
International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-6, August 2020

336

Retrieval Number: F1369089620/2020©BEIESP
DOI: 10.35940/ijeat.F1369.089620
Journal Website: www.ijeat.org

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

B Jagadeeswar

Abstract: For any web application running on RDBMS
databases as the backend, it might be a huge performance impact
if a search needs to be performed on a table with millions of rows
or if a query needs to be executed which joins multiple tables. In
general, such kind of backend services make the website extremely
slow. Document based reverse indexing can be a useful solution in
these cases. SOLR is a standalone enterprise search server with a
REST-like API. It has major features which include powerful
full-text search, hit highlighting, faceted search, near real-time
indexing, dynamic clustering, database integration, NoSQL
features and rich document (e.g., Word, PDF and more) parsing,
geospatial search, Security built in. Databases and SOLR have
complementary strengths and weaknesses. SQL supports very
simple wildcard-based text search with some simple normalization
like matching upper case to lowercase. The problem is that these
are full table scans. In SOLR all searchable words are stored in an
"inverse index based", which searches orders of magnitude faster.
However, designing this framework is quite challenging. This
paper discusses the techniques that are highly reliable, scalable
and fault tolerant which can help in setting up the distributed
indexing, replication and load-balanced querying with a
centralized configuration.

Keywords: Reverse indexing, SOLR, RDBMS, Micro services,
DB transactions

I. INTRODUCTION

Web applications have advanced a lot since the days of client
server architecture. Not long ago, all of the web-based
application code was written and deployed as a single unit on
the enterprise application servers [1] [2]. The database was
the only separate unit in the deployment structure. Now
modern frameworks for web design have come into place
with the evolution of public cloud platforms. This revolution
has certainly improved the network latency and performance
of the applications. However, the biggest challenge of
improving the performance of web pages cannot be
addressed without the inclusion of document based reverse
index solutions like SOLR in the architecture, when dealing
with large RDBMS databases. This paper provides the
introduction and journey of SOLR as a prominent reverse
index solution. The initial version of SOLR used Master
Slave architecture wherein there is a master for performing
all the write operations and there is a reader to perform all the
read operations. This architecture posed lot of challenges:
you must use all your read and write operations in a stagnated
manner. It can be used only for limited data sets and it is not
capable for scaling to huge data sets. The newer versions of
SOLR was redesigned to handle huge data sets.

Revised Manuscript Received on August 15, 2020.
* Correspondence Author

B Jagadeeswar*, Department – Computer Science, Vijayam Degree &
PG College, Chittoor, Sri Venkateshwara University, (A.P.), India.

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Currently, there are large number of websites with large
amount of data available, which is necessary to handle in an
efficient way in modern era.
 The data is being generated within organizations, either

as output or intermediate process of production systems
or by digitizing existing documents.

 The popularity of content management systems (CMS,
Content Management Systems) as portals general and as
platforms for collaboration.

 The Web 2.0, roughly defined as the current set of
applications with high levels of interaction and access to
multimedia data.

In summary, there has been an exponential growth in
volumes of information produced which, in turn, implies
handling terabytes and petabytes of information instead of
gigabytes. This scenario has led to the challenge of
improving the information retrieval search tools using
different/new techniques. Scalability, availability, and
performance in handling large volumes of information are
now mandatory for most applications in this context, usually
requiring techniques of distributed systems. Some of the
techniques presented in this work include load balancing,
replication, and horizontal distribution (sharding) of
information. For instance, The White House has used a
combination of Drupal and Apache SOLR in its portal of
document access/contents. In general, solutions to this
problem must include strategies for scalability, availability,
and performance. The block diagram given below shows the
high-level architecture for SOLR based indexing as shown in
Figure 1.

II. BACKGROUND ABOUT INDEXING

TECHNOLOGY

Sequential Search was the old traditional way of searching
for the documents due to its scalability. Some modern data
structures are needed to overcome this problem. Indexing
provides data search and pulling the data very rapidly and
accurately. Indexing process includes analysis, Processing of
documents, tokenization, phone analytics, geo spatial
searching, etc. This document explains how feasible the
solution is for Performance and heterogeneous data, fault
tolerance, automatic fail-over, different hardware problems.

A Detailed Study of Distributed Indexed Search
Techniques using SOLR

https://www.openaccess.nl/en/open-publications
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijeat.F1369.089620&domain=www.ijeat.org

A Detailed Study of Distributed Indexed Search Techniques using SOLR

337

Retrieval Number: F1369089620/2020©BEIESP
DOI: 10.35940/ijeat.F1369.089620
Journal Website: www.ijeat.org

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Figure I - High level SOLR integration design.

A. Performance and heterogenous data

Relational or SQL databases have many issues while storing
the information in relational tables. As the data is not just the
information in the database, but instead it has lot of
documents, images, videos, audios, emails, etc. This lead to
increase the size of the data that is stored. It needs most of the
time re-structuring before the information is being pulled
from the database.

B. Fault Tolerance

One of the important part that needs to be considered in the
distributed system while fetching the data is Fault tolerance.
Data that we fetched must be consistent across when
sometimes one or two instances went down or not reachable.
This paper concentrates on maintain the consistency, how we
store the data in distributed environment and recovery.

C. Heterogeneous Hardware Platforms

To achieve the best performance in data fetching is possible
when we increase the number of instances when we are
performing the search. NoSQL provides solution for
maintaining huge volumes of data is depending on the diverse
computing nodes. There are n number of approaches for vast
environments which are discussed in the paper.

III. PROPOSED METHODOLOGY

There are many common approaches used in the current No
SQL databases which includes Shard based Indexing,
Replicating the data for load balancing, Map/reduce
processing [6]. We can achieve this using Solr Cloud which
intern uses Apache Zookeeper. As a part of this research we
have experimented with an RDBMS database [8] (Postgres)
which contains few tables with a large data set. We indexed
this using a full index on SOLR software running on odd
number of nodes. We started with 1 node and repeated the
experiment with 3 nodes. In the first run we used SOLR alone
as shown in Figure III and in the second run we used it along
with Zookeeper as shown in Figure IV. In this run, all these
nodes are governed by a software called Zookeeper which
runs on an external server node. In the following sections we
explain the various techniques which can be used in the
process of indexing. As explained below - indexing on
shards, shared nothing, Scatter and Gather on distributed data
and Map reduce are the 4 major techniques to be followed in
the reverse indexing solutions. For our experiment we have
used indexing on shards and shared nothing techniques. In

these cases, a caller who makes the query is unaware of how
the indexed data is distributed in the backend nodes. We
experimented by distributing the indexes directly on SOLR
and checked how the system performed on the queries which
cause heavy load. In the second run, multiple nodes for
SOLR were used. A servicing software like Zookeeper is
introduced which takes care of the health of each node
containing the indexed data and also does the routing,
querying and returning of the results to the caller. We
compared how the system performs in both the cases. The
below section provides the details.

A. Indexing on Shards

Sharding is a horizontal partitioning of information in a
structured database. It provides various capabilities for
scaling, granting to divide information and indexes on
multiple servers are called as Shards. Indexing Shards is the
technique of generating a data structure that expedite the
searching and retrieving data in its original output. Each
search query that we are performing will be processed in each
Shard and at last the response will be aggregated. This
approach is very helpful when we have the large volume of
data.

B. Shared Nothing Data Distribution

Shared nothing [7] focuses independence of nodes,
distribution of information and processing. A shard is a
shared nothing node which handles a set of documents
indexed by any criteria. Also, a shard has its own
mechanisms for ranking, sorting, and retrieval of
information, depending on information or application needs.
In all cases, techniques can be combined with traditional
databases, such as replication and parallelization on shared
disk (a traditional cluster with a storage area network). Also,
these distributions make easier using independent
heterogeneous nodes with their own memory unit, disk
storage and processing. Data replication for load balancing,
scatter and gather on distributed data, and map/reduce
processing are some techniques used for coordinating the
shared nothing nodes.

C. Scatter and Gather on Distributed Data

This type of approach is used when we have the data is not
replicated and the search phrase in coming from a person to
each instance known to have the data. Once we get that each
node processes and sends back the response to the info was
found in its memory. All responses are processed and
consolidates into one unique reply to the requested source.
One of the added advantages of this approach is distribution
of the data from one instance to the other one. An ordered
distribution is created, and which won’t be visible to the

overall coordinator. Here we do have disadvantages. Some
logical partition(s) requires knowledge and information
regarding the data that must be saved. In these scenarios we
can use Map/reduce approach efficiently for this problem.

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-6, August 2020

338

Retrieval Number: F1369089620/2020©BEIESP
DOI: 10.35940/ijeat.F1369.089620
Journal Website: www.ijeat.org

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Figure II – Lucene SOLR architecture.

D. Map/Reduce Processing

It is a program model for distributed computing on large data
sets. This is an algorithm contains two distinct tasks – Map
and Reduce. First most we read the block of data and gives
key-value pairs as output. The output is going to be an input
to the Reducer. Reducer aggregates the key-value pairs into
smaller set of key-value pairs and sends as a final output. It
takes the advantage of the locality of data. This model
provides a versatile way for partitioning data which in-turn to
be a smart distribute on self-contained various instances. One
more added advantage is saving storage space within a
document based on the result of shared keys by reducing
them.

Figure III– Design with SOLR on one node.

IV. RESULT ANALYSIS

We conducted an experiment by taking a Node.JS
microservice based backend and Angular.JS based front end
which runs on the Postgres as the database layer. We created
a sample table which contains more than 10 million records
and performed the queries. Let us call this entity E1. This
table joins with multiple child entities using the foreign key
relationships. Let us call them entities E2 and E3
respectively. When we ran a select query on the database
alone by joining E1,E2,E3 using the left outer joins it took 12
seconds to display the data in the paginated grid on the
Angular JS front end. When we tried to add the result facets
by grouping the results, it nearly took 21 seconds to display
the page. When we repeated the experiment by indexing all
the data in SOLR and had the Node.JS microservice interact
with SOLR rather than the database directly. When a query
for the data is done from the front end, it took 8 seconds to get
the results back. When we introduced the facets to this run, it

took 10 seconds to display the result. We found that faceting
runs much faster when it is indexed. However, when we
increased the number of records by adding 100 million more
records, the SOLR search was taking more time. This was
because of the number of indexed documents were more. To
handle this situation, we repeated the experiment by using
multiple SOLR nodes in the backend. We used 3 nodes for
this experiment. We also used Zookeeper on a different node
which manages this SOLR ensemble. Now with this setup
the page started to load much faster for the same query with
the increased data volume. We observed that the page loads
the grid with the paginated results along with the faceted
result set in less than 5 seconds. We observed that reverse
indexing with a single node brought in nearly 110% of
performance gain. But it suffered as the data volume
increased. When Zookeeper ensemble was introduced and the
indexes were distributed on multiple shards in the backend, it
brought in more than 300% gain in the performance.

Figure IV– Design with SOLR ensemble and Zookeeper.

V. CONCLUSION

In the modern distributed architecture with cloud-based
systems the data volumes are substantially high [9].
Persisting such data and querying it on plain RDBMS
systems slows down the performance and increases the page
load times. Adding the reverse indexing mechanisms like
SOLR would significantly improve the performance and
page load times. But they suffer when the number of joins
increase, or number of data records increase beyond a certain
limit. In these cases, using distributed shards and having a
governing layer like Zookeeper greatly improves the
performance. This we have conclusively proved using the
experiment we conducted. Further research needs to be done
on Map Reduce algorithms.

REFERENCES

1. Salah, Tasneem & Zemerly, Jamal & Yeob Yeun, Chan & Al-Qutayri,
Mahmoud & Al-Hammadi, Yousof. (2016). The evolution of
distributed systems towards microservices architecture. 318-325.
10.1109/ICITST.2016.7856721

2. Chaitanya K Rudrabhatla. A Systematic Study of Micro Service
Architecture Evolution and their Deployment Patterns. International
Journal of Computer Applications 182(29):18-24, November 2018

3. J. Chris Anderson, Jan Lehnardt, Noah Slater, CouchDB: The
Definitive Guide, O'Reilly Media, Jan. 2010, ISBN 1449379680.

4. Jeffrey Dean, Sanjay Ghemawat, “MapReduce: Simplied Data

Processing on Large Clusters,” Communica1 Server S1 R1 S2 R2 tions
of the ACM - 50th anniversary
issue: 1958 - 2008, Vol. 51, Issue
1, Jan. 2008.

https://www.openaccess.nl/en/open-publications

A Detailed Study of Distributed Indexed Search Techniques using SOLR

339

Retrieval Number: F1369089620/2020©BEIESP
DOI: 10.35940/ijeat.F1369.089620
Journal Website: www.ijeat.org

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

5. Erik Hatcher, Otis Gospodnetić, Lucene in Action, 2nd. ed, Manning

Publications Co., 2004.
6. Ken North, “The NoSQL Alternative, Low-cost, highperformance

database options make gains,” Information Week, May 2010.
7. Michael Stonebraker, “The Case for Shared Nothing”, Database

Engineering, Vol. 9, No. 1, 1986, http://db.cs. berkeley.
edu/papers/hpts85- nothing.pdf

8. ACID (Atomicity, Consistency, Isolation, and Durability.),in
Dictionary of E-Business, Hoboken, Wiley, 2003.

9. Nasser Thabet e Tariq Rahim Soomro, Big Data Challenges, in Journal
of Computer Engineering & Information Technology}, 2015,
DOI:10.4172/2324-9307.1000133.

10. P. Zikopoulos, C. Eaton, Understanding Big Data: Analytics for
Enterprise Class Hadoop and Streaming Data, McGraw-Hill
Education, 2011

AUTHOR PROFILE

B. Jagadeeswar works as the Head of the Department
in Computer Science department at Vijayam Degree &
PG College, Sri Venkateshwara University, Chittoor,
AP. He received master’s degree in Computer science
from SK University, Anantapur, AP in the year 2000.

