to AES. In IEEE Symposium
on Security and Privacy – S&P (2015), IEEE Computer Society.

[22] IRAZOQUI, G., INCI, M. S., EISENBARTH, T., AND SUNAR, B.
Fine grain Cross-VM Attacks on Xen and VMware are possible!
IACR Cryptology ePrint Archive 2014/248.

[23] IRAZOQUI, G., INCI, M. S., EISENBARTH, T., AND SUNAR, B.
Wait a Minute! A fast, Cross-VM Attack on AES. In Research
in Attacks, Intrusions and Defenses Symposium – RAID (2014),
vol. 8688 of LNCS, Springer, pp. 299–319.

15

[24] IRAZOQUI, G., INCI, M. S., EISENBARTH, T., AND SUNAR,
B. Know Thy Neighbor: Crypto Library Detection in Cloud.
Privacy Enhancing Technologies 1, 1 (2015), 25–40.

[25] IRAZOQUI, G., INCI, M. S., EISENBARTH, T., AND SUNAR, B.
Lucky 13 Strikes Back. In ACM ASIA CCS (2015), pp. 85–96.

[26] KÄSPER, E., AND SCHWABE, P. Faster and Timing-Attack Re-
sistant AES-GCM. In Cryptographic Hardware and Embedded
Systems – CHES (2009), vol. 5747 of LNCS, Springer, pp. 1–17.

[27] KELSEY, J., SCHNEIER, B., WAGNER, D., AND HALL, C. Side
Channel Cryptanalysis of Product Ciphers. Journal of Computer
Security 8, 2/3 (2000), 141–158.

[28] KIM, Y., DALY, R., KIM, J., FALLIN, C., LEE, J., LEE, D.,
WILKERSON, C., LAI, K., AND MUTLU, O. Flipping Bits in
Memory Without Accessing Them: An Experimental Study of
DRAM Disturbance Errors. In ACM/IEEE International Sympo-
sium on Computer Architecture – ISCA (2014), IEEE Computer
Society, pp. 361–372.

[29] KOCHER, P. C. Timing Attacks on Implementations of Diffie-
Hellman, RSA, DSS, and Other Systems. In Advances in Cryp-
tology – CRYPTO (1996), vol. 1109 of LNCS, Springer, pp. 104–
113.

[30] KONG, J., ACIIÇMEZ, O., SEIFERT, J., AND ZHOU, H. De-
constructing New Cache Designs for Thwarting Software Cache-
based Side Channel Attacks. In ACM Workshop on Computer
Security Architecture – CSAW (2008), pp. 25–34.

[31] KÖNIGHOFER, R. A Fast and Cache-Timing Resistant Imple-
mentation of the AES. In Topics in Cryptology – CT-RSA (2008),
vol. 4964 of LNCS, Springer, pp. 187–202.

[32] LIU, F., AND LEE, R. B. Random Fill Cache Architecture. In
International Symposium on Microarchitecture – MICRO (2014),
IEEE, pp. 203–215.

[33] LIU, F., YAROM, Y., GE, Q., HEISER, G., AND LEE, R. B.
Last-level cache side-channel attacks are practical. In IEEE Sym-
posium on Security and Privacy – S&P (2015).

[34] MAURICE, C., NEUMANN, C., HEEN, O., AND FRANCILLON,
A. C5: Cross-Cores Cache Covert Channel. In DIMVA (2015).
In press.

[35] MOWERY, K., KEELVEEDHI, S., AND SHACHAM, H. Are AES
x86 Cache Timing Attacks Still Feasible? In Workshop on Cloud
Computing Security – CCSW (2012), ACM, pp. 19–24.

[36] NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY.
Advanced Encryption Standard. NIST FIPS PUB 197, 2001.

[37] NEVE, M. Cache-based Vulnerabilities and SPAM Analysis. PhD
thesis, UCL, 2006.

[38] OPENSSL SOFTWARE FOUNDATION. OpenSSL Project, 2014.
URL: http://www.openssl.org/.

[39] OREN, Y., KEMERLIS, V. P., SETHUMADHAVAN, S., AND
KEROMYTIS, A. D. The Spy in the Sandbox - Practical Cache
Attacks in Javascript. CoRR abs/1502.07373 (2015).

[40] OSVIK, D. A., SHAMIR, A., AND TROMER, E. Cache Attacks
and Countermeasures: The Case of AES. In Topics in Cryptology
– CT-RSA (2006), vol. 3860 of LNCS, Springer, pp. 1–20.

[41] OWENS, R., AND WANG, W. Non-Interactive OS Fingerprint-
ing Through Memory De-Duplication Technique in Virtual Ma-
chines. In International Performance Computing and Communi-
cations Conference – IPCCC (2011), IEEE, pp. 1–8.

[42] PAGE, D. Theoretical Use of Cache Memory as a Cryptanalytic
Side-Channel. IACR Cryptology ePrint Archive 2002/169.

[43] PERCIVAL, C. Cache Missing for Fun and Profit,
2005. URL: http://www.daemonology.net/

hyperthreading-considered-harmful/.

[44] REBEIRO, C., SELVAKUMAR, A. D., AND DEVI, A. S. L. Bit-
slice Implementation of AES. In Cryptology and Network Secu-
rity – CANS (2006), vol. 4301 of LNCS, Springer, pp. 203–212.

[45] RISTENPART, T., TROMER, E., SHACHAM, H., AND SAVAGE,
S. Hey, You, Get Off of My Cloud: Exploring Information Leak-
age in Third-Party Compute Clouds. In ACM Conference on
Computer and Communications Security – CCS (2009), ACM,
pp. 199–212.

[46] SEABORN, M., AND DULLIEN, T. Exploiting the DRAM
Rowhammer Bug to Gain Kernel Privileges, 2015. URL:
http://googleprojectzero.blogspot.co.at/2015/03/

exploiting-dram-rowhammer-bug-to-gain.html.

[47] SPREITZER, R., AND PLOS, T. Cache-Access Pattern Attack on
Disaligned AES T-Tables. In Constructive Side-Channel Anal-
ysis and Secure Design – COSADE (2013), vol. 7864 of LNCS,
Springer, pp. 200–214.

[48] SUZAKI, K., IIJIMA, K., YAGI, T., AND ARTHO, C. Memory
Deduplication as a Threat to the Guest OS. In European Work-
shop on System Security – EUROSEC (2011), ACM, pp. 1–6.

[49] TANNOUS, A., TROSTLE, J. T., HASSAN, M., MCLAUGHLIN,
S. E., AND JAEGER, T. New Side Channels Targeted at Pass-
words. In Annual Computer Security Applications Conference –
ACSAC (2008), pp. 45–54.

[50] TROMER, E., OSVIK, D. A., AND SHAMIR, A. Efficient Cache
Attacks on AES, and Countermeasures. Journal Cryptology 23,
1 (2010), 37–71.

[51] TSUNOO, Y., SAITO, T., SUZAKI, T., SHIGERI, M., AND
MIYAUCHI, H. Cryptanalysis of DES Implemented on Com-
puters with Cache. In Cryptographic Hardware and Embedded
Systems – CHES (2003), vol. 2779 of LNCS, Springer, pp. 62–76.

[52] WANG, Z., AND LEE, R. B. New Cache Designs for Thwarting
Software Cache-based Side Channel Attacks. In International
Symposium on Computer Architecture – ISCA (2007), pp. 494–
505.

[53] WANG, Z., AND LEE, R. B. A Novel Cache Architecture with
Enhanced Performance and Security. In IEEE/ACM International
Symposium on Microarchitecture – MICRO (2008), pp. 83–93.

[54] WEISS, M., HEINZ, B., AND STUMPF, F. A Cache Timing At-
tack on AES in Virtualization Environments. In Financial Cryp-
tography and Data Security – FC (2012), vol. 7397 of LNCS,
Springer, pp. 314–328.

[55] YAROM, Y., AND BENGER, N. Recovering OpenSSL ECDSA
Nonces Using the FLUSH+RELOAD Cache Side-channel At-
tack. IACR Cryptology ePrint Archive 2014/140.

[56] YAROM, Y., AND FALKNER, K. FLUSH+RELOAD: A High
Resolution, Low Noise, L3 Cache Side-Channel Attack. In
USENIX Security Symposium (2014), USENIX Association,
pp. 719–732.

[57] ZHANG, K., AND WANG, X. Peeping Tom in the Neighborhood:
Keystroke Eavesdropping on Multi-User Systems. In USENIX
Security Symposium (2009), USENIX Association, pp. 17–32.

[58] ZHANG, Y., JUELS, A., OPREA, A., AND REITER, M. K.
HomeAlone: Co-residency Detection in the Cloud via Side-
Channel Analysis. In IEEE Symposium on Security and Privacy
– S&P (2011), IEEE Computer Society, pp. 313–328.

[59] ZHANG, Y., JUELS, A., REITER, M. K., AND RISTENPART,
T. Cross-Tenant Side-Channel Attacks in PaaS Clouds. In ACM
Conference on Computer and Communications Security – CCS
(2014), ACM, pp. 990–1003.

[60] ZHANG, Y., AND REITER, M. K. Düppel: Retrofitting Com-
modity Operating Systems to Mitigate Cache Side Channels in
the Cloud. In ACM Conference on Computer and Communica-
tions Security – CCS (2013), ACM, pp. 827–838.

16

