
On the Impact of Known-Key
Attacks on Hash Functions

Bart Mennink and Bart Preneel

Dept. Electrical Engineering, ESAT/COSIC, KU Leuven, and iMinds, Belgium
bart.mennink@esat.kuleuven.be, bart.preneel@esat.kuleuven.be

Abstract. Hash functions are often constructed based on permutations or blockci-
phers, and security proofs are typically done in the ideal permutation or cipher model.
However, once these random primitives are instantiated, vulnerabilities of these in-
stantiations may nullify the security. At ASIACRYPT 2007, Knudsen and Rijmen
introduced known-key security of blockciphers, which gave rise to many distinguish-
ing attacks on existing blockcipher constructions. In this work, we analyze the impact
of such attacks on primitive-based hash functions. We present and formalize the weak
cipher model, which captures the case a blockcipher has a certain weakness but is
perfectly random otherwise. A specific instance of this model, considering the exis-
tence of sets of B queries whose XOR equals 0 at bit-positions C, where C is an index
set, covers a wide range of known-key attacks in literature. We apply this instance
to the PGV compression functions, as well as to the Grøstl (based on two permu-
tations) and Shrimpton-Stam (based on three permutations) compression functions,
and show that these designs do not seriously succumb to any differential known-key
attack known to date.

Keywords. Hash functions, known-key security, Knudsen-Rijmen, PGV, Grøstl,
Shrimpton-Stam, collision resistance, preimage resistance.

1 Introduction

Cryptographic hash functions are conventionally built on top of compression functions, and
in turn on one or more blockciphers. Since the first appearance of such compression func-
tion F(h,m) = DESm(h) by Rabin [49] in the late 70s, many blockcipher-based functions
appeared in the literature [23,25,29,30,40,43,48,59]. These all enjoy security proofs in the
ideal model, where the underlying ciphers are assumed to behave ideally. Characteristic to
these designs is that the key input to the cipher depends on the input to the compression
function, and that the key scheduling needs to be sufficiently strong. For instance, Biryukov
et al. [6] derived a related-key attack on AES and claimed that it invalidates the security of
the Davies-Meyer compression function when the underlying primitive is instantiated with
AES. A more recent approach to compression function design is to base them on a lim-
ited number of permutations [8, 41, 42, 51, 57]. These permutations could be designed from
scratch, or obtained by fixing a small set of keys and using a blockcipher for these keys only.
Related- or chosen-key attacks on blockciphers do not help the adversary here, as the keys
are fixed.

Known-Key Security of Blockciphers. While in the classical security models for block-
ciphers the key is secret and randomly drawn and the adversary’s target is to distinguish the
instantiation of the cipher from a random permutation (also known as (strong) pseudoran-
dom permutation security), this notion does not apply if the key is known to the adversary.
At ASIACRYPT 2007, Knudsen and Rijmen [27] introduced known-key security of blockci-
phers. Here, the key is presumed known, and the adversary succeeds in distinguishing if it
identifies a structural property of the cipher. Andreeva et al. [1] proposed a way to formalize
the known-key security of blockciphers based on the underlying primitives. The model is

derived from the indifferentiability framework [37] and hence all composition results carry
over. Intuitively: suppose some cryptosystem F is proven to achieve a certain level of security
in the ideal permutation model, and consider F′ to be F with the permutations replaced by
independent blockcipher instantiations. Then, F′ achieves the same level of security as F, up
to the known-key indifferentiability bound of the underlying blockciphers.

In [1], several blockcipher constructions are proven to be known-key indifferentiable,
such as the multiple Even-Mansour cipher and 14 rounds of balanced Feistel with random
functions (using a result of Holenstein et al. [24]). For such ciphers, the above approach
works well, although for Even-Mansour the composition is trivial (one essentially replaces
an ideal permutation by an ideal permutation) and for Feistel with 14 rounds security is
only guaranteed up to 2n/32 queries, where n is the state size of the cipher.

Known-Key Attacks on Blockciphers. Knudsen and Rijmen also demonstrated that the
Feistel network on n bits with 7 rounds (called “Feistel7”) is not known-key indifferentiable
[1,27]: an adversary can generically find 2n/2 plaintext/ciphertext tuples (m, c) and (m′, c′)
satisfying Rin/2(m⊕ c⊕m′ ⊕ c′) = 0 (where Rir(x) outputs the r rightmost bits of x). This
result has lead to a wave of other known-key attacks on practical constructions, including
generalized/extended variants of Feistel [1,27,47,53,56], reduced versions of AES or Rijndael
[22,27,38,44,52], reduced variants of the blockciphers underlying SHA-2 and SHA-3 finalists
BLAKE and Skein [2, 7, 31, 34, 61], and many more [3, 11, 12, 14, 17, 18, 28, 33, 46, 47, 54, 55].
This paper will mostly be concerned with differential known-key attacks, including rebound-
and boomerang-based attacks (the majority of above-mentioned attacks). We highlight two
results that are among the best-known ones and that exemplify the idea of the other attacks.
Gilbert and Peyrin [22] used the rebound technique [39] to derive a known-key attack on
8 rounds of AES (called “AES8”). It starts from the middle, and results in a differential
trail with four active words in the beginning, and four at the end. These active words
are overlapping at two positions, hence one could consider this result as two tuples (m, c)
and (m′, c′) satisfying m ⊕ c ⊕ m′ ⊕ c′ = 0 at 10n/16 bit-positions. The adversary has
215 ≤ 2n/8 degrees of freedom in the attack, and for any choice it results in such a tuple
with a certain probability. (The bound of 2n/8 is used for simplicity later on.) The second
attack we highlight is by Yu et al. [61], who employ the boomerang technique [60] to attack
36 rounds of the blockcipher Threefish-512 (called “Threefish36”) used in Skein. This attack
results in four tuples (m1, c1), . . . , (m4, c4) satisfying m1⊕· · ·⊕c4 = 0. The adversary has 2n

degrees of freedom, but any trial succeeds with probability approximately 2−454. Therefore,
the expected number of solutions is about 2n−454 ≤ 2n/8. This attack is in fact a known-
related-key attack, where a fixed difference in the key exists. For simplicity, we condone this,
observing that an attack with no key difference must logically be harder.

In any of these cases, the traditional and commonly employed ideal cipher/permutation
model falls short: results achieved in this model do not necessarily hold if the primitives
are instantiated with Feistel7, AES8, Threefish36, or any other known-key distinguishable
cipher.

1.1 Our Contributions

In their seminal work, Knudsen and Rijmen state: “In some cases blockciphers are used
with a key that is known to the adversary, and at least to a certain extent, the key is under
the adversary’s control. Our attacks are quite relevant to this case.” We investigate this
fundamental question whether known-key attacks invalidate the security of primitive-based
hash functions, but we do so in a much more general way. At a high level, we present
a model that goes beyond the traditional ideal cipher model as well as the principle of
known-key attacks and that allows to generically analyze the impact of various weaknesses
of blockciphers on various blockcipher- and permutation-based cryptosystems.

Model. A naive approach to analyzing the impact of known-key attacks would be to simply
plug a certain blockcipher construction into a hash function and to analyze its security,

2

but this would be a devious and complex combinatorial task: for a function based on r
permutations, plugging Feistel7 into it would lead to 7r underlying primitive calls. Note that
proving security of the Feistel construction itself is already extraordinarily hard [16,24,32].
Instead, we model the blockciphers in such a way that they behave randomly, except that
an adversary can exploit the particular relation. More formally, we pose a certain predicate
Φ, and we draw blockciphers randomly from the set of all ciphers that comply with predicate
Φ. Throughout, we refer to this model as the “weak cipher model (WCM).” It corresponds
to the ideal cipher model if Φ is trivial.

We present an explicit description of a random weak cipher for the case where Φ implies
for each key k the existence of A sets of B queries {(k,m1, c1), . . . , (k,mB , cB)} that comply
with a certain condition ϕ. These ciphers are modeled to have three interfaces: forward
queries, inverse queries, and predicate queries. Forward and inverse queries are as usual; on
a predicate query, an adversary is given a set of B queries satisfying ϕ. Multiple technicalities
are involved in this formalization. Most importantly, predicate Φ applies to tuples of queries,
rather than single queries only, and some query responses may have a reduced entropy.

Above-mentioned known-key attacks are covered by our model if the condition ϕ states
for some C ⊆ {1, . . . , n} that

BitsC
(
m1 ⊕ c1 ⊕ · · · ⊕mB ⊕ cB

)
= 0 , (1)

where BitsC(x) outputs a string consisting of all bits of x whose index is in C. (In fact, our
model is much more general: above-mentioned attacks aim to generate only one relation,
while we allow an adversary to see multiple relations.) The value A usually depends on n and
C is regularly a large subset. We consider B being a relatively small number (independent of
n). For the above-mentioned attack on Feistel7, A = 2n/2, B = 2, and C corresponds to the
rightmost n/2 bits. Similarly, the attacks on AES8 (for A = 2n/8, B = 2, and C a certain set
of size 10n/16) and Threefish36 (for A = 2n/8, B = 4, and C = {1, . . . , n}) are covered, and
so are almost all known differential (rebound- or boomerang-based) known-key attacks. We
remark that, on the other hand, the predicate is not well-suited for integral-based known-key
attacks: upon a predicate query an attacker would receive B ≈ 2n queries.

The weak cipher model is similar to an approach followed by Bresson et al. [15] for the
indifferentiability analysis of the SHA-3 candidate Shabal if the underlying blockcipher shows
some non-random behavior, and by Bouillaguet et al. [13] to analyze the indifferentiability
security of SIMD when the underlying compression function is distinguishable from a random
function. However, in both approaches, the underlying biased primitives were relatively easy
to model. For instance in [15] (using our terminology), predicate Φ is a relation that holds
for single queries only, and not for combinations of queries. This considerably simplifies the
analysis: one can derive a bias β to measure the distance between primitive responses and
fully random responses, and consider oracle responses to be drawn from a set of size at least
2n−β , and the original indifferentiability analysis carries over with minor modifications. The
predicate used in the analysis in [13], on the other hand, does apply to tuples of queries, but
the model can simply be described using two sampling algorithms, and an adversary cannot
hit a weak pair by accident (which is possible in our analysis). Liskov [35] used a similar
approach to prove indifferentiability security of the zipper hash if the underlying compression
function is invertible up to a certain degree. However, the analysis is significantly simpler, as
this primitive can be perfectly modeled. We finally remark that Katz et al. [26] analyze the
impact of related-key attacks on blockciphers to hash functions. However, in their model, the
differences ∆k,∆x,∆y are fixed, an ideal cipher is generated for half of the key space, and
for the other half the cipher is adjusted as Ek(x, y) = Ek⊕∆k(x⊕∆x)⊕∆y. This primitive
can be easily modeled, but is also too generous to the attacker.

To our knowledge, this is the first attempt to formally analyze the effect of a wide class
of blockcipher attacks on higher level cryptographic functions. Nonetheless, the weak cipher
model is in essence still a model: we use an abstraction of the cryptanalytic known-key
attacks in such a way that the ideal cipher model can be relaxed to cope them. A further
discussion on the accuracy of the model is given in Sect. 7.

3

Table 1. Security results for the PGV, Grøstl, and Shrimpton-Stam compression functions
in the weak cipher model. Ideal cipher/permutation model bounds match the ones of B ≥ 3.
All results are tight except for the case (B = 1, |C| > n/2) for Shrimpton-Stam.

PGV Grøstl Shrimpton-Stam

B |C| collision preimage collision preimage collision preimage

1 ≤ n/2 2(n−|C|)/2 2n−|C| 2(n−|C|)/4 2(n−|C|)/2 2(n−|C|)/2 2n/2

> n/2 2(n−|C|)/2 2n−|C| 2(n−|C|)/4 2(n−|C|)/2 2(n−|C|)/2 2n−|C|

2 ≤ n/2 2n/2 2n 2n/4 2n/2 2n/2 2n/2

> n/2 2n−|C| 2n 2(n−|C|)/2 2n/2 2n−|C| 2n/2

≥ 3 arbitrary 2n/2 2n 2n/4 2n/2 2n/2 2n/2

Application to Blockcipher-Based Hash Functions. Preneel, Govaerts, and Vande-
walle (PGV) [48] classified the 64 most basic ways of constructing a 2n-to-n-bit compression
function from a blockcipher with n-bit key and n-bit state, and claimed security of 12 of
them. A formal security analysis of these functions in the ICM has been performed by Black
et al. [9], and later by Duo and Li [19], Stam [59], and Black et al. [10]. In more detail, in
the ICM these constructions achieve tight collision security up to about 2n/2 queries and
preimage security up to about 2n queries. Baecher et al. [4] recently showed that the 12
secure PGV functions can be divided into two classes, in such a way that if a primitive
makes one function secure it makes the entire class secure.

As first application of our model, we consider the PGV compression functions in the
WCM and derive collision and preimage bounds for general (A,B,C). A schematic summary
of the results for various B and C is given in Table 1 (we remark that A is merely a technical
parameter that has no influence on the results). We also show that the bounds are optimal, by
providing matching attacks. Some of these attacks are similar to methods used in [27,53,56]
to detect (near-)collisions in certain PGV modes of operations using known-key attacks.

Application to Permutation-Based Hash Functions. We also apply the WCM to
permutation-based compression functions. This is particularly interesting for two reasons:
(i) it allows us to understand the impact of distinguishers on permutations that are used
in hash functions, and (ii) a blockcipher with a fixed and known key is a permutation and
can be used as such. In more detail, we consider the Grøstl compression function [21] and
the permutation-based equivalent of the Shrimpton-Stam compression function [57] (see also
Fig. 4). In the IPM, the former is proven to achieve collision security up to 2n/4 queries,
where n is the state size, and preimage security up to 2n/2 [20]. Rogaway and Steinberger [51]
showed via an automated analysis that the latter function is collision and preimage resistant
up to 2n/2 queries (asymptotically). This has been confirmed in the generalized work of
Mennink and Preneel [41].

A summary of our findings for the Grøstl and Shrimpton-Stam compression functions in
the WCM is given in Table 1. All results are tight, except for the case (B = 1, |C| > n/2) for
Shrimpton-Stam, for which we leave proving tightness as an open problem. We remark that
the analysis for these schemes is much more demanding as multiple primitives are involved.

Impact. An application of our formalization to the PGV functions and various permutation-
based functions shows that these achieve a comparable level of security in the ideal and
weak cipher model for a spectrum of choices for (A,B,C). This result particularly implies
that most relevant rebound-based (including [12,22,28,38,52,53,56]) and boomerang-based
(including [2, 7, 31, 54, 61]) known-key attacks known to date do not invalidate the security
of such functions, or only have a little effect. For instance, the above-discussed attack on
Feistel7 satisfies B = 2 and |C| = n/2 and it does not affect the security; similarly for
Threefish36 for which B = 4. The attack on AES8 is covered for B = 2 and |C| = 10n/16,

4

which demonstrates a slight security degradation to 26n/16 for the PGV functions, but this
may in part be due to our over-generosity to the adversary. We remark that, even though
we focused on collision and preimage resistance, the techniques can be generalized to other
security notions, such as near-collisions. This may entail differences in the security results.

We stress that these results do not mean that the analyzed functions are secure when the
underlying permutations are instantiated with, say, Feistel7 or Threefish36: it only means
that existing known-key attacks, or more general weaknesses such as relation (1), alone are
not sufficient to invalidate the collision and preimage security of the construction. Indeed,
more sophisticated attacks which are not yet covered by our application of the WCM may
still invalidate the security of certain modes [6]. It remains a challenging open research
problem to generalize the findings to underlying primitives that have multiple or different
weaknesses.

1.2 Outline

In Sect. 2, we formally present the “weak cipher model,” and in Sect. 3 we show how it
relates to known-key attacks. We apply the model to the PGV functions in Sect. 4, to the
Grøstl compression function in Sect. 5, and to Shrimpton-Stam in Sect. 6. We conclude this
work in Sect. 7.

2 Weak Cipher Model

If X is a set, by x
$←− X we denote the uniformly random sampling of an element from X. By

X
∪←− x, we denote X ← X ∪{x}. For a bit string x, its bits are numbered x = x|x| · · ·x2x1.

If C ⊆ {1, . . . , |x|}, the function BitsC(x) outputs a string consisting of all bits of x whose
index is in C. Abusing notation, BitsC(x) always denotes the remaining bits (technically,
C = {1, . . . , |x|}\C). For 0 ≤ r ≤ |x|, we consider Rir(x) that outputs the r rightmost bits
of x. In other words, Rir(x) = Bits{1,...,r}(x). For a function f , by dom(f) and rng(f) we
denote its domain and range, respectively.

2.1 Security Model

For κ ≥ 0 and n ≥ 1, by BC(κ, n) we denote the set of all blockciphers with κ-bit key
operating on n bits. If κ = 0, BC(n) := BC(0, n) denotes the set of all n-bit permutations.
If Φ is a predicate, by BC[Φ](κ, n) we denote the subset of ciphers of BC(κ, n) that sat-
isfy predicate Φ. For π ∈ BC[Φ](κ, n), the input-output tuples are denoted (k, x, z), where
π(k, x) = πk(x) = z and π−1(k, z) = π−1

k (z) = x. The key k is omitted in case κ = 0.
Let F : {0, 1}s → {0, 1}n be a compressing function instantiated with ` ≥ 1 primitives

from BC[Φ](κ, n), for some predicate Φ. Throughout, we consider security of F in an idealized
model: we consider an adversary A that is a probabilistic algorithm with oracle access to

a randomly sampled primitive π = (π1, . . . , π`)
$←− BC[Φ](κ, n)`. A is information-theoretic

and its complexity is only measured by the number of queries made to its oracles. The
adversary can make forward and inverse queries to its oracles, and these queries are stored
in a query history Q.

A collision-finding adversary A for F aims at finding two distinct inputs to F that com-
press to the same range value. In more detail, we say that A succeeds if it finds two distinct
inputs X,X ′ such that F(X) = F(X ′) and Q contains all queries required for these evalua-
tions of F. We define by

Advcol
F (A) = Pr

(
π

$←− BC[Φ](κ, n)`, X,X ′ ← Aπ : X 6= X ′ ∧ F(X) = F(X ′)
)

the probability that A succeeds in this. By Advcol
F (q) we define the maximum collision

advantage taken over all adversaries making q queries.

5

For preimage resistance, we focus on everywhere preimage resistance [50], which captures
preimage security for every point of {0, 1}n. Let Z ∈ {0, 1}n be any range value. Then, we
say that A succeeds in finding a preimage if it obtains an input X such that F(X) = Z and
Q contains all queries required for this evaluation of F. We define by

Advepre
F (A) = max

Z ∈{0,1}n
Pr
(
π

$←− BC[Φ](κ, n)`, X ← Aπ(Z) : F(X) = Z
)

the probability that A succeeds, maximized over all possible choices for Z. By Advepre
F (q)

we define the maximum (everywhere) preimage advantage taken over all adversaries making
q queries.

If Φ is a trivial relation, we have BC[Φ](κ, n) = BC(κ, n), and the above definitions boil
down to security in the ideal cipher model (ICM) if κ > 0 or the ideal permutation model
(IPM) if κ = 0. On the other hand, if Φ is a non-trivial predicate, it strictly reduces the set
BC(κ, n). In this case, we will refer to the model as the “weak cipher model (WCM),” for both
κ > 0 and κ = 0. Very informally, this model still involves random ciphers/permutations,
with the difference that an adversary may exploit a certain additional property. The modeling
of a randomly drawn weak ciphers is much more delicate.

2.2 Random Weak Cipher

For a certain class of predicates, we discuss how to model a randomly drawn weak cipher
π from BC[Φ](κ, n). Let A,B ∈ N. We will consider predicates that imply, for every k ∈
{0, 1}κ, the existence of A sets of B distinct queries {(x1, z1), . . . , (xB , zB)} that satisfy
ϕk
(
{(x1, z1), . . . , (xB , zB)}

)
for some condition ϕ depending on key k. The predicate is

denoted Φ(A,B,ϕ). A is merely a technical parameter, and throughout we assume it is larger
than q, the number of oracle calls an adversary can make. This definition of Φ(A,B,ϕ) is
fairly general. Particularly, predicate B-sets may overlap and the condition ϕ can represent
any function on the inputs. We note that Φ can be easily generalized to tuples of different
length and/or to multiple types of conditions at the same time.

Traditionally, an adversary has only forward πk(x) and inverse π−1
k (z) query access. In

order for the adversary to be able to exploit the weakness present in π, we give it additional
access to π via a “predicate query” πΦk (y): on input of y ∈ {1, . . . , A}, the adversary obtains
a B-set {(x1, z1), . . . , (xB , zB)} that satisfies ϕk

(
{(x1, z1), . . . , (xB , zB)}

)
.

A formal description of how to model π
$←− BC[Φ(A,B,ϕ)](κ, n) is given in Fig. 1.

Here, for every k ∈ {0, 1}κ, Pk is an initially empty list of πk-evaluations, where a regu-
lar forward/inverse query adds one element (x, z) to Pk and a πΦk -query may add up to
B elements. Additionally, PΦk is an initially empty list of queries to πΦk . We denote by

Σk(Pk, P
Φ
k) ⊆ ({0, 1}n × {0, 1}n)

B
the set of all tuples {(x1, z1), . . . , (xB , zB)} such that

(i) x1, . . . , xB are pairwise distinct and z1, . . . , zB are pairwise distinct;
(ii) ∀B`=1 : x` ∈ dom(Pk) =⇒ z` = Pk(x`) and z` ∈ rng(Pk) =⇒ x` = P−1

k (z`);
(iii) ϕk

(
{(x1, z1), . . . , (xB , zB)}

)
holds;

(iv) {(xp(1), zp(1)), . . . , (xp(B), zp(B))} 6∈ rng(PΦk) for any permutation p on {1, . . . , B}.

For a new query πΦk (y), the response is then randomly drawn from Σk(Pk, P
Φ
k). Conditions

(i-iii) are fairly self-evident; note particularly that an existing (x, z) ∈ Pk may appear in
multiple predicate queries. Condition (iv) assures that the drawing from Σk(Pk, P

Φ
k) is not

just an old predicate query or a reordering thereof. The usage of this set Σk(Pk, P
Φ
k) allows

for a uniform behavior of πΦk for every k, and in general of π
$←− BC[Φ(A,B,ϕ)](κ, n),

modulo the known existence of condition ϕ. This step is fundamental to our model and
new compared with previous approaches of [13, 15, 35]. We remark that the model allows
adversaries to make their queries at their own discretion, e.g., duplicate queries and regular
queries after predicate queries are allowed.

6

procedure πk(x)

if Pk(x) = ⊥:

z
$←− {0, 1}n\rng(Pk)

Pk
∪←− (x, z)

end if
return Pk(x)

procedure π−1
k (z)

if P−1
k (z) = ⊥:

x
$←− {0, 1}n\dom(Pk)

Pk
∪←− (x, z)

end if
return P−1

k (z)

procedure πΦk (y)

if PΦk (y) = ⊥:

{(x1, z1), . . . , (xB , zB)} $←− Σk(Pk, P
Φ
k)

for ` = 1, . . . , B:

if (x`, z`) 6∈ Pk:

Pk
∪←− (x`, z`)

end if
end for

PΦk
∪←− (y, {(x1, z1), . . . , (xB , zB)})

end if
return PΦk (y)

Fig. 1. Random weak cipher π. An adversary has access to π, π−1, and πΦ.

2.3 Random Abortable Weak Cipher

Security analyses in the WCM are significantly more complex than in the ICM or IPM, which
is in part because predicate queries may consist of older queries. This will particularly be
an issue once collisions among queries are investigated. To suit the analysis for this case,
we transform the WCM to an abortable weak cipher model (AWCM), which we denote as
BC[Φ(A,B,ϕ)](κ, n). At a high-level, an abortable weak cipher responds to predicate queries
with new query tuples only, and aborts once it turns out that an older query appears in a
newer predicate query.

For any k ∈ {0, 1}κ and partial Pk and PΦk , define by Σ̄k(PΦk) ⊆ ({0, 1}n × {0, 1}n)
B

the
set of all tuples {(x1, z1), . . . , (xB , zB)} such that

(iii) ϕk
(
{(x1, z1), . . . , (xB , zB)}

)
holds;

(iv) {(xp(1), zp(1)), . . . , (xp(B), zp(B))} 6∈ rng(PΦk) for any permutation p on {1, . . . , B}.

Σ̄k(PΦk) differs from Σ(Pk, P
Φ
k) in that conditions (i) and (ii) are omitted, and particularly:

it is independent of Pk. A formal description of a random cipher π̄
$←− BC[Φ(A,B, ϕ)](κ, n)

is given in Fig. 2. It deviates from Fig. 1 as follows: for every key k, π̄Φk responds randomly
from Σ̄k(PΦk), and it aborts if the response violates one of the two skipped conditions of
Σk(Pk, P

Φ
k).

The next lemma shows that the WCM and AWCM are indistinguishable as long as the
abortable weak cipher does not abort, approximately up to the birthday bound. Here, we
assume that Σ̄k(PΦk) is always large enough.

Lemma 1. Let π̄
$←− BC[Φ(A,B,ϕC)](κ, n). Consider an adversary that makes q queries to

π̄. Then,

Pr (π̄ sets abort) ≤ B2q(q + 1)

2n − B!q2n

|Σ̄k(∅)|

.

Proof. Consider the ith query, for i ∈ {1, . . . , q}, and assume it is a predicate query π̄Φk (y).
We will consider the probability that this query makes π̄ abort, provided it has not aborted
so far. Prior to this ith query, |Pk| ≤ B(i− 1) and |PΦk | ≤ i. Basic combinatorics shows that

|Σ̄k(PΦk)| = |Σ̄k(∅)| −B! · |PΦk | ,

where we use that π̄ has not aborted so far. This ith query aborts only if for some ` ∈
{1, . . . , B}, the value x` equals an element in dom(Pk) ∪ {x1, . . . , x`−1} or the value z`

equals an element in rng(Pk) ∪ {z1, . . . , z`−1}.

7

procedure π̄k(x)

if Pk(x) = ⊥:

z
$←− {0, 1}n\rng(Pk)

Pk
∪←− (x, z)

end if
return Pk(x)

procedure π̄−1
k (z)

if P−1
k (z) = ⊥:

x
$←− {0, 1}n\dom(Pk)

Pk
∪←− (x, z)

end if
return P−1

k (z)

procedure π̄Φk (y)

if PΦk (y) = ⊥:

{(x1, z1), . . . , (xB , zB)} $←− Σ̄k(PΦk)
for ` = 1, . . . , B:

if x` ∈ dom(Pk) ∧ z` 6= Pk(x`): abort
if z` ∈ rng(Pk) ∧ x` 6= P−1

k (z`): abort
if (x`, z`) ∈ {(x1, z1), . . . , (x`−1, z`−1)}: abort
if (x`, z`) 6∈ Pk:

Pk
∪←− (x`, z`)

end if
end for

PΦk
∪←− (y, {(x1, z1), . . . , (xB , zB)})

end if
return PΦk (y)

Fig. 2. Random abortable weak cipher π̄. An adversary has access to π̄, π̄−1, and π̄Φ.

Define by Σ̄abort
k (PΦk) the set of all elements of Σ̄k(PΦk) that would lead to abort. We

have 2B possible values to cause the abort (namely, x1, . . . , zB), and it causes the abort if
it equals an element in a set of size at most |Pk|+B. For any of these 2B(|Pk|+B) choices,

the number of tuples in Σ̄k(PΦk) complying with this choice is at most |Σ̄k(∅)|
2n . Thus,

Pr
(
π̄Φ(y) sets abort

)
=
|Σ̄abort
k (PΦk)|
|Σ̄k(PΦk)|

≤
2B(|Pk|+B) · |Σ̄k(∅)|

2n

|Σ̄k(∅)| −B! · |PΦk |
≤ 2B2i

2n − B!q2n

|Σ̄k(∅)|

.

The proof is completed by summation over i = 1, . . . , q. ut

3 Modeling Known-Key Attacks

We next apply the WCM to known-key attacks. For the sake of explanation, we first recon-
sider the Knudsen-Rijmen attack on Feistel7 [27]. (A detailed description of the attack is
given in App. A.) Let n ∈ N, and let π := πk be an instance of Feistel7 with fixed key k.
Knudsen and Rijmen revealed four functions f, f ′, g, g′ : {0, 1}n/2 → {0, 1}n such that for
all y ∈ {0, 1}n/2:

g(y) = π(f(y)) and g′(y) = π(f ′(y)) ,

Rin/2 (f(y)⊕ g(y)) = Rin/2 (f ′(y)⊕ g′(y)) .
(2)

These four functions correspond to the equations of (9) in App. A and depend on the
cryptographic primitive underlying Feistel7 in a complicated way. Therefore, we can safely
assume that these functions behave sufficiently random, besides this particular relation (2),
and that they are unknown to the adversary. f, f ′, g, g′ are all injective and satisfy f(y) 6=
f ′(y) and g(y) 6= g′(y) for all y. On the other hand, collisions of the form f(y) = f ′(y′) and
g(y) = g′(y′) may occur.

Generically, the attack demonstrates that for key k there exist 2n/2 possibly overlapping
sets of distinct queries {(x1, z1), (x2, z2)} that satisfy Rin/2

(
x1⊕ z1⊕ x2⊕ z2

)
= 0. In other

words, Feistel7 meets predicate Φ(2n/2, 2, ϕFeistel7), where

ϕFeistel7
k

(
{(x1, z1), (x2, z2)}

)
: Rin/2

(
x1 ⊕ z1 ⊕ x2 ⊕ z2

)
= 0 .

Here, we remark that the Knudsen-Rijmen attack works for any fixed but known key k, and
that condition ϕFeistel7

k is in fact independent of the key. In this work, we will consider a

8

more general predicate Φ(A,B, ϕC) for A,B ∈ N and C ⊆ {1, . . . , n}, where

ϕCk
(
{(x1, z1), . . . , (xB , zB)}

)
: BitsC

(
x1 ⊕ z1 ⊕ · · · ⊕ xB ⊕ zB

)
= 0 . (3)

This generalized predicate considers the case of arbitrary but fixed and known keys, where
the adversary can even choose the key every time it makes a predicate query. Note that also
the attacks on AES8 and Threefish36 (see Sect. 1) are covered, as they satisfy Φ(2n/8, 2, ϕC)
for certain C of size 10n/16 and Φ(2n/8, 4, ϕ{1,...,n}), respectively. In general, all rebound- or
boomerang-based known-key attack in literature are covered by predicate Φ(A,B,ϕC) for
some A,B,C. Here, B is always a value independent of n (usually 2 or 4) and C is regularly
a large subset (of size at least n/4). Throughout, we consider A to be sufficiently large.

Basic Computations for AWCM

For the specific condition ϕC of (3), we derive a simpler bound on the probability that a

primitive π̄
$←− BC[Φ(A,B,ϕC)](κ, n) aborts, along with some other elementary observations

for π̄. To this end, we define the notation “[X],” which equals 1 if X holds and 0 otherwise.
For conciseness, we introduce the function δB,C [b] defined as

δB,C [b] = 2|C|[B = b] + [B > b] =

2|C| if B = b ,

1 if B > b ,

0 otherwise .

(4)

Lemma 2. Let π̄
$←− BC[Φ(A,B,ϕC)](κ, n). Consider an adversary that makes q ≤ 2n−1/B

queries to π̄. Then,

Pr (π̄ sets abort) ≤ B2q(q + 1)

2n −Bq
. (5)

Let k ∈ {0, 1}κ and let Z,Z ′, Z ′′ ∈ {0, 1}n. Consider any new query π̄Φk (y) and assume it
does not abort. Write the response as {(x1, z1), . . . , (xB , zB)}. Then,

(i) ∀ a ∈ {1, . . . , B} : Pr (xa = Z), Pr (za = Z) ≤ 1
2n−Bq ;

(ii) ∀ a ∈ {1, . . . , B} : Pr (xa ⊕ za = Z) ≤ δB,C [1]
2n−Bq ;

(iii) ∀ {a, b} ⊆ {1, . . . , B} : Pr
(
xa ⊕ za = Z ∧ xb ⊕ zb = Z ′

)
≤ δB,C [2]

22n−Bq ;

(iv) ∀ {a, b} ⊆ {1, . . . , B} :

Pr
(
xa = Z ∧ xb = Z ′ ∧ xa ⊕ za ⊕ xb ⊕ zb = Z ′′

)
≤ δB,C [2]

23n−Bq .

Proof. Recall from the proof of Lem. 1 that

|Σ̄k(PΦk)| = |Σ̄k(∅)| −B!|PΦk | ,

where |PΦk | ≤ q. For the specific predicate analyzed in this lemma, |Σ̄k(∅)| = (2n)2B−12n−|C|.
In the remainder, we regularly bound B! ≤ B · (2n)2B−2 for B ≥ 1 or B! ≤ B · (2n)2B−4 for
B ≥ 2.

Probability of abortion. The bound of (5) directly follows from Lem. 1, the above-
mentioned size of Σ̄k(∅), and the bound on B!.

Part (i). Define by Σ̄
(i)
k (PΦk) the set of all elements of Σ̄k(PΦk) that satisfy xa = Z. Then,

|Σ̄(i)
k (PΦk)| ≤ (2n)2B−22n−|C|, and

Pr (xa = Z) =
|Σ̄(i)
k (PΦk)|
|Σ̄k(PΦk)|

≤ 1

2n −Bq
.

9

A similar analysis applies to the case za = Z.

Part (ii). Define by Σ̄
(ii)
k (PΦk) the set of all elements of Σ̄k(PΦk) that satisfy xa ⊕ za = Z.

We make a distinction between B = 1 and B > 1. In case B > 1, a similar reasoning as

in (i) applies, and we have |Σ̄(ii)
k (PΦk)| ≤ (2n)2B−22n−|C|. On the other hand, if B = 1, we

have |Σ̄(ii)
k (PΦk)| = 0 if BitsC(Z) 6= 0 and |Σ̄(ii)

k (PΦk)| ≤ 2n if BitsC(Z) = 0. In any case,

|Σ̄(ii)
k (PΦk)| ≤ (2n)2B−22n−|C|δB,C [1] ,

and

Pr (xa ⊕ za = Z) =
|Σ̄(ii)
k (PΦk)|
|Σ̄k(PΦk)|

≤ δB,C [1]

2n −Bq
.

Part (iii). This part only applies to B > 1; if B = 1 the probability equals 0 by construction.

Define by Σ̄
(iii)
k (PΦk) the set of all elements of Σ̄k(PΦk) that satisfy xa⊕za = Z and xb⊕zb =

Z ′. We make a distinction between B = 2 and B > 2. In case B > 2, a similar reasoning as in

(i) and (ii) applies, and we have |Σ̄(iii)
k (PΦk)| ≤ (2n)2B−32n−|C|. On the other hand, if B = 2,

we have |Σ̄(iii)
k (PΦk)| = 0 if BitsC(Z ⊕Z ′) 6= 0 and |Σ̄(iii)

k (PΦk)| ≤ (2n)2 if BitsC(Z ⊕Z ′) = 0.
In any case,

|Σ̄(iii)
k (PΦk)| ≤ (2n)2B−32n−|C|δB,C [2] ,

and

Pr
(
xa ⊕ za = Z ∧ xb ⊕ zb = Z ′

)
=
|Σ̄(iii)
k (PΦk)|
|Σ̄k(PΦk)|

≤ δB,C [2]

22n −Bq
.

Part (iv). The approach is fairly similar to case (iii). If B = 1 the probability is 0 by

construction. Define by Σ̄
(iv)
k (PΦk) the set of all elements of Σ̄k(PΦk) that satisfy xa = Z,

xb = Z ′, and xa⊕ za⊕ xb⊕ zb = Z ′′. In case B > 2, we have |Σ̄(iv)
k (PΦk)| ≤ (2n)2B−42n−|C|.

On the other hand, if B = 2, we have |Σ̄(iv)
k (PΦk)| = 0 if BitsC(Z ′′) 6= 0 and |Σ̄(iv)

k (PΦk)| ≤ 2n

if BitsC(Z ′′) = 0. In any case,

|Σ̄(iv)
k (PΦk)| ≤ (2n)2B−42n−|C|δB,C [2] ,

and

Pr
(
xa = Z ∧ xb = Z ′ ∧ xa ⊕ za ⊕ xb ⊕ zb = Z ′′

)
=
|Σ̄(iv)
k (PΦk)|
|Σ̄k(PΦk)|

≤ δB,C [2]

23n −Bq
. ut

4 Application to PGV Compression Functions

We consider the 12 blockcipher-based compression functions from Preneel, Govaerts, and
Vandewalle (PGV) [48]. In the ICM these constructions achieve tight collision security up
to about 2n/2 queries and preimage security up to about 2n queries [9, 10, 19, 59]. The 12
constructions are depicted in Fig. 3. Here, we follow the ordering of [10], where PGV1,
PGV2, and PGV5 are better known as the Matyas-Meyer-Oseas [36], Miyaguchi-Preneel,
and Davies-Meyer [45] compression functions.

Baecher et al. [4] analyzed the 12 PGV constructions under ideal cipher reducibility,
which at a high level covers the idea of two constructions being equally secure for the same
underlying idealized blockcipher. They divide the PGV functions into two classes, in such a
way that if some blockcipher makes one of the constructions secure, it makes all functions
in the corresponding class secure. Applied to our WCM, the results of Baecher et al. imply
the following:

10

Group G1 Group G2

1 4

5 8

9 12

1

2 3

6 7

10 11

2

Fig. 3. The 12 PGV compression functions. When in iteration mode, the message comes in
at the top. The groups G1 and G2 refer to Lem. 3.

Lemma 3 (Ideal Cipher Reducibility of PGV [4], informal). Let π
$←− BC[Φ](n, n)

for some predicate Φ. Let

G1 = {1, 4, 5, 8, 9, 12} , and G2 = {2, 3, 6, 7, 10, 11} .

For any α ∈ {1, 2} and i, j ∈ Gα, PGVi and PGVj achieve the same level of collision and
preimage security once instantiated with π.

Baecher et al. also derive a reduction between the two classes, but this reduction requires
a non-direct transformation on the ideal cipher π,1 making it unsuitable for our purposes.
Thanks to Lem. 3, it suffices to only analyze PGV1 and PGV2 in the WCM: the bounds
carry over to the other 10 PGV constructions. In Sect. 4.1 we analyze the collision security
of these functions in the WCM. The preimage security is considered in Sect. 4.2.

4.1 Collision Security

Theorem 1. Let n ∈ N. Let α ∈ {1, 2} and consider PGVα. Suppose π
$←−

BC[Φ(A,B,ϕC)](n, n). Then, for q ≤ 2n−1/B,

Advcol
PGVα(q) ≤ B2δB,C [1]q2

2n
+

(
B

2

)
2δB,C [2]q

2n
+

4B2q2

2n
.

Proof. We focus on PGV2. The analysis for PGV1 is a simplification due to the absence

of the feed-forward of the key. We consider any adversary that has query access to π
$←−

BC[Φ(A,B,ϕC)](n, n) and makes q queries. As a first step, we move from π to π̄
$←−

BC[Φ(A,B,ϕC)](n, n). By Lem. 2, this costs us an additional term B2q(q+1)
2n−Bq .

A collision for PGV2 would imply the existence of two distinct query pairs (k, x, z),
(k′, x′, z′) such that k ⊕ x ⊕ z = k′ ⊕ x′ ⊕ z′. We consider the ith query (i ∈ {1, . . . , q}) to
be the first query to make this condition satisfied, and sum over i = 1, . . . , q at the end.
For regular (forward or inverse) queries, the analysis of [9, 10, 59] mostly carries over. The
analysis of predicate queries is a bit more technical.

1 If π makes the PGV constructions from group G1 secure, there is a transformation τ such that
τπ makes the constructions from G2 secure, and vice versa.

11

Query π̄k(x) or π̄−1
k (z). The cases are the same by symmetry, and we consider π̄k(x) only.

Denote the response by z. There are at most B(i− 1) possible (k′, x′, z′). As z is randomly
drawn from a set of size at least 2n−Bq, it satisfies z = k⊕x⊕k′⊕x′⊕ z′ with probability

at most B(i−1)
2n−Bq .

Query π̄Φk (y). Denote the query response by {(k, x1, z1), . . . , (k, xB , zB)}. In case the B-
set contributes only to (k, x, z), the same reasoning as for regular queries applies with the
difference that any query of the B-set may be successful and that the bound of Lem. 2 part

(ii) applies:
B2δB,C [1](i−1)

2n−Bq .

Now, consider the case the predicate query contributes to both (k, x, z) and (k, x′, z′).
There are

(
B
2

)
ways for the predicate query to contribute (or 0 if B = 1). By Lem. 2 part

(iii), which considers the success probability for any such combination, the predicate query

results in a collision with probability at most
(
B
2

) δB,C [2]2n

22n−Bq .

Conclusion. Taking the maximum of all success probabilities, the ith query is successful

with probability at most
B2δB,C [1](i−1)

2n−Bq +
(
B
2

) δB,C [2]2n

22n−Bq . Summation over i = 1, . . . , q gives

Advcol
PGV2(q) ≤ B2δB,C [1]q2

2(2n −Bq)
+

(
B

2

)
δB,C [2]q

2n −Bq
+
B2q(q + 1)

2n −Bq
,

where the last part of the bound comes from the transition from WCM to AWCM. The proof
is completed by using the fact that 2n −Bq ≥ 2n−1 for Bq ≤ 2n−1, and that q + 1 ≤ 2q for
q ≥ 1. ut

We note that the bound gets worse for increasing values of B. This has a technical cause:
predicate queries are counted equally expensive as regular queries, but result in up to B
new query tuples. This leads to several factors of B in the bound. As this work is mainly
concerned with differential known-key attacks for which B is regularly small, these factors
are of no major influence.

The implications of the bound of Thm. 1 become more visible when considering particular
choices of B and C.

(i) If B = 1, then Advcol
PGVα(q) ≤ 2|C|q2

2n + 4q2

2n ;

(ii) If B = 2, then Advcol
PGVα(q) ≤ 20q2

2n + 4·2|C|q
2n ;

(iii) If B ≥ 3 (independent of n), then Advcol
PGVα(q) ≤ 5B2q2

2n + B2q
2n .

In other words, for B = 2 and C with |C| ≤ n/2, or for B ≥ 3 constant and C arbitrary,
the PGV functions achieve the same 2n/2 collision security level as in the ICM. On the
other hand, if B = 1, collisions can be found in about 2(n−|C|)/2 queries, and if B = 2 with
|C| > n/2, in about 2n−|C| < 2n/2 queries. See also Table 1.

Tightness

For the cases B = 1 and C arbitrary, and B = 2 and C arbitrary such that |C| > n/2,
we derive generic attacks that demonstrate tightness of the bound of Thm. 1. Knudsen and
Rijmen [27] and Sasaki et al. [53,56] already considered how to exploit a known-key pair for
the underlying blockcipher to find a collision for the Matyas-Meyer-Oseas (PGV1) and/or
Miyaguchi-Preneel (PGV2) compression functions. Their attacks correspond to our B = 2
case.

Proposition 1 (B = 1). Let n ∈ N. Let α ∈ {1, 2} and consider PGVα. Suppose π
$←−

BC[Φ(A, 1, ϕC)](n, n). Then, Advcol
PGVα(q) ≥ q2

2n−|C|
.

Proof. We construct a collision-finding adversary A for PGV2. It fixes key k = 0, and makes
predicate queries to πΦk on input of distinct values y to obtain q queries (k, xy, zy) satisfying
BitsC(xy⊕zy) = 0. Any two such queries collide on the entire state, k⊕xy⊕zy = k⊕xy′⊕zy′ ,
with probability at least q2

2n−|C|
. The attack for PGV1 is the same as we have taken k = 0.

ut

12

Proposition 2 (B = 2 and |C| > n/2). Let n ∈ N. Let α ∈ {1, 2} and consider PGVα.

Suppose π
$←− BC[Φ(A, 2, ϕC)](n, n). Then, Advcol

PGVα(q) ≥ q
2n−|C|

.

Proof. We construct a collision-finding adversary A for PGV2. It fixes key k = 0, and makes
predicate queries to πΦk on input of distinct values y to obtain q 2-sets {(k, x1

y, z
1
y), (k, x2

y, z
2
y)}

satisfying BitsC
(
x1
y ⊕ z1

y

)
= BitsC

(
x2
y ⊕ z2

y

)
. These two queries collide on the entire state,

k⊕x1
y⊕z1

y = k⊕x2
y⊕z2

y , with probability at least 1
2n−|C|

. If the adversary makes q predicate
queries, we directly obtain our bound. The attack for PGV1 is the same as we have taken
k = 0. ut

4.2 Preimage Security

Theorem 2. Let n ∈ N. Let α ∈ {1, 2} and consider PGVα. Suppose π
$←−

BC[Φ(A,B,ϕC)](n, n). Then, for q ≤ 2n−2/B,

Advepre
PGVα(q) ≤

(
2Bq

2n

)B
+

2B2δB,C [1]q

2n
.

Due to space limitations, the proof is given in App. B. It is much more involved than the
one of Thm. 1, particularly as we cannot make use of abortable ciphers. Entering various
choices of B and C shows that in the PGV functions remain mostly unaffected in the WCM
if B ≥ 2, and the same security level as in the ICM is achieved [9, 10, 59]. A slight security
degradation appears for B = 1 as preimages can be found in about 2n−|C|.

Tightness

For the case B = 1, we derive a generic attack that demonstrates the tightness of the bound
of Thm. 2.

Proposition 3 (B = 1). Let n ∈ N. Let α ∈ {1, 2} and consider PGVα. Suppose π
$←−

BC[Φ(A, 1, ϕC)](n, n). Then, Advepre
PGVα(q) ≥ q

2n−|C|
.

Proof. Let Z be any given range value with BitsC(Z) = 0 (note that epre guarantees security
for every range point). A preimage-finding adversary A for PGV2 proceeds as follows. It
fixes key k = 0, and makes predicate queries to πΦk on input of distinct values y to obtain q
queries (k, xy, zy) satisfying BitsC(xy ⊕ zy) = 0. Any such query hits Z on the entire state,
k ⊕ xy ⊕ zy = Z, with probability at least q

2n−|C|
. The attack for PGV1 is the same as we

have taken k = 0. ut

5 Application to Grøstl Compression Function

We consider the provable security of the compression function mode of operation of Grøstl
[21] (see also Fig. 4):

FGrøstl(x1, x2) = x2 ⊕ π1(x1)⊕ π2(x1 ⊕ x2) . (6)

The Grøstl compression function is in fact designed to operate in a wide-pipe mode, and in
the IPM, the function is proven collision secure up to about 2n/4 queries and preimage secure

up to 2n/2 queries [20]. We consider the security of FGrøstl in the WCM, where (π1, π2)
$←−

BC[Φ(A,B,ϕC)](n)2. We remark that in this section we consider keyless primitives, hence
κ = 0 and the k-input is dropped throughout. We furthermore note that finding collisions
and preimages for FGrøstl is equivalent to finding them for

F′Grøstl(x1, x2) = x1 ⊕ x2 ⊕ π1(x1)⊕ π2(x2) , (7)

as FGrøstl(x1, x2) = F′Grøstl(x1, x1 ⊕ x2), and we will consider F′Grøstl throughout.

13

x1

x2 z

π1

π2

1

x1

x2 z

π1

π2 π3

1

Fig. 4. Grøstl compression function (left) and Shrimpton-Stam (right).

5.1 Collision Security

Theorem 3. Let n ∈ N. Suppose (π1, π2)
$←− BC[Φ(A,B,ϕC)](n)2. Then, for q ≤ 2n−1/B,

Advcol
F′Grøstl

(q) ≤ B4δB,C [1]q4

2n +
(
B
2

) 2δB,C [2](q2+2n/2−|C|q)
2n + B2q2

2·2n/2 + 4B2q2

2n .

The proof is given in App. C. If we enter particular choices of B and C into the bound,
we find results comparable to the case of Sect. 4.1. In more detail, for B = 2 and C with
|C| ≤ n/2, or for B ≥ 3 constant and C arbitrary, FGrøstl achieves the same 2n/4 collision
security level as in the ICM [20]. If B = 1, the bound guarantees security up to about
2(n−|C|)/4, and if B = 2 with |C| > n/2, collisions can be found in about 2(n−|C|)/2 queries.
See also Table 1. In App. D we show that the bound is optimal, by presenting tight attacks
on F′Grøstl in the WCM.

5.2 Preimage Security

Theorem 4. Let n ∈ N. Suppose (π1, π2)
$←− BC[Φ(A,B,ϕC)](n)2. Then, for q ≤ 2n−1/B,

Advepre
F′Grøstl

(q) ≤ 2B2δB,C [1](q2 + 2n/2−|C|q)

2n
+

Bq

2n/2
+

4B2q2

2n
.

The proof is given in App. E. As before, we find that FGrøstl remains unaffected in the WCM
for most cases, the sole exception being B = 1 for which preimages can be found in about
2(n−|C|)/2. In App. F we show that the bound is optimal, by presenting a tight attack on
F′Grøstl for B = 1 in the WCM.

6 Application to Shrimpton-Stam Compression Function

In this section, we consider the provable security of the Shrimpton-Stam compression func-
tion [57] (see also Fig. 4):

FSS(x1, x2) = x1 ⊕ π1(x1)⊕ π3(x1 ⊕ π1(x1)⊕ x2 ⊕ π2(x2)) . (8)

This function is proven asymptotically optimally collision and preimage secure up to 2n/2

queries in the IPM [41, 51, 57]. We consider the security of FSS in the WCM, where

(π1, π2, π3)
$←− BC[Φ(A,B,ϕC)](n)3. (As in Sect. 5 we consider keyless functions, hence

κ = 0 and the key inputs are dropped throughout.) Our findings readily apply to the gener-
alization of FSS of [41]. The analysis of this construction is significantly more complex than
the ones of Sect. 4 and Sect. 5.

14

6.1 Collision Security

Theorem 5. Let n ∈ N. Suppose (π1, π2, π3)
$←− BC[Φ(A,B,ϕC)](n)3. Then,

(i) If B = 1 and C arbitrary, Advcol
FSS

(2(n−|C|)/2−nε)→ 0 for n→∞;

(ii) If B = 2 and C with |C| ≤ n/2, Advcol
FSS

(2n/2−nε)→ 0 for n→∞;

(iii) If B = 2 and C with |C| > n/2, Advcol
FSS

(2n−|C|−nε)→ 0 for n→∞;

(iv) If B ≥ 3 (independent of n) and C arbitrary, Advcol
FSS

(2n/2−nε)→ 0 for n→∞.

Due to the technicality of the proof, the results are expressed in asymptotic terms. The
proof is given in App. G. For B = 2 and C with |C| ≤ n/2, or for B ≥ 3 constant and C
arbitrary, FSS achieves the same security level as in the IPM. On the other hand, if B = 1,
or if B = 2 but |C| > n/2, Thm. 5 results in a worse bound. See also Table 1. In App. H we
show that the bound is optimal, by presenting tight attacks on FSS in the WCM.

6.2 Preimage Security

Theorem 6. Let n ∈ N. Suppose (π1, π2, π3)
$←− BC[Φ(A,B,ϕC)](n)3. Then,

(i) If B = 1 and C with |C| ≤ n/2, Advepre
FSS

(2n/2−nε)→ 0 for n→∞;

(ii) If B = 1 and C with |C| > n/2, Advepre
FSS

(2n−|C|−nε)→ 0 for n→∞;

(iii) If B ≥ 2 (independent of n) and C arbitrary, Advepre
FSS

(2n/2−nε)→ 0 for n→∞.

As for collision resistance, the results are expressed in asymptotic terms. The proof is given in
App. I. The bounds match the ones in the IPM, except for the case of B = 1 and |C| > n/2.
We leave it as an open problem to prove tightness of Thm. 6 part (ii).

7 Conclusions

Since their formal introduction by Knudsen and Rijmen at ASIACRYPT 2007 [27], numerous
known-key attacks on blockciphers have appeared in literature. These attacks are often
considered delicate, as it is not always clear to what extent they influence the security of
cryptographic functions based on these known-key blockciphers. We presented the weak
cipher model in order to investigate this impact. For a specific instance of this model,
considering the existence of A sets of B queries that satisfy condition ϕC of (3), we proved
that the PGV compression functions [48], the Grøstl compression function [21], and the
Shrimpton-Stam compression function [57] remain mostly unaffected by the generalized
weakness. Additionally, preimage security of the functions turned out to be significantly less
susceptible to these types of weaknesses than collision security. The results can be readily
generalized to other primitive-based functions, such as the double block length compression
functions Tandem-DM, Abreast-DM, and Hirose’s compression functions [23,30], and to the
permutation-based sponge mode [5].

Our model is general enough to cover practically all differential known-key attacks in
literature, such as latest results based on the rebound attack [12,22,28,38,52,53,56] and on
the boomerang attack [2,7,31,54,61]. To our knowledge, our work provides the first attempt
to formally analyze the effect of a wide class of cryptanalytic attacks from a modular and
provable security point of view. It is a step in the direction of security beyond the ideal model,
connecting practical attacks from cryptanalysis with ideal model provable security. There is
still a long way to go: in order to make the connection between the two fields, we abstracted
known-key attacks to a certain degree. It remains a highly challenging open research problem
to generalize our findings to multiple or different weaknesses, and to different permutation-
based cryptographic functions. These generalizations include the analysis of known-key based
constructions for more advanced conditions ϕ (such as arbitrary polynomials).

15

Acknowledgments. This work was supported in part by European Union’s Horizon 2020
research and innovation programme under grant agreement No 644052 HECTOR and grant
agreement No H2020-MSCA-ITN-2014-643161 ECRYPT-NET, and in part by the Research
Council KU Leuven: GOA TENSE (GOA/11/007). Bart Mennink is a Postdoctoral Fel-
lows of the Research Foundation – Flanders (FWO). The authors would like to thank the
anonymous reviewers for their valuable help and feedback.

References

1. Andreeva, E., Bogdanov, A., Mennink, B.: Towards understanding the known-key security of
block ciphers. In: Fast Software Encryption 2013. LNCS, vol. 8424, pp. 348–366. Springer,
Heidelberg (2013)

2. Aumasson, J., Çalik, Çagdas., Meier, W., Özen, O., Phan, R., Varıcı, K.: Improved cryptanalysis
of Skein. In: Advances in Cryptology - ASIACRYPT 2009. LNCS, vol. 5912, pp. 542–559.
Springer, Heidelberg (2009)

3. Aumasson, J., Meier, W.: Zero-sum distinguishers for reduced Keccak-f and for the core func-
tions of Luffa and Hamsi (2009)

4. Baecher, P., Farshim, P., Fischlin, M., Stam, M.: Ideal-cipher (ir)reducibility for blockcipher-
based hash functions. In: Advances in Cryptology - EUROCRYPT 2013. LNCS, vol. 7881, pp.
426–443. Springer, Heidelberg (2013)

5. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge functions. ECRYPT Hash Func-
tion Workshop (2007)

6. Biryukov, A., Khovratovich, D., Nikolić, I.: Distinguisher and related-key attack on the full
AES-256. In: Advances in Cryptology - CRYPTO 2009. LNCS, vol. 5677, pp. 231–249. Springer,
Heidelberg (2009)

7. Biryukov, A., Nikolić, I., Roy, A.: Boomerang attacks on BLAKE-32. In: Fast Software Encryp-
tion 2011. LNCS, vol. 6733, pp. 218–237. Springer, Heidelberg (2011)

8. Black, J., Cochran, M., Shrimpton, T.: On the impossibility of highly-efficient blockcipher-
based hash functions. In: Advances in Cryptology - EUROCRYPT 2005. LNCS, vol. 3494, pp.
526–541. Springer, Heidelberg (2005)

9. Black, J., Rogaway, P., Shrimpton, T.: Black-box analysis of the block-cipher-based hash-
function constructions from PGV. In: Advances in Cryptology - CRYPTO 2002. LNCS, vol.
2442, pp. 320–335. Springer, Heidelberg (2002)

10. Black, J., Rogaway, P., Shrimpton, T., Stam, M.: An analysis of the blockcipher-based hash
functions from PGV. Journal of Cryptology 23(4), 519–545 (2010)

11. Blondeau, C., Peyrin, T., Wang, L.: Known-key distinguisher on full PRESENT. In: Advances
in Cryptology - CRYPTO 2015, Part I. LNCS, vol. 9215, pp. 455–474. Springer, Heidelberg
(2015)

12. Bouillaguet, C., Dunkelman, O., Leurent, G., Fouque, P.: Attacks on hash functions based
on generalized feistel: Application to reduced-round Lesamnta and SHAvite-3512. In: Selected
Areas in Cryptography 2010. LNCS, vol. 6544, pp. 18–35. Springer, Heidelberg (2010)

13. Bouillaguet, C., Fouque, P., Leurent, G.: Security analysis of SIMD. In: Selected Areas in
Cryptography 2010. LNCS, vol. 6544, pp. 351–368. Springer, Heidelberg (2011)

14. Boura, C., Canteaut, A.: Zero-sum distinguishers for iterated permutations and application to
Keccak-f and Hamsi-256. In: Selected Areas in Cryptography 2010. LNCS, vol. 6544, pp. 1–17.
Springer, Heidelberg (2010)

15. Bresson, E., Canteaut, A., Chevallier-Mames, B., Clavier, C., Fuhr, T., Gouget, A., Icart, T.,
Misarsky, J.F., Naya-Plasencia, M., Paillier, P., Pornin, T., Reinhard, J., Thuillet, C., Videau,
M.: Indifferentiability with distinguishers: Why Shabal does not require ideal ciphers. Cryptol-
ogy ePrint Archive, Report 2009/199 (2009)

16. Coron, J., Patarin, J., Seurin, Y.: The random oracle model and the ideal cipher model are
equivalent. In: Advances in Cryptology - CRYPTO 2008. LNCS, vol. 5157, pp. 1–20. Springer,
Heidelberg (2008)

17. Dong, L., Wu, W., Wu, S., Zou, J.: Known-key distinguisher on round-reduced 3D block cipher.
In: Information Security Applications - WISA 2011. LNCS, vol. 7115, pp. 55–69. Springer,
Heidelberg (2012)

18. Duan, M., Lai, X.: Improved zero-sum distinguisher for full round Keccak-f permutation. Chi-
nese Science Bulletin 57(6), 694–697 (2012)

16

19. Duo, L., Li, C.: Improved collision and preimage resistance bounds on PGV schemes. Cryptology
ePrint Archive, Report 2006/462 (2006)

20. Fouque, P., Stern, J., Zimmer, S.: Cryptanalysis of tweaked versions of SMASH and reparation.
In: Selected Areas in Cryptography 2008. LNCS, vol. 5381, pp. 136–150. Springer, Heidelberg
(2009)

21. Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C., Schläffer, M.,
Thomsen, S.: Grøstl – a SHA-3 candidate (2011), submission to NIST’s SHA-3 competition

22. Gilbert, H., Peyrin, T.: Super-Sbox cryptanalysis: Improved attacks for AES-like permutations.
In: Fast Software Encryption 2010. LNCS, vol. 6147, pp. 365–383. Springer, Heidelberg (2010)

23. Hirose, S.: Some plausible constructions of double-block-length hash functions. In: Fast Software
Encryption 2006. LNCS, vol. 4047, pp. 210–225. Springer, Heidelberg (2006)

24. Holenstein, T., Künzler, R., Tessaro, S.: The equivalence of the random oracle model and the
ideal cipher model, revisited. In: Proc. ACM Symposium on Theory of Computing 2011. pp.
89–98. ACM, New York (2011)

25. Jetchev, D., Özen, O., Stam, M.: Collisions are not incidental: A compression function exploiting
discrete geometry. In: Theory of Cryptography Conference 2012. LNCS, vol. 7194, pp. 303–320.
Springer, Heidelberg (2012)

26. Katz, J., Lucks, S., Thiruvengadam, A.: Hash functions from defective ideal ciphers. In: CT-
RSA 2015. LNCS, vol. 9048, pp. 273–290. Springer, Heidelberg (2015)

27. Knudsen, L., Rijmen, V.: Known-key distinguishers for some block ciphers. In: Advances in
Cryptology - ASIACRYPT 2007. LNCS, vol. 4833, pp. 315–324. Springer, Heidelberg (2007)

28. Koyama, T., Sasaki, Y., Kunihiro, N.: Multi-differential cryptanalysis on reduced DM-
PRESENT-80: collisions and other differential properties. In: Information Security and Cryp-
tology - ICISC 2012. Lecture Notes in Computer Science, vol. 7839, pp. 352–367. Springer,
Heidelberg (2013)

29. Kuwakado, H., Hirose, S.: Hashing mode using a lightweight blockcipher. In: IMA International
Conference 2013. LNCS, vol. 8308, pp. 213–231. Springer, Heidelberg (2013)

30. Lai, X., Massey, J.: Hash function based on block ciphers. In: Advances in Cryptology - EU-
ROCRYPT ’92. LNCS, vol. 658, pp. 55–70. Springer, Heidelberg (1992)

31. Lamberger, M., Mendel, F.: Higher-order differential attack on reduced SHA-256. Cryptology
ePrint Archive, Report 2011/037 (2011)

32. Lampe, R., Seurin, Y.: Security analysis of key-alternating Feistel ciphers. In: Fast Software
Encryption 2014. LNCS, vol. 8540, pp. 243–264. Springer, Heidelberg (2015)

33. Lauridsen, M.M., Rechberger, C.: Linear distinguishers in the key-less setting: Application
to PRESENT. In: Fast Software Encryption 2015. LNCS, vol. 9054, pp. 217–240. Springer,
Heidelberg (2015)

34. Leurent, G., Roy, A.: Boomerang attacks on hash function using auxiliary differentials. In:
CT-RSA 2012. LNCS, vol. 7178, pp. 215–230. Springer, Heidelberg (2012)

35. Liskov, M.: Constructing an ideal hash function from weak ideal compression functions. In:
Selected Areas in Cryptography 2006. LNCS, vol. 4356, pp. 358–375. Springer, Heidelberg
(2007)

36. Matyas, S., Meyer, C., Oseas, J.: Generating strong one-way functions with cryptographic
algorithm. IBM Techn. Disclosure Bull. 27(10A), 5658–5659 (1985)

37. Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on reductions,
and applications to the random oracle methodology. In: Theory of Cryptography Conference
2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)

38. Mendel, F., Peyrin, T., Rechberger, C., Schläffer, M.: Improved cryptanalysis of the reduced
Grøstl compression function, ECHO permutation and AES block cipher. In: Selected Areas in
Cryptography 2009. LNCS, vol. 5867, pp. 16–35. Springer, Heidelberg (2009)

39. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The rebound attack: Cryptanalysis
of reduced Whirlpool and Grøstl. In: Fast Software Encryption 2009. LNCS, vol. 5665, pp.
260–276. Springer, Heidelberg (2009)

40. Mennink, B.: Optimal collision security in double block length hashing with single length key.
In: Advances in Cryptology - ASIACRYPT 2012. LNCS, vol. 7658, pp. 526–543. Springer,
Heidelberg (2012)

41. Mennink, B., Preneel, B.: Hash functions based on three permutations: A generic security
analysis. In: Advances in Cryptology - CRYPTO 2012. LNCS, vol. 7417, pp. 330–347. Springer,
Heidelberg (2012)

17

42. Mennink, B., Preneel, B.: Efficient parallelizable hashing using small non-compressing primi-
tives. International Journal of Information Security (2015), to appear

43. Meyer, C., Schilling, M.: Secure program load with manipulation detection code. In: Proc.
Securicom. pp. 111–130 (1988)

44. Minier, M., Phan, R., Pousse, B.: Distinguishers for ciphers and known key attack against
Rijndael with large blocks. In: Progress in Cryptology - AFRICACRYPT 2009. LNCS, vol.
5580, pp. 60–76. Springer, Heidelberg (2009)

45. Miyaguchi, S., Ohta, K., Iwata, M.: Confirmation that some hash functions are not collision
free. In: Advances in Cryptology - EUROCRYPT ’90. LNCS, vol. 473, pp. 326–343. Springer,
Heidelberg (1990)

46. Nakahara Jr., J.: New impossible differential and known-key distinguishers for the 3D cipher.
In: Information Security Practice and Experience - ISPEC 2011. LNCS, vol. 6672, pp. 208–221.
Springer, Heidelberg (2011)

47. Nikolić, I., Pieprzyk, J., Sokolowski, P., Steinfeld, R.: Known and chosen key differential distin-
guishers for block ciphers. In: Information Security and Cryptology - ICISC 2010. LNCS, vol.
6829, pp. 29–48. Springer, Heidelberg (2010)

48. Preneel, B., Govaerts, R., Vandewalle, J.: Hash functions based on block ciphers: A synthetic
approach. In: Advances in Cryptology - CRYPTO ’93. LNCS, vol. 773, pp. 368–378. Springer,
Heidelberg (1993)

49. Rabin, M.: Digitalized signatures. In: Foundations of Secure Computation ’78. pp. 155–166.
Academic Press, New York (1978)

50. Rogaway, P., Shrimpton, T.: Cryptographic hash-function basics: Definitions, implications, and
separations for preimage resistance, second-preimage resistance, and collision resistance. In:
Fast Software Encryption 2004. LNCS, vol. 3017, pp. 371–388. Springer, Heidelberg (2004)

51. Rogaway, P., Steinberger, J.: Constructing cryptographic hash functions from fixed-key block-
ciphers. In: Advances in Cryptology - CRYPTO 2008. LNCS, vol. 5157, pp. 433–450. Springer,
Heidelberg (2008)

52. Sasaki, Y.: Known-key attacks on Rijndael with large blocks and strengthening ShiftRow pa-
rameter. In: International Workshop on Security - IWSEC 2010. LNCS, vol. 6434, pp. 301–315.
Springer, Heidelberg (2010)

53. Sasaki, Y., Emami, S., Hong, D., Kumar, A.: Improved known-key distinguishers on Feistel-SP
ciphers and application to Camellia. In: Australasian Conference on Information Security and
Privacy - ACISP 2012. LNCS, vol. 7372, pp. 87–100. Springer, Heidelberg (2012)

54. Sasaki, Y., Wang, L.: Distinguishers beyond three rounds of the RIPEMD-128/-160 compression
functions. In: Applied Cryptography and Network Security 2012. LNCS, vol. 7341, pp. 275–292.
Springer, Heidelberg (2012)

55. Sasaki, Y., Wang, L., Takasaki, Y., Sakiyama, K., Ohta, K.: Boomerang distinguishers for full
HAS-160 compression function. In: International Workshop on Security - IWSEC 2012. LNCS,
vol. 7631, pp. 156–169. Springer, Heidelberg (2012)

56. Sasaki, Y., Yasuda, K.: Known-key distinguishers on 11-round Feistel and collision attacks on
its hashing modes. In: Fast Software Encryption 2011. LNCS, vol. 6733, pp. 397–415. Springer,
Heidelberg (2011)

57. Shrimpton, T., Stam, M.: Building a collision-resistant compression function from non-
compressing primitives. In: International Colloquium on Automata, Languages and Program-
ming - ICALP (2) 2008. LNCS, vol. 5126, pp. 643–654. Springer, Heidelberg (2008)

58. Smith, J.: The design of Lucifer: a cryptographic device for data communications. IBM Research
Report RC 3326 (1971)

59. Stam, M.: Blockcipher-based hashing revisited. In: Fast Software Encryption 2009. LNCS, vol.
5665, pp. 67–83. Springer, Heidelberg (2009)

60. Wagner, D.: The boomerang attack. In: Fast Software Encryption ’99. LNCS, vol. 1636, pp.
156–170. Springer, Heidelberg (1999)

61. Yu, H., Chen, J., Wang, X.: The boomerang attacks on the round-reduced Skein-512. In: Se-
lected Areas in Cryptography 2012. LNCS, vol. 7707, pp. 287–303. Springer, Heidelberg (2012)

A Knudsen-Rijmen Attack on Feistel7

We briefly discuss the attack of Knudsen and Rijmen [27] on the classical Feistel network
on n bits with 7 rounds. Before doing so, we first introduce Feistel.

18

The Feistel network is a very common blockcipher design strategy, dating back to the
design of Lucifer [58], and many generalizations of this design have appeared in literature.
We use the notation of [27]. The n-bit Feistel network with 7 rounds, called “Feistel7,” uses
2 lines of n/2 bits, and consists of 7 evaluations of a fixed n/2-bit permutation p. Each
evaluation of p is preceded by an XOR of a round key k1, . . . , k7, derived from the master
key using some key schedule. It is depicted in Fig. 5.1 Fgen

p
p

p
p

p
p

p
k1

k2

k3

k4

k5

k6

k7

ml

mr

cl

cr

Fig. 5. The n-bit Feistel network with 7 rounds.

Now, we describe the attack by Knudsen and Rijmen on this construction [1,27]. Assume
k2 6= k6. First, the adversary fixes an arbitrary value y ∈ {0, 1}n/2. Then, from y the
adversary derives two plaintext/ciphertext-pairs ((ml,mr), (cl, cr)) and ((m′l,m

′
r), (c

′
l, c
′
r))

as follows: y is fixed to be the input to the third permutation call p for the first tuple, while
for the second tuple that input is y⊕α for some non-zero value α (determined later). Then,
the adversary uses p to compute the tuples in a straightforward way:

(ml,mr) = (z ⊕ k4 ⊕ p(y)⊕ p(mr ⊕ k1), y ⊕ k3 ⊕ p(z ⊕ k2 ⊕ k4 ⊕ p(y)))

(cl, cr) = (z ⊕ k2 ⊕ k4 ⊕ k6 ⊕ p(y)⊕ p(cr ⊕ k7),

y ⊕ α⊕ k5 ⊕ p(z ⊕ k2 ⊕ k4 ⊕ p(y)))

(m′l,m
′
r) = (z ⊕ k2 ⊕ k4 ⊕ k6 ⊕ p(y)⊕ p(m′r ⊕ k1),

y ⊕ α⊕ k3 ⊕ p(z ⊕ k4 ⊕ k6 ⊕ p(y)))

(c′l, c
′
r) = (z ⊕ k4 ⊕ p(y)⊕ p(c′r ⊕ k7), y ⊕ k5 ⊕ p(z ⊕ k4 ⊕ k6 ⊕ p(y))) ,

(9)

where α = y⊕ p−1(k2 ⊕ k6 ⊕ p(y)) and z = p−1(k3 ⊕ k5 ⊕ α). These pairs satisfy mr ⊕ cr =
m′r ⊕ c′r with probability 1, but this equation is satisfied by an ideal cipher with probability
at most 1/2n/2. This completes the distinguishing attack. An extension of this attack to
generalized balanced Feistel networks on r wires and 4r − 1 rounds was derived in [1].

B Proof of Theorem 2

We focus on PGV2. The analysis for PGV1 is a simplification due to the absence of

the feed-forward of the key. We consider any adversary that has query access to π
$←−

BC[Φ(A,B,ϕC)](n, n) and makes q queries. Let Z ∈ {0, 1}n. A preimage for Z would
imply the existence of a query (k, x, z) such that x ⊕ z = k ⊕ Z. We consider the ith

query (i ∈ {1, . . . , q}) to be the first query to make this condition satisfied, and sum over
i = 1, . . . , q at the end. For regular (forward or inverse) queries, the analysis of [9, 10, 59]
mostly carries over. The analysis of predicate queries is a more technical, particularly as we
cannot make use of abortable ciphers.
Query πk(x) or π−1

k (z). The cases are the same by symmetry, and we consider πk(x)
only. Denote the response by z. As z is randomly drawn from a set of size at least 2n −Bq,
it satisfies z = x⊕ k ⊕ Z with probability at most 1

2n−Bq .

Query πΦk (y). Denote the query response by {(k, x1, z1), . . . , (k, xB , zB)}. If all tuples are
old, the query cannot be successful as no earlier query was successful, and so we assume it
contains at least one new tuple. The response is drawn uniformly at random from the set

19

Σk(Pk, P
Φ
k). For ` = 0, . . . , B, denote by Σ`

k(Pk, P
Φ
k) the subset of all responses that have `

new query tuples and B− ` old query tuples (which already appear in Pk). By construction,

Σk(Pk, P
Φ
k) =

B⋃
`=0

Σ`
k(Pk, P

Φ
k) . (10)

Define furthermore for ` = 1, . . . , B by Σ`,pre
k (Pk, P

Φ
k) the subset of elements of Σ`

k(Pk, P
Φ
k)

for which one of the new query tuples satisfies x⊕ z = k ⊕ Z (recall that we have excluded
the case of ` = 0). The predicate query is successful with probability

Pr
(
πΦk (y) sets pre(Qi)

)
=

B∑
`=1

|Σ`,pre
k (Pk, P

Φ
k)|

|Σk(Pk, PΦk)|
. (11)

Using (10), we bound (11) as

Pr
(
πΦk (y) sets pre(Qi)

)
≤
|Σ1,pre
k (Pk, P

Φ
k)|

|ΣB
k (Pk, PΦk)|

+

B∑
`=2

|Σ`,pre
k (Pk, P

Φ
k)|

|Σ`
k(Pk, PΦk)|

. (12)

The reason why ` = 1 is treated differently, will become clear shortly.
We next bound all relevant sets. Here, for integers a ≥ b ≥ 1, we denote by ab = a!

(a−b)!
the falling factorial power. Starting with the numerators, for ` = 1 we have

|Σ1,pre
k (Pk, P

Φ
k)| ≤ B · |Pk|B−1 · (2n − |Pk|) .

Indeed, we have B positions for the sole new query to appear and |Pk|B−1
choices for the

old queries. For the new query, without loss of generality (k, xB , zB), it needs to satisfy
BitsC(xB ⊕ zB) = BitsC(x1 ⊕ · · · ⊕ zB−1) and xB ⊕ zB = k⊕Z. We have 2n − |Pk| possible
choices for xB , and any choice gives at most one possible zB . We remark that |Σ1,pre

k (Pk, P
Φ
k)|

will probably be about a factor 2−|C| less, as we should only count all possible solutions for
the B − 1 old queries that satisfy BitsC(x1 ⊕ · · · ⊕ zB−1) = BitsC(k⊕Z). Deriving a tighter
bound would be a cumbersome exercise, but fortunately there is no need to do so: the
fraction of elements in Σk(Pk, P

Φ
k) consisting of B−1 old tuples is already small enough for

the case B > 1. This is the reason why we use a special treatment for the case of ` = 1 in
(12).

For ` ∈ {2, . . . , B} we have

|Σ`,pre
k (Pk, P

Φ
k)| ≤

(
B

`

)
· |Pk|B−` · (2n − |Pk|)` · ` · (2n − |Pk|)`−2 · 2n−|C| .

Again, the first term comes from identifying at which positions the new queries appear and
the second term comes from the selection of old queries. Next, we have (2n − |Pk|)` choices
for the x-values and ` positions for the “winning query” to occur. For this particular winning
query, the corresponding z-value is fixed by the equation x⊕ z = k ⊕ Z. For the remaining
`− 1 z-values, there are (2n − |Pk|)`−2

possibilities to freely fix the first `− 2 of them, and
the last one will be adapted to the predicate condition, and can take at most 2n−|C| values.

Regarding the denominators, for ` ∈ {1, . . . , B} we have

|Σ`
k(Pk, P

Φ
k)| ≥

(
B

`

)
· |Pk|B−` ·

(
(2n − |Pk|)` · (2n − |Pk|)`−1 · 2n−|C| −
Bq · (2n − |Pk|)`−1 · (2n − |Pk|)`−1 · 2n−|C|

)
,

which can be seen as follows. As before, we have
(
B
`

)
positions for the new queries to

appear and |Pk|B−` possible lists of old queries. Regarding the ` new queries, without loss of
generality (k, x1, z1), . . . , (k, x`, z`), these need to satisfy BitsC(x1⊕· · ·⊕z`) = BitsC(x`+1⊕

20

· · ·⊕zB). We first compute the number of choices for these new queries where z` is only used
to adapt to this condition and does not need to satisfy that it is fresh. For this case, we have
precisely (2n − |Pk|)` · (2n − |Pk|)`−1

choices for x1, . . . , z`−1, x`, and 2n−|C| possibilities for
the adaption value z`.

Now, we subtract the cases where this adapted value happens to collide, either with an
older value in rng(Pk) or with any of the new z1, . . . , z`−1. Any of these choices would fix z`

(in total at most (|Pk| + ` − 1) possibilities). Similarly to the analysis for |Σ`,pre
k (Pk, P

Φ
k)|,

where now x` will be used to be adapted to the predicate condition, there are at most

(|Pk|+ `− 1) · (2n − |Pk|)`−1 · (2n − |Pk|)`−1 · 2n−|C|

choices for the fresh values. As ` ≤ B, and additionally |Pk| ≤ B(i− 1) ≤ B(q − 1) for the
current query, we obtain our bound for |Σ`

k(Pk, P
Φ
k)|. The bound can be simplified to

|Σ`
k(Pk, P

Φ
k)| ≥

(
B
`

)
· |Pk|B−` · (2n − |Pk|)`−1 · (2n − |Pk|)`−1 · 2n−|C| · (2n − 2Bq) ,

using that (2n−|Pk|)`

(2n−|Pk|)`−1 = 2n − |Pk| − (`− 1) ≥ 2n −Bq.
Plugging these bounds into (12), we find for the case B = 1:

Pr
(
πΦk (y) sets pre(Qi)

)
≤ 2n − |Pk|

2n−|C| · (2n − 2q)
≤ 2|C|

2n − 2q
.

For the case B > 1 the computation is a bit more elaborate:

Pr
(
πΦk (y) sets pre(Qi)

)
≤ B · (2n − |Pk|)

(2n − |Pk|)B−1 · 2n−|C| · (2n − 2Bq)
· |Pk|B−1

(2n − |Pk|)B−1
+

B∑
`=2

(2n − |Pk|)` · (2n − |Pk|)`−2

(2n − |Pk|)`−1 · (2n − |Pk|)`−1
· `

2n − 2Bq
.

For the first fraction we use that 2n − |Pk| ≤ (2n − |Pk|)B−1
as B > 1, and additionally

that |C| ≤ n. For the falling factorial powers of the second fraction, we use that |Pk|B−1 ≤
(Bq)B−1 and (2n − |Pk|)B−1 ≥ (2n − |Pk| − (B − 1))B−1 ≥ (2n − 2Bq)B−1. For the fraction

in the sum, we use that (2n−|Pk|)`·(2n−|Pk|)`−2

(2n−|Pk|)`−1·(2n−|Pk|)`−1 = 2n−|Pk|−(`−1)
2n−|Pk|−(`−2) ≤ 1. We obtain:

Pr
(
πΦk (y) sets pre(Qi)

)
≤ B

2n − 2Bq
· (Bq)B−1

(2n − 2Bq)B−1
+

B∑
`=2

`

2n − 2Bq

≤ BBqB−1

(2n − 2Bq)B
+

B2

2n − 2Bq
.

Conclusion. Taking the maximum of all success probabilities, the ith query is successful

with probability at most BBqB−1

(2n−2Bq)B
+

B2δB,C [1]
2n−2Bq . Summation over i = 1, . . . , q gives

Advepre
PGV2(q) ≤ BBqB

(2n − 2Bq)B
+
B2δB,C [1]q

2n − 2Bq
.

The proof is completed by using the fact that 2n − 2Bq ≥ 2n−1 for Bq ≤ 2n−2.

C Proof of Theorem 3

We consider any adversary that has access to (π1, π2)
$←− BC[Φ(A,B,ϕC)](n)2 and makes q

queries. These queries are stored in a query historyQ as indexed tuples of the form (κi, xi, zi)

21

for regular queries, where we denote zi = πκi(xi), and {(κi, x1
i , z

1
i), . . . , (κi, x

B
i , z

B
i)} for

predicate queries. For q ≥ 0, by Qq we define the query history after q queries. As a first

step, we move from (π1, π2) to (π̄1, π̄2)
$←− BC[Φ(A,B, ϕC)](n)2. By Lem. 2, this costs us an

additional term B2q(q+1)
2n−Bq .

A collision for F′Grøstl would imply the existence of query pairs (x1, z1), (x′1, z
′
1) for π̄1

and (x2, z2), (x′2, z
′
2) for π̄2 such that (x1, x2) 6= (x′1, x

′
2) and

x1 ⊕ z1 ⊕ x2 ⊕ z2 = x′1 ⊕ z′1 ⊕ x′2 ⊕ z′2 . (13)

We define this configuration by col(Qq). For the analysis of Pr (col(Qq)) for the case of
B > 1 we introduce an auxiliary event aux(Qq). Let τ > 0 be any integral value. We define

aux(Qq) : B > 1 ∧
(∣∣set(Qq)∣∣ > q + τ

)
,

where

set(Qq) =

{
(κ, xi, zi), (κ, xj , zj) ∈ Qq

∣∣ xi 6= xj ∧ BitsC (xi ⊕ zi ⊕ xj ⊕ zj) = 0

}
.

By basic probability theory:

Advcol
F′Grøstl

(q) ≤ Pr (col(Qq) ∧ ¬aux(Qq)) + Pr (aux(Qq)) +
B2q(q + 1)

2n −Bq
, (14)

where the third part of the bound comes from the transition from WCM to AWCM.
Starting with Pr (aux(Qq)), we make a distinction between B = 2 and B ≥ 3. For

B = 2, we make a further distinction depending on whether or not (κ, xi, zi), (κ, xj , zj)
come from the same predicate query. Clearly, if this is the case, they satisfy the condition
BitsC (xi ⊕ zi ⊕ xj ⊕ zj) = 0 by design. As the adversary makes at most q predicate queries,
set(Qq) will contain at most q solutions of this kind. Regarding the case where the two
queries are not from the same predicate query (i.e., they are from two different predicate
queries or at least one of them comes from a regular query), any combination of two tuples
satisfies BitsC (xi ⊕ zi ⊕ xj ⊕ zj) = 0 with probability 2−|C|. Consequently, as there are at

most
(
Bq
2

)
such combinations,

Ex (|set(Qq)| − q) ≤
(
Bq
2

)
2|C|

.

Markov’s inequality states that

Pr (aux(Qq)) ≤
(
Bq
2

)
τ2|C|

.

For the case of B ≥ 3, the same bound applies with the difference that the case “(κ, xi, zi),
(κ, xj , zj) coming from the same predicate query” does not render a solution by design but

is instead counted within part two of the analysis (it is already included in the
(
Bq
2

)
).

We proceed with the analysis of Pr (col(Qq) ∧ ¬aux(Qq)). We consider the ith query (i ∈
{1, . . . , q}) to be the first query to make this condition satisfied, and sum over i = 1, . . . , q
at the end. For regular (forward or inverse) queries, the analysis of [20] mostly carries over.
The analysis of predicate queries is a bit more technical.
Regular (forward or inverse) query. The cases are the same by symmetry, and we
consider π̄1(x1) only. Denote the query response by z1. There are at most B(i− 1) possible
choices for each of (x′1, z

′
1), (x2, z2), and (x′2, z

′
2), where (x2, z2) and (x′2, z

′
2) may be the same

but the choice of (x′1, z
′
1) is necessarily older than the current query. As z1 is randomly drawn

from a set of size at least 2n −Bq, it satisfies (13) with probability at most B3(i−1)3

2n−Bq .

22

Query π̄Φ1 (y) or π̄Φ2 (y). The cases are the same by symmetry, and we consider π̄Φ1 (y)
only. Denote the query response by {(x1

1, z
1
1), . . . , (xB1 , z

B
1)}. In case the B-set contributes

only to (x1, z1), the same reasoning as for regular queries applies with the difference that
any query of the B-set may be successful and that the bound of Lem. 2 part (ii) applies:
B4δB,C [1](i−1)3

2n−Bq .

Now, consider the case the predicate query contributes to both (x1, z1) and (x′1, z
′
1).

There are
(
B
2

)
ways for the predicate query to contribute (or 0 if B = 1). By ¬aux(Qq),

there are at most q + τ choices for (x2, z2), (x′2, z
′
2) to satisfy BitsC(x2 ⊕ z2 ⊕ x′2 ⊕ z′2) = 0.

By Lem. 2 part (iii), the predicate query gives a solution to (13) with probability at most(
B
2

) δB,C [2](q+τ)2n

22n−Bq .

Conclusion. Taking the maximum of all success probabilities, the ith query is successful

with probability at most
B4δB,C [1](i−1)3

2n−Bq +
(
B
2

) δB,C [2](q+τ)2n

22n−Bq . Summation over i = 1, . . . , q

gives, using (14),

Advcol
F′Grøstl

(q) ≤ B4δB,C [1]q4

2(2n −Bq)
+

(
B

2

)
δB,C [2](q2 + τq)2n

22n −Bq
+

(
Bq
2

)
τ2|C|

+
B2q(q + 1)

2n −Bq
.

The value τ forms a threshold between the second and third fraction (the second fraction
increases while the third fraction decreases for larger τ , and vice versa for smaller τ). We put
τ = 2n/2−|C|. The proof is completed by using the fact that 2n−Bq ≥ 2n−1 for Bq ≤ 2n−1,
and that q + 1 ≤ 2q for q ≥ 1.

D Tightness of the Bound of Theorem 3

For the cases B = 1 and C arbitrary, and B = 2 and C arbitrary such that |C| > n/2,
we derive generic attacks that demonstrate tightness of the bound of Thm. 3. Mendel et
al. [38] already exploited a known-key pair for the underlying permutations of Grøstl to
find a semi-free-start collision with a lower complexity, but we approach the problem more
generically, particularly considering arbitrary but independent π1 and π2.

Proposition 4 (B = 1). Let n ∈ N. Suppose (π1, π2)
$←− BC[Φ(A, 1, ϕC)](n)2. Then,

Advcol
F′Grøstl

(2q) ≥ q4

2n−|C|
.

Proof. We construct a collision-finding adversary A for F′Grøstl. It makes predicate queries to
πΦ1 on input of distinct values y to obtain q queries (1, x1,y, z1,y) satisfying BitsC(x1,y⊕z1,y) =
0, and likewise for πΦ2 it obtains q queries (2, x2,y, z2,y). Any two queries to πΦ1 and two queries
to πΦ2 collide on the entire state, x1,y ⊕ z1,y ⊕ x2,y ⊕ z2,y = x1,y′ ⊕ z1,y′ ⊕ x2,y′ ⊕ z2,y′ , with

probability at least q4

2n−|C|
. ut

Proposition 5 (B = 2 and |C| > n/2). Let n ∈ N. Suppose (π1, π2)
$←−

BC[Φ(A, 2, ϕC)](n)2. Then, Advcol
F′Grøstl

(2q) ≥ q2

2n−|C|
.

Proof. We construct a collision-finding adversary A for F′Grøstl. It makes predicate queries
to πΦ1 on input of distinct values y to obtain q 2-sets {(1, x1

1,y, z
1
1,y), (1, x2

1,y, z
2
1,y)} sat-

isfying BitsC
(
x1

1,y ⊕ z1
1,y

)
= BitsC

(
x2

1,y ⊕ z2
1,y

)
, and likewise for πΦ2 it obtains q 2-sets

{(2, x1
2,y, z

1
2,y), (2, x2

2,y, z
2
2,y)}. Any 2-set from πΦ1 and 2-set from πΦ2 collide on the entire

state, x1
1,y ⊕ z1

1,y ⊕x1
2,y ⊕ z1

2,y = x2
1,y ⊕ z2

1,y ⊕x2
2,y ⊕ z2

2,y, with probability at least q2

2n−|C|
. ut

E Proof of Theorem 4

We consider any adversary that has access to (π1, π2)
$←− BC[Φ(A,B,ϕC)](n)2 and makes q

queries. As in App. C, these queries are stored in a query history Q as indexed tuples of the

23

form (κi, xi, zi) for regular queries and {(κi, x1
i , z

1
i), . . . , (κi, x

B
i , z

B
i)} for predicate queries.

We use the same approach as in App. C. In particular, we make the same transition from

(π1, π2) to (π̄1, π̄2)
$←− BC[Φ(A,B, ϕC)](n)2.

Let Z ∈ {0, 1}n. A preimage for Z would imply the existence of query pairs (x1, z1) for
π̄1 and (x2, z2) for π̄2 such that

x1 ⊕ z1 ⊕ x2 ⊕ z2 = Z . (15)

We define this configuration by pre(Qq). For the analysis of Pr (pre(Qq)) we introduce an
auxiliary event aux(Qq). Let τ > 0 be any integral value. We define

aux(Qq) :
∣∣set(Qq)∣∣ > q + τ ,

where

set(Qq) =
{

(κ, xi, zi) ∈ Qq
∣∣ BitsC (xi ⊕ zi) = 0

}
.

By basic probability theory:

Advepre
F′Grøstl

(q) ≤ Pr (pre(Qq) ∧ ¬aux(Qq)) + Pr (aux(Qq)) +
B2q(q + 1)

2n −Bq
, (16)

where the third part of the bound comes from the transition from WCM to AWCM.

Starting with Pr (aux(Qq)), an identical analysis to the case of the collision resistance
of F′Grøstl in App. C gives

Pr (aux(Qq)) ≤
Bq

τ2|C|
.

We proceed with the analysis of Pr (pre(Qq) ∧ ¬aux(Qq)). We consider the ith query (i ∈
{1, . . . , q}) to be the first query to make this condition satisfied, and sum over i = 1, . . . , q
at the end. For regular (forward or inverse) queries, the analysis of [20] mostly carries over.
The analysis of predicate queries is a bit more technical.

Regular (forward or inverse) query. The cases are the same by symmetry, and we
consider π̄1(x1) only. Denote the query response by z1. There are at most B(i− 1) possible
choices for (x2, z2). As z1 is randomly drawn from a set of size at least 2n −Bq, it satisfies

(15) with probability at most B(i−1)
2n−Bq .

Query π̄Φ1 (y) or π̄Φ2 (y). The cases are the same by symmetry, and we consider π̄Φ1 (y)
only. Denote the query response by {(x1

1, z
1
1), . . . , (xB1 , z

B
1)}. We make a distinction between

B = 1 and B > 1. First, if B > 1, the same reasoning as for regular queries applies with the
difference that any query of the B-set may be successful and that the bound of Lem. 2 part

(ii) applies: [B > 1]
B2δB,C [1](i−1)

2n−Bq . Now, consider B = 1. By ¬aux(Qq), there are at most

q+τ choices for (x2, z2) to satisfy BitsC(x2⊕z2) = 0. By Lem. 2 part (ii), the predicate gives

a solution to (15) with probability at most [B = 1]
δB,C [1](q+τ)

2n−Bq . Combining, the predicate

query succeeds with probability at most
B2δB,C [1](q+τ)

2n−Bq .

Conclusion. Taking the maximum of all success probabilities, the ith query is successful

with probability at most
B2δB,C [1](q+τ)

2n−Bq . Summation over i = 1, . . . , q gives, using (16),

Advepre
F′Grøstl

(q) ≤ B2δB,C [1](q2 + τq)

2n −Bq
+

Bq

τ2|C|
+
B2q(q + 1)

2n −Bq
.

We put threshold τ = 2n/2−|C|. The proof is completed by using the fact that 2n−Bq ≥ 2n−1

for Bq ≤ 2n−1, and that q + 1 ≤ 2q for q ≥ 1.

24

F Tightness of the Bound of Theorem 4

For the case B = 1, we derive a generic attack that demonstrates the tightness of the bound
of Thm. 4.

Proposition 6 (B = 1). Let n ∈ N. Suppose (π1, π2)
$←− BC[Φ(A, 1, ϕC)](n)2. Then,

Advepre
F′Grøstl

(2q) ≥ q2

2n−|C|
.

Proof. Let Z be any given range value with BitsC(Z) = 0 (note that epre guarantees security
for every range point). A preimage-finding adversary A for F′Grøstl proceeds as follows. It
makes predicate queries to πΦ1 on input of distinct values y to obtain q queries (1, x1,y, z1,y)
satisfying BitsC(x1,y ⊕ z1,y) = 0, and likewise for πΦ2 it obtains q queries (2, x2,y, z2,y). Any
query to πΦ1 and query to πΦ2 collide with Z on the entire state, x1,y⊕ z1,y⊕x2,y⊕ z2,y = Z,

with probability at least q2

2n−|C|
. ut

G Proof of Theorem 5

The bulk of the proof is captured in the following proposition.

Proposition 7. Let n ∈ N. Suppose (π1, π2, π3)
$←− BC[Φ(A,B, ϕC)](n)3. Then, for q ≤

2n−1/B and any positive integral value τ ,

Advcol
FSS

(q) ≤ 2τ3B2(B + 2)δB,C [1]q2 + 4B2q2 + e2B2(δB,C [1])22−|C|q2 + e2B2q2

2n
+(

B

2

)[
2τ2δB,C [2]q

2n
+

2τB2δB,C [2]q3

22n
+

2B4δB,C [2]q5

23n

]
+

2n

(
e(B +

(
B
2

)
)q

τ
· 2B2δB,C [1]q + 2δB,C [2]

2n

)τ/(B+(B2))

+

22n

(
2eB3δB,C [1]q2

τ2n

)τ/B
+ 2n

(
2eB3δB,C [1]q2

2n
+
eB3δB,C [2]q3

τ22n

)2τ/B

.

(17)

The proof follows later in the appendix, but we first prove Thm. 5 using Prop. 7.

Proof of Theorem 5

(i). We put τ = n. Then, for the particular choice of B and C the bound (17) of Prop. 7
simplifies to

Advcol
FSS

(q) ≤ 6n32|C|q2 + 4q2 + e22|C|q2 + e2q2

2n
+ 2 · 22n

(
2e2|C|q2

2n

)n
.

For q = 2(n−|C|)/2−nε, it is clear that all terms approach 0 for n→∞.
(ii) and (iii). We put τ = n. Then, for the particular choice of B (with C arbitrary) the
bound (17) of Prop. 7 simplifies to

Advcol
FSS

(q) ≤ 32n3q2 + 16q2 + 8e2q2

2n
+

2n22|C|q

2n
+

8n2|C|q3

22n
+

32 · 2|C|q5

23n
+

2n
(

24eq2 + 6e2|C|q

n2n

)n/3
+ 22n

(
16eq2

n2n

)n/2
+ 2n

(
16eq2

2n
+

8e2|C|q3

n22n

)n
.

For q = 2n/2−nε (in case |C| ≤ n/2), and for q = 2n−|C|−nε (in case |C| > n/2), it is clear
that all terms approach 0 for n→∞.
(iv). The reasoning of previous cases carries over, and we will not go into detail. Note that
we have δB,C [1] = δB,C [2] = 1 for B ≥ 3.

25

Proof of Proposition 7

We consider any adversary that has access to (π1, π2, π3)
$←− BC[Φ(A,B,ϕC)](n)3 and

makes q queries. These queries are stored in a query history Q as indexed tuples of the
form (κi, xi, zi) for regular queries, where we denote zi = πκi(xi), and {(κi, x1

i , z
1
i), . . . ,

(κi, x
B
i , z

B
i)} for predicate queries. For q ≥ 0, by Qq we define the query history after q

queries. As a first step, we move from (π1, π2, π3) to (π̄1, π̄2, π̄3)
$←− BC[Φ(A,B,ϕC)](n)3. By

Lem. 2, this costs us an additional term B2q(q+1)
2n−Bq .

The adversary’s goal is to find a collision for FSS, which corresponds to obtaining query
pairs (x1, z1), (x′1, z

′
1) for π̄1, (x2, z2), (x′2, z

′
2) for π̄2, and (x3, z3), (x′3, z

′
3) for π̄3 in the query

history, such that:

(x1, x2) 6= (x′1, x
′
2) , (18a)

x1 ⊕ z1 ⊕ x2 ⊕ z2 = x3 , (18b)

x′1 ⊕ z′1 ⊕ x′2 ⊕ z′2 = x′3 , (18c)

x1 ⊕ z1 ⊕ z3 = x′1 ⊕ z′1 ⊕ z′3 . (18d)

We define this configuration by col(Qq). This means:

Advcol
FSS

(q) = Pr (col(Qq)) +
B2q(q + 1)

2n −Bq
, (19)

where the second part of the bound comes from the transition from WCM to AWCM.
For the analysis of Pr (col(Qq)) we introduce an auxiliary event aux(Qq). Let τ2, τ3, τ4,

τ5 > 0 be any integral values. We define aux(Qq) = aux1∨···∨5(Qq), where

aux1(Qq) :

∣∣∣∣{ {(κi, x1
i , z

1
i), . . . , (κi, x

B
i , z

B
i)} ∈ Qq,

a, b ∈ {1, . . . , B}, a 6= b
∣∣ xai ⊕ zai = xbi ⊕ zbi

}∣∣∣∣ > 0 ;

aux2(Qq) : max
Z∈{0,1}n

∣∣{(κi, xi, zi) ∈ Qq
∣∣ xi ⊕ zi = Z

}∣∣ > τ2 ;

aux3(Qq) : max
Z∈{0,1}n

∣∣∣∣{ (κi, xi, zi), (κj , xj , zj) ∈ Qq
∣∣

(κi, xi) 6= (κj , xj) ∧ xi ⊕ zi ⊕ xj ⊕ zj = Z

}∣∣∣∣ > τ3 ;

aux4(Qq) : max
Z,Z′∈{0,1}n

∣∣∣∣{ (1, xi, zi), (2, xk, zk), (3, xl, zl) ∈ Qq
∣∣

xk ⊕ zk ⊕ xl = Z ′ ∧ xi ⊕ zi ⊕ xk ⊕ zk ⊕ xl ⊕ zl = Z

}∣∣∣∣ > τ4 ;

aux5(Qq) : max
Z∈{0,1}n

∣∣∣∣{ (1, xi, zi), (1, xj , zj), (2, xk, zk), (3, xl, zl) ∈ Qq
∣∣ xi 6= xj ∧

xj ⊕ zj ⊕ xk ⊕ zk ⊕ xl = 0 ∧ xi ⊕ zi ⊕ xk ⊕ zk ⊕ xl ⊕ zl = Z

}∣∣∣∣ > τ5 .

We note that aux1(Qq) only applies to predicate queries, but aux2(Qq), . . . , aux5(Qq) apply
to regular queries and parts of predicate queries (abusing notation). By basic probability
theory, we obtain for (19):

Pr (col(Qq)) ≤ Pr (col(Qq) ∧ ¬aux(Qq)) + Pr (aux(Qq)) . (20)

We start with the analysis of Pr (col(Qq) ∧ ¬aux(Qq)). For obtaining a query history that
fulfills configuration col(Qq), it may be the case that a query appears at multiple positions.
For instance, x1 = x′1. We split the analysis of col(Qq) into essentially all different possible
cases. We define for binary α1, α2, α3 by colα1α2α3

(Q) the configuration col(Q) restricted to

x1 = x′1 ≡ α1 , x2 = x′2 ≡ α2 , x3 = x′3 ≡ α3 .

By construction, col(Qq) ⇒
∨
α1,α2,α3∈{0,1} colα1α2α3

(Qq), and from (19-20) we obtain the

following bound on Advcol
FSS

(q):

Advcol
FSS

(q) ≤
∑
α1,α2,
α3∈{0,1}

Pr (colα1α2α3
(Qq) ∧ ¬aux(Qq)) + Pr (aux(Qq)) +

B2q(q + 1)

2n −Bq
. (21)

26

The probabilities Pr (colα1α2α3
(Qq) ∧ ¬aux(Qq)), for all possible α1α2α3, are bounded in

Lems. 4-6. For Pr (aux(Qq)), note that

Pr (aux(Qq)) ≤ Pr (aux1(Qq)) + Pr (aux2(Qq) | ¬aux1(Qq)) +

5∑
i=3

Pr (auxi(Qq) | ¬aux2∨···∨i−1(Qq)) .
(22)

The probabilities on aux1(Qq) and aux2(Qq) are rather straightforward and bounded in
Lem. 7. The bounds on aux3(Qq), . . . , aux5(Qq) are more involved and discussed in Lems. 8-
10. In these lemmas, we regularly make use of Stirling’s approximation: t! ≥ (t/e)t for any
t. The proof ideas of these lemmas at a high level consist of noticing that any query adds
a solution to the set in question with a certain maximal probability p, and in that case it
adds at most τ ′ solutions. This means that if τ solutions are required, at least τ/τ ′ queries
have to contribute. Afterwards, all lemmas are combined to obtain a bound on Advcol

FSS
(q).

Lemma 4. Pr (col000(Qq) ∧ ¬aux(Qq)) ≤
(τ2

3 + τ5)B2δB,C [1]q2

2n −Bq
+(

B

2

)
(τ2

3 2n + τ3B
2q2)δB,C [2]q

22n −Bq
+

(
B

2

)
B4δB,C [2]q5

23n −Bq
.

Proof. In this configuration, we consider (18) with an additional requirement that x1 6= x′1,
x2 6= x′2, and x3 6= x′3. Note that (18) can be equivalently stated as

x1 6= x′1 , x2 6= x′2 , x3 6= x′3 , (23a)

x1 ⊕ z1 ⊕ x2 ⊕ z2 = x3 , (23b)

x′1 ⊕ z′1 ⊕ x′2 ⊕ z′2 = x′3 , (23c)

x2 ⊕ z2 ⊕ x3 ⊕ z3 = x′2 ⊕ z′2 ⊕ x′3 ⊕ z′3 , (23d)

by XORing the second and third equations to the fourth one. We will use both representa-
tions interchangeably. For the analysis of col000(Qq) ∧ ¬aux(Qq), we say that the ith query
(i ∈ {1, . . . , q}) is successful if it makes configuration col000(Qi) satisfied and ¬aux(Qi)
holds. Now, by basic probability theory, we can analyze the probability of the ith query
being successful, and sum over i = 1, . . . , q.

Let i ∈ {1, . . . , q}. Clearly, if ¬auxi(Qi) holds, the ith query can certainly not be suc-
cessful, so we assume ¬aux(Qi) and analyze the probability the ith query makes col000(Qi)
satisfied. For regular (forward or inverse) queries, the analysis of [41] mostly carries over.
The difficulty lies in the analysis of predicate queries.
Query π̄1(x1) or π̄−1

1 (z1). The cases are the same by symmetry, and we consider π̄1(x1)
only. Denote the query response by z1. There are at most Bq choices for (x′3, z

′
3). For any

such choice, by ¬aux3(Qq), there are at most τ3 choices for (x′1, z
′
1), (x′2, z

′
2) to fulfill (23c).

Again by ¬aux3(Qq), for any such choice there are at most τ3 choices for (x2, z2), (x3, z3) to
fulfill (23d). As z1 is randomly drawn from a set of size at least 2n − Bq, (23b) is fulfilled

with probability at most
τ2
3Bq

2n−Bq .

Query π̄2(x2) or π̄−1
2 (z2). The cases are the same by symmetry, and we consider π̄2(x2)

only. Denote the query response by z2. There are at most Bq choices for (x3, z3). By
¬aux5(Qq), there are at most τ5 choices for (x1, z1), (x′1, z

′
1), (x′2, z

′
2), (x′3, z

′
3) to satisfy x′1 ⊕

z′1 ⊕ x′2 ⊕ z′2 = x′3 and x1 ⊕ z1 ⊕ x′2 ⊕ z′2 ⊕ x′3 ⊕ z′3 = z3, hence to fulfill (18c-18d) for the
particular value z3 (where we XOR the two equations). As z2 is randomly drawn from a set
of size at least 2n −Bq, (18b) is fulfilled with probability at most τ5Bq

2n−Bq .

Query π̄3(x3). Denote the query response by z3. There are at most Bq choices for (x′3, z
′
3).

For any such choice, by ¬aux3(Qq), there are at most τ3 choices for (x′1, z
′
1), (x′2, z

′
2) to fulfill

(23c). By ¬aux3(Qq), there are at most τ3 choices for (x1, z1), (x2, z2) to fulfill (23b). As z3

27

is randomly drawn from a set of size at least 2n − Bq, (23d) is fulfilled with probability at

most
τ2
3Bq

2n−Bq .

Query π̄−1
3 (z3). Denote the query response by x3. There are at most Bq choices for (x2, z2).

By ¬aux5(Qq), there are at most τ5 choices for (x1, z1), (x′1, z
′
1), (x′2, z

′
2), (x′3, z

′
3) to satisfy

x′1 ⊕ z′1 ⊕ x′2 ⊕ z′2 = x′3 and x1 ⊕ z1 ⊕ x′2 ⊕ z′2 ⊕ x′3 ⊕ z′3 = z3, hence to fulfill (18c-18d) for
the particular value z3 (where we XOR the two equations). As x3 is randomly drawn from
a set of size at least 2n −Bq, (18b) is fulfilled with probability at most τ5Bq

2n−Bq .

Query π̄Φ1 (y1). Denote the query response by {(x1
1, z

1
1), . . . , (xB1 , z

B
1)}. In case the B-set

contributes at one position only (say (x1, z1)), the same reasoning as for regular queries
applies with the difference that any query of the B-set may be successful and that the

bound of Lem. 2 part (ii) applies:
τ2
3B

2δB,C [1]q
2n−Bq .

Now consider the case the predicate query contributes to both (x1, z1) and (x′1, z
′
1). There

are
(
B
2

)
ways for the predicate query to contribute (or 0 if B = 1). By ¬aux3(Qq), there

are at most τ2
3 2n choices for (x2, z2), (x′2, z

′
2), (x3, z3), (x′3, z

′
3) to fulfill (23d). By Lem. 2 part

(iii), (23b-23c) are fulfilled with probability at most
(
B
2

) τ2
3 δB,C [2]2n

22n−Bq .

Query π̄Φ2 (y2). Denote the query response by {(xa2 , za2), (xb2, z
b
2)}. In case the B-set con-

tributes at one position only (say (x2, z2)), the same reasoning as for regular queries applies
with the difference that any query of the B-set may be successful and that the bound of

Lem. 2 part (ii) applies:
τ5B

2δB,C [1]q
2n−Bq .

Now consider the case the predicate query contributes to both (x2, z2) and (x′2, z
′
2).

There are
(
B
2

)
ways for the predicate query to contribute (or 0 if B = 1). There are at

most (Bq)2 choices for (x3, z3), (x′3, z
′
3). By ¬aux3(Qq), there are at most τ3 choices for

(x1, z1), (x′1, z
′
1) to fulfill (18d). By Lem. 2 part (iii), (18b-18c) are fulfilled with probability

at most
(
B
2

) τ3B2δB,C [2]q2

22n−Bq .

Query π̄Φ3 (y3). Denote the query response by {(xa3 , za3), (xb3, z
b
3)}. In case the B-set con-

tributes at one position only (say (x3, z3)), the same reasoning as for regular forward queries
applies with the difference that any query of the B-set may be successful and that the bound

of Lem. 2 part (ii) applies:
τ2
3B

2δB,C [1]q
2n−Bq .

Now consider the case the predicate query contributes to both (x3, z3) and (x′3, z
′
3). There

are
(
B
2

)
ways for the predicate query to contribute (or 0 if B = 1). There are at most (Bq)4

choices for (x1, z1), (x′1, z
′
1), (x2, z2), (x′2, z

′
2). By Lem. 2 part (iv), (23b-23d) are fulfilled with

probability at most
(
B
2

)B4δB,C [2]q4

23n−Bq .

Conclusion. Taking the maximum of all success probabilities, the ith query is successful

with probability at most
(τ2

3 +τ5)B2δB,C [1]q
2n−Bq +

(
B
2

) (τ2
3 2n+τ3B

2q2)δB,C [2]
22n−Bq +

(
B
2

)B4δB,C [2]q4

23n−Bq . The
claimed bound is obtained by summing over i = 1, . . . , q. ut

Lemma 5. Pr (colα1α2α3
(Qq) ∧ ¬aux(Qq)) = 0 for α1α2α3 ∈ {001, 010, 011, 101}, provided

τ2 = 1.

Proof. We start with the cases 001, 011. For these cases, (18d) reduces to finding (x1, z1),
(x′1, z

′
1) such that x1 ⊕ z1 = x′1 ⊕ z′1. By ¬aux2(Qq) with τ2 = 1, there do not exist two

such tuples. Similarly, for 101, in order to comply with (18b) and (18c), it is required to
find (x2, z2), (x′2, z

′
2) such that x2 ⊕ z2 = x′2 ⊕ z′2, and the remaining reasoning is the same.

Finally for 010, (18b) and (18c) can be simplified to x1⊕ z1⊕x3 = x′1⊕ z′1⊕x′3, which once
XORed with (18d) reduces to finding (x3, z3), (x′3, z

′
3) such that x3 ⊕ z3 = x′3 ⊕ z′3, and the

remaining reasoning is the same. ut

Lemma 6. Pr (colα1α2α3
(Qq) ∧ ¬aux(Qq)) = 0 for α1α2α3 ∈ {100, 110, 111}.

Proof. If α1α2 = 11, the configuration colα1α2α3
(Qq) contradicts (18a), and if α1α2α3 = 100,

it contradicts (18d). In any case, the configuration is invalid. ut

28

Lemma 7. Pr (aux1(Qq)) + Pr (aux2(Qq) | ¬aux1(Qq)) ≤
(
B

2

)
δB,C [2]q2n

22n −Bq
+

2n−|C|
(

eBδB,C [1]q

(τ2 + 1)(2n −Bq)

)τ2+1

+ 2n
(

eBq

(τ2 + 1)(2n −Bq)

)τ2+1

.

Proof. We bound these probabilities separately.
Pr (aux1(Qq)). This auxiliary event only applies to predicate queries where B > 1. Con-
sider the ith query and let it be a predicate query {(κi, x1

i , z
1
i), . . . , (κi, x

B
i , z

B
i)}. Let a, b ∈

{1, . . . , B} distinct. By Lem. 2 part (iii), we find that xai ⊕ zai = xbi ⊕ zbi with probability at

most
δB,C [2]2n

22n−Bq . Summing over all queries and all choices for a, b, we obtain

Pr (aux1(Qq)) ≤
(
B

2

)
δB,C [2]q2n

22n −Bq
. (24)

Pr (aux2(Qq) | ¬aux1(Qq)). Let Z ∈ {0, 1}n. Consider the ith query. If this is a regular
(forward or inverse) query (κi, xi, zi), it satisfies xi ⊕ zi = Z with probability at most

1
2n−Bq . On the other hand, if it is a predicate query {(κi, x1

i , z
1
i), . . . , (κi, x

B
i , z

B
i)}, one of

the B satisfies xi ⊕ zi = Z with probability at most
BδB,C [1]
2n−Bq if BitsC(Z) = 0 (Lem. 2 part

(ii)) and with probability at most B
2n−Bq if BitsC(Z) 6= 0 (in this case the equation could

never be satisfied if B = 1, and δB,C [1] = 1 for B > 1). By ¬aux1(Qq), at most one of the
B queries of the tuple equals Z. If BitsC(Z) = 0, more than τ2 queries result in a solution

with probability at most
(

q
τ2+1

) (BδB,C [1]
2n−Bq

)τ2+1

≤
(

eBδB,C [1]q
(τ2+1)(2n−Bq)

)τ2+1

. If BitsC(Z) 6= 0,

we similarly obtain bound
(

eBq
(τ2+1)(2n−Bq)

)τ2+1

. Considering any possible choice for Z, we

obtain:

Pr (aux2(Qq) | ¬aux1(Qq)) ≤ 2n−|C|
(

eBδB,C [1]q

(τ2 + 1)(2n −Bq)

)τ2+1

+

(2n − 2n−|C|)

(
eBq

(τ2 + 1)(2n −Bq)

)τ2+1

.

(25)

The claim is obtained by adding (24) and a simplified version of (25). ut

The artificial split in the analysis of Pr (aux2(Qq) | ¬aux1(Qq)) is required as a special
treatment is needed for B = 1.

Lemma 8. Pr (aux3(Qq) | ¬aux2(Qq)) ≤

2n

(
e(τ2B +

(
B
2

)
)q

τ3 + 1

(
B2δB,C [1]q

2n −Bq
+
δB,C [2]2n

22n −Bq

)) τ3+1

τ2B+(B2)
.

Proof. Let Z ∈ {0, 1}n. Consider the ith query. A special treatment is needed for predicate
queries as two queries from one single B-set may make the entire equation satisfied.
Regular (forward or inverse) query. Denote the query by (κi, xi, zi). For any other
tuple (κj , xj , zj) (at most Bq choices), the equation is satisfied with probability at most

1
2n−Bq . Hence, the query is successful with probability at most Bq

2n−Bq . By ¬aux2(Qq), each
hit adds at most τ2 solutions.
Predicate query. Denote the query response by {(κi, x1

i , z
1
i), . . . , (κi, x

B
i , z

B
i)}. In case the

B-set contributes at one position only (say (κi, xi, zi)), the same reasoning as for regular
queries applies with the difference that any query of the B-set may be successful and that

the bound of Lem. 2 part (ii) applies:
B2δB,C [1]q

2n−Bq . Again, by ¬aux2(Qq), each hit adds at
most τ2B solutions.

29

Now consider the case the predicate query contributes to both (κi, xi, zi) and (κj , xj , zj).

By Lem. 2 part (iii), we find that the equation is satisfied with probability at most
δB,C [2]2n

22n−Bq ,

and it adds at most
(
B
2

)
solutions.

Conclusion. Thus, any query results in a solution with probability at most
B2δB,C [1]q

2n−Bq +
δB,C [2]2n

22n−Bq , and each hit adds at most τ2B+
(
B
2

)
solutions. Consequently, more than τ3 solutions

are obtained with probability at most(
q

τ3+1

τ2B+(B2)

)(
B2δB,C [1]q

2n −Bq
+
δB,C [2]2n

22n −Bq

) τ3+1

τ2B+(B2)

≤

(
e(τ2B +

(
B
2

)
)q

τ3 + 1

(
B2δB,C [1]q

2n −Bq
+
δB,C [2]2n

22n −Bq

)) τ3+1

τ2B+(B2)
.

Considering any possible choice for Z, we obtain the claimed bound. ut

Lemma 9. Pr (aux4(Qq) | ¬aux2∨3(Qq)) ≤ 22n

(
eτ2τ3B

3δB,C [1]q2

(τ4 + 1)(2n −Bq)

) τ4+1
τ3B

.

Proof. Let Z,Z ′ ∈ {0, 1}n. The goal is to find tuples (1, xi, zi), (2, xk, zk), (3, xl, zl) ∈ Qq
such that

xk ⊕ zk ⊕ xl = Z ′ , (26a)

xi ⊕ zi ⊕ xk ⊕ zk ⊕ xl ⊕ zl = Z . (26b)

Consider the ith query.
Regular (forward or inverse) query to π̄1. Without loss of generality, consider a forward
query. Denote the query by (1, xi, zi). There are at most Bq choices for (3, xl, zl). For any
such choice, by ¬aux2(Qq), there are at most τ2 choices for (2, xk, zk) to fulfill (26a). As zi
is randomly drawn from a set of size at least 2n − Bq, (26b) is fulfilled with probability at
most τ2Bq

2n−Bq . By ¬aux3(Qq), each hit adds at most τ3 solutions (for fixed (1, xi, zi), there

are at most τ3 choices for (2, xk, zk), (3, xl, zl) to satisfy (26b)).
Regular (forward or inverse) query to π̄2. Without loss of generality, consider a forward
query. Denote the query by (2, xk, zk). There are at most Bq choices for (3, xl, zl). As zk
is randomly drawn from a set of size at least 2n − Bq, (26a) is fulfilled with probability at
most Bq

2n−Bq . Again, by ¬aux3(Qq), each hit adds at most τ3 solutions.

Regular (forward or inverse) query to π̄3. Consider (26) with (26a) added to (26b).
Without loss of generality, consider a forward query. Denote the query by (3, xl, zl). There
are at most Bq choices for (1, xi, zi). As zl is randomly drawn from a set of size at least
2n−Bq, the replaced (26b) is fulfilled with probability at most Bq

2n−Bq . Again, by ¬aux3(Qq),
each hit adds at most τ3 solutions.
Predicate query. The same reasoning as for regular queries applies with the difference that
any query of the B-set may be successful and that the bound of Lem. 2 part (ii) applies:
τ2B

2δB,C [1]q
2n−Bq . Again, by ¬aux3(Qq), each hit adds at most τ3B solutions.

Conclusion. Thus, any query results in a solution with probability at most
τ2B

2δB,C [1]q
2n−Bq ,

and each hit adds at most τ3B solutions. Consequently, more than τ4 solutions are obtained

with probability at most
(q
τ4+1
τ3B

) (τ2B2δB,C [1]q
2n−Bq

) τ4+1
τ3B ≤

(
eτ2τ3B

3δB,C [1]q2

(τ4+1)(2n−Bq)

) τ4+1
τ3B

. Considering

any possible choice for Z,Z ′, we obtain the claimed bound. ut

Lemma 10. Pr (aux5(Qq) | ¬aux2∨3∨4(Qq)) ≤

2n

(
e(τ3

(
B
2

)
+ τ2τ3B + τ4B)q

τ5 + 1

(
2τ3B

2δB,C [1]q

2n −Bq
+
B2δB,C [2]q2

22n −Bq

)) τ5+1

τ3(B2)+τ2τ3B+τ4B

.

30

Proof. Let Z ∈ {0, 1}n. The goal is to find distinct tuples (1, xi, zi), (1, xj , zj), (2, xk, zk),
(3, xl, zl) ∈ Qq such that

xj ⊕ zj ⊕ xk ⊕ zk ⊕ xl = 0 , (27a)

xi ⊕ zi ⊕ xk ⊕ zk ⊕ xl ⊕ zl = Z . (27b)

Consider the ith query. A special treatment is needed for predicate queries to π̄1 as it may
contribute two queries to one solution.

Regular (forward or inverse) query to π̄1. Without loss of generality, consider a forward
query. Note that it may contribute as tuple (1, xi, zi) or as tuple (1, xj , zj) (but not both).

First consider it a contribution to (1, xi, zi). There are at most Bq choices for (3, xl, zl).
For any such choice, by ¬aux3(Qq), there are at most τ3 choices for (1, xj , zj), (2, xk, zk) to
fulfill (27a). As zi is randomly drawn from a set of size at least 2n − Bq, (27b) is fulfilled
with probability at most τ3Bq

2n−Bq . By ¬aux2∨3(Qq), each hit adds at most τ2τ3 solutions (for

fixed (1, xi, zi), there are at most τ3 choices for (2, xk, zk), (3, xl, zl) to satisfy (27b) and at
most τ2 choices (1, xj , zj) to then satisfy (27a)).

Next, consider it a contribution to (1, xj , zj). There are at most Bq choices for (3, xl, zl)
For any such choice, by ¬aux3(Qq), there are at most τ3 choices for (1, xi, zi), (2, xk, zk) to
fulfill (27b). As zj is randomly drawn from a set of size at least 2n − Bq, (27a) is fulfilled

with probability at most τ3Bq
2n−Bq . By ¬aux4(Qq), each hit adds at most τ4 solutions (for fixed

(1, xj , zj), there are at most τ4 choices for (1, xi, zi), (2, xk, zk), (3, xl, zl) to satisfy (27)).

In total, the query is successful with probability at most 2τ3Bq
2n−Bq and each hit adds at

most τ2τ3 + τ4 solutions.

Regular (forward or inverse) query to π̄2. Consider (27) with (27a) added to (27b).
Without loss of generality, consider a forward query. Denote the query by (2, xk, zk). There
are at most Bq choices for (3, xl, zl). For any such choice, by ¬aux3(Qq), there are at most
τ3 choices for (1, xi, zi), (1, xj , zj) to fulfill the replaced (27b). As zk is randomly drawn from

a set of size at least 2n − Bq, (27a) is fulfilled with probability at most τ3Bq
2n−Bq . Again, by

¬aux2∨3(Qq), each hit adds at most τ2τ3 solutions.

Regular (forward or inverse) query to π̄3. Consider (27) with (27a) added to (27b).
Without loss of generality, consider a forward query. Denote the query by (3, xl, zl). There
are at most Bq choices for (1, xi, zi). By ¬aux3(Qq), there are at most τ3 choices for
(1, xj , zj), (2, xk, zk) to fulfill (27a). As zl is randomly drawn from a set of size at least

2n −Bq, (27a) is fulfilled with probability at most τ3Bq
2n−Bq . Again, by ¬aux2∨3(Qq), each hit

adds at most τ2τ3 solutions.

Predicate query to π̄1. Denote the query response by {(x1
i , z

1
i), . . . , (xBi , z

B
i)}. In case the

B-set contributes at one position only (either (1, xi, zi) or (1, xj , zj)), the same reasoning as
for regular queries applies with the difference that any query of the B-set may be successful

and that the bound of Lem. 2 part (ii) applies:
2τ3B

2δB,C [1]q
2n−Bq . Again, by ¬aux2∨3∨4(Qq), each

hit adds at most τ2τ3B + τ4B solutions.

Now consider the case the predicate query contributes to both (1, xi, zi) and (1, xj , zj).
There are at most (Bq)2 choices for (2, xk, zk), (3, xl, zl). By Lem. 2 part (iii), we find that

(27) is fulfilled with probability at most
B2δB,C [2]q2

22n−Bq . By ¬aux3(Qq), each hit adds at most

τ3
(
B
2

)
solutions.

Predicate query to π̄2 or π̄3. The same reasoning as for regular queries applies with the
difference that any query of the B-set may be successful and that the bound of Lem. 2 part

(ii) applies:
τ3B

2δB,C [1]q
2n−Bq . Again, by ¬aux2∨3(Qq), each hit adds at most τ2τ3B solutions.

Conclusion. Thus, any query results in a solution with probability at most
2τ3B

2δB,C [1]q
2n−Bq +

B2δB,C [2]q2

22n−Bq , and each hit adds at most τ3
(
B
2

)
+ τ2τ3B + τ4B solutions. Consequently, more

31

than τ5 solutions are obtained with probability at most(
q

τ5+1

τ3(B2)+τ2τ3B+τ4B

)(
2τ3B

2δB,C [1]q

2n −Bq
+
B2δB,C [2]q2

22n −Bq

) τ5+1

τ3(B2)+τ2τ3B+τ4B

≤

(
e(τ3

(
B
2

)
+ τ2τ3B + τ4B)q

τ5 + 1

(
2τ3B

2δB,C [1]q

2n −Bq
+
B2δB,C [2]q2

22n −Bq

)) τ5+1

τ3(B2)+τ2τ3B+τ4B

.

Considering any possible choice for Z, we obtain the claimed bound. ut

From (21), (22), and the results of Lems. 4-10 we find (recall that in Lem. 5 we require
τ2 = 1):

Advcol
FSS

(q) ≤ (τ2
3 + τ5)B2δB,C [1]q2 +B2q(q + 1)

2n −Bq
+
e2B2(δB,C [1])2q22n−|C| + e2B2q22n

4(2n −Bq)2
+(

B

2

)
(τ2

3 q2
n + τ3B

2q3 + q2n)δB,C [2]

22n −Bq
+

(
B

2

)
B4δB,C [2]q5

23n −Bq
+

2n

(
e(B +

(
B
2

)
)q

τ3 + 1

(
B2δB,C [1]q

2n −Bq
+
δB,C [2]2n

22n −Bq

)) τ3+1

B+(B2)
+

22n

(
eτ3B

3δB,C [1]q2

(τ4 + 1)(2n −Bq)

) τ4+1
τ3B

+

2n

(
e(τ3

(
B+1

2

)
+ τ4B)q

τ5 + 1

(
2τ3B

2δB,C [1]q

2n −Bq
+
B2δB,C [2]q2

22n −Bq

)) τ5+1

τ3(B+1
2)+τ4B

.

The proof of Prop. 7 is completed by making the following simplifications: we use the fact
that 2n − Bq ≥ 2n−1 for Bq ≤ 2n−1, and put τ3 = τ − 1, τ4 = τ2 − τ − 1, and τ5 =
2τ3 + τ2(B − 1)− τ(B + 3)− 1 for some integral τ > 0. Additionally, we use q + 1 ≤ 2q for
q ≥ 1.

H Tightness of the Bound of Theorem 5

For the cases B = 1 and C arbitrary, and B = 2 and C arbitrary such that |C| > n/2, we
derive generic attacks that demonstrate tightness of the bounds of Thm. 5.

Proposition 8 (B = 1). Let n ∈ N. Suppose (π1, π2, π3)
$←− BC[Φ(A, 1, ϕC)](n)3. Then,

Advcol
FSS

(q) ≥ q2

2n−|C|
.

Proof. We construct a collision-finding adversary A whose goal is to find a collision where
x2 = x′2. By construction, to find a collision of such form for FSS (see (8)) it suffices to find two
distinct values x1, x

′
1 such that x1⊕π1(x1) = x′1⊕π1(x′1). To this end, the adversary makes

predicate queries to πΦ1 on input of distinct values y to obtain q queries (xy, zy) satisfying
BitsC(xy ⊕ zy) = 0. Any two such queries collide on the entire state, xy ⊕ zy = xy′ ⊕ zy′ ,
with probability at least q2

2n−|C|
. ut

Proposition 9 (B = 2 and |C| > n/2). Let n ∈ N. Suppose (π1, π2, π3)
$←−

BC[Φ(A, 2, ϕC)](n)3. Then, Advcol
FSS

(q) ≥ q
2n−|C|

.

Proof. We construct a collision-finding adversary A whose goal is to find a collision where
x2 = x′2. By construction, to find a collision of such form for FSS (see (8)) it suffices to find two
distinct values x1, x

′
1 such that x1⊕π1(x1) = x′1⊕π1(x′1). To this end, the adversary makes

32

predicate queries to πΦ1 on input of distinct values y to obtain q 2-sets {(x1
y, z

1
y), (x2

y, z
2
y)}

satisfying BitsC
(
x1
y ⊕ z1

y

)
= BitsC

(
x2
y ⊕ z2

y

)
. These two queries collide on the entire state,

x1
y⊕z1

y = x2
y⊕z2

y , with probability at least 1
2n−|C|

. If the adversary makes q predicate queries,
we directly obtain our bound. ut

I Proof of Theorem 6

The bulk of the proof is captured in the following proposition.

Proposition 10. Let n ∈ N. Suppose (π1, π2, π3)
$←− BC[Φ(A,B,ϕC)](n)3. Then, for q ≤

2n−1/B and any positive integral values τ, τ ′, τ ′′,

Advepre
FSS

(q) ≤ 2τB3q2 + 4τ ′′τ [B = 1]B2|C|q + 2τ ′τB3q + 4B2q2

2n
+

2[B = 1]2|C|q3

22n
+

2n−|C|
(

2eBδB,C [1]q

τ2n

)τ
+ 2n

(
2eBq

τ2n

)τ
+ 2n

(
2eB2δB,C [1]q2

τ ′2n

)τ ′
+

[B = 1]

(
2eq

τ ′′2|C|

)τ ′′
+ 2[B = 1]

(
2e2|C|q

2n
+

2eτBq

τ ′′2|C|
+

2eq2

τ ′′2n

)τ ′′
.

(28)

The proof follows later in the appendix, but we first prove Thm. 6 using Prop. 10.

Proof of Theorem 6

(i) and (ii). We put τ = n, τ ′ = n2|C|, and τ ′′ = n2max{0,n/2−|C|}. Then, for the particular
choice of B (with C arbitrary) the bound (28) of Prop. 10 simplifies to

Advepre
FSS

(q) ≤ 2nq2 + 4q2 + 4eq2 + 6n22max{|C|,n/2}q + 4e2|C|q

2n
+

2 · 2|C|q3

22n
+

6eq

2max{|C|,n/2} + 2n−|C|
(

2e2|C|q

n2n

)n
+ 2 · 2n

(
2eq2

n2n

)n
.

For q = 2n/2−nε (in case |C| ≤ n/2), and for q = 2n−|C|−nε (in case |C| > n/2), it is clear
that all terms approach 0 for n→∞.
(iii). We put τ = 2 and τ ′ = n (τ ′′ disappears for B ≥ 2). The reasoning of previous cases
carries over, and we will not go into detail. Note that we have δB,C [1] = 1 for B ≥ 2.

Proof of Proposition 10

We consider any adversary that has access to (π1, π2, π3)
$←− BC[Φ(A,B,ϕC)](n)3 and makes

q queries. As in App. G, these queries are stored in a query history Q as indexed tuples
of the form (κi, xi, zi) for regular queries and {(κi, x1

i , z
1
i), . . . , (κi, x

B
i , z

B
i)} for predicate

queries. We use the same approach as in App. G. In particular, we make the same transition

from (π1, π2, π3) to (π̄1, π̄2, π̄3)
$←− BC[Φ(A,B, ϕC)](n)3.

Let Z ∈ {0, 1}n. A preimage for Z corresponds to obtaining query pairs (x1, z1) for π̄1,
(x2, z2) for π̄2, and (x3, z3) for π̄3 in the query history, such that:

x1 ⊕ z1 ⊕ x2 ⊕ z2 = x3 , (29a)

x1 ⊕ z1 ⊕ z3 = Z . (29b)

We define this configuration by pre(Qq). This means:

Advepre
FSS

(q) = Pr (pre(Qq)) +
B2q(q + 1)

2n −Bq
, (30)

33

where the second part of the bound comes from the transition from WCM to AWCM.
As before, for the analysis of Pr (pre(Qq)) we introduce an auxiliary event aux(Qq). Let

τ1, . . . , τ5 > 0 be any integral values. We define aux(Qq) = aux1∨···∨5(Qq), where

aux1(Qq) :
∣∣{(κi, xi, zi) ∈ Qq

∣∣ B = 1 ∧ BitsC(xi) = 0 ∧ BitsC(zi) = Z
}∣∣ > τ1 ;

aux2(Qq) : max
Z∈{0,1}n

∣∣{(κi, xi, zi) ∈ Qq
∣∣ xi ⊕ zi = Z

}∣∣ > τ2 ;

aux3(Qq) : max
Z∈{0,1}n

∣∣∣∣{ (κi, xi, zi), (κj , xj , zj) ∈ Qq
∣∣

κi 6= κj ∧ xi ⊕ zi ⊕ xj ⊕ zj = Z

}∣∣∣∣ > τ3 ;

aux4(Qq) :

∣∣∣∣{ (2, xi, zi), (3, xj , zj) ∈ Qq
∣∣

B = 1 ∧ xi ⊕ zi ⊕ xj ⊕ zj = Z ∧ BitsC(xi ⊕ zi ⊕ xj) = 0

}∣∣∣∣ > τ4 ;

aux5(Qq) :

∣∣∣∣{ (1, xi, zi), (3, xj , zj) ∈ Qq
∣∣

B = 1 ∧ xi ⊕ zi ⊕ zj = Z ∧ BitsC(xi ⊕ zi ⊕ xj) = 0

}∣∣∣∣ > τ5 .

Here, aux2∨3(Qq) is similar to aux2∨3(Qq) of App. G. Events aux1∨4∨5(Qq) are only employed
when B = 1 as a special treatment is needed for this case, and they only apply to Z being
the target range value. Again, by basic probability theory, we obtain for (30):

Pr (pre(Qq)) ≤ Pr (pre(Qq) ∧ ¬aux(Qq)) + Pr (aux(Qq)) . (31)

We consider Pr (pre(Qq) ∧ ¬aux(Qq)) in Lem. 11. For Pr (aux(Qq)), note that

Pr (aux(Qq)) ≤
2∑
i=1

Pr (auxi(Qq)) +

5∑
i=3

Pr (auxi(Qq) | ¬aux1∨2(Qq)) . (32)

The probabilities on aux1(Qq), aux2(Qq), and aux3(Qq) are straightforward and bounded
in Lem. 12. The bounds on aux4(Qq) and aux5(Qq) are more involved and discussed in
Lem. 13 and Lem. 14, respectively. Afterwards, all lemmas are combined to obtain a bound
on Advepre

FSS
(q).

Lemma 11. Pr (pre(Qq) ∧ ¬aux(Qq)) ≤
(τ4 + τ5)[B = 1]2|C|q + τ2B

2q2 + τ3Bq

2n −Bq
+

[B = 1]2|C|q3

22n −Bq
.

Proof. Note that (29) can be equivalently stated as

x1 ⊕ z1 ⊕ x2 ⊕ z2 = x3 , (33a)

x2 ⊕ z2 ⊕ x3 ⊕ z3 = Z , (33b)

by XORing the two equations. We will use both representations interchangeably. For the
analysis of pre(Qq) ∧ ¬aux(Qq), we say that the ith query (i ∈ {1, . . . , q}) is successful if it
makes configuration pre(Qi) satisfied and ¬aux(Qi) holds. Now, by basic probability theory,
we can analyze the probability of the ith query being successful, and sum over i = 1, . . . , q.

Let i ∈ {1, . . . , q}. Clearly, if ¬auxi(Qi) holds, the ith query can certainly not be suc-
cessful, so we assume ¬aux(Qi) and analyze the probability the ith query makes pre(Qi)
satisfied. For regular (forward or inverse) queries, the analysis of [41] mostly carries over.
The difficulty lies in the analysis of predicate queries.
Query π̄1(x1) or π̄−1

1 (z1). The cases are the same by symmetry, and we consider π̄1(x1)
only. Denote the query response by z1. By ¬aux3(Qq), there are at most τ3 choices for
(x2, z2), (x3, z3) to fulfill (33b). As z1 is randomly drawn from a set of size at least 2n−Bq,
(33a) is fulfilled with probability at most τ3

2n−Bq .

Query π̄2(x2) or π̄−1
2 (z2). The cases are the same by symmetry, and we consider π̄2(x2)

only. Denote the query response by z2. There are at most Bq choices for (x3, z3). By

34

¬aux2(Qq), there are at most τ2 choices for (x1, z1) to fulfill (29b). As z2 is randomly drawn

from a set of size at least 2n −Bq, (29a) is fulfilled with probability at most τ2Bq
2n−Bq .

Query π̄3(x3). Denote the query response by z3. By ¬aux3(Qq), there are at most τ3
choices for (x1, z1), (x2, z2) to fulfill (33a). As z3 is randomly drawn from a set of size at
least 2n −Bq, (33b) is fulfilled with probability at most τ3

2n−Bq .

Query π̄−1
3 (z3). Denote the query response by x3. There are at most Bq choices for (x2, z2).

By ¬aux2(Qq), there are at most τ2 choices for (x1, z1) to fulfill (29b). As x3 is randomly

drawn from a set of size at least 2n −Bq, (29a) is fulfilled with probability at most τ2Bq
2n−Bq .

Query π̄Φ1 (y1). Denote the query response by {(x1
1, z

1
1), . . . , (xB1 , z

B
1)}. We make a distinc-

tion between B = 1 and B > 1. First, if B > 1, the same reasoning as for regular queries
applies with the difference that any query of the B-set may be successful and that the bound

of Lem. 2 part (ii) applies: [B > 1]
τ3BδB,C [1]

2n−Bq ≤ τ3B
2n−Bq . Now, consider B = 1. By ¬aux4(Qq),

there are at most τ4 choices for (x2, z2), (x3, z3) to satisfy x2 ⊕ z2 ⊕ x3 ⊕ z3 = Z, hence to
fulfill (33b), and BitsC(x2⊕z2⊕x3) = 0. By Lem. 2 part (ii), the predicate query fulfills (33)

with probability at most [B = 1] τ42|C|

2n−Bq . Thus, the predicate query succeeds with probability

at most τ4[B=1]2|C|+τ3B
2n−Bq .

Query π̄Φ2 (y2). Denote the query response by {(x1
2, z

1
2), . . . , (xB2 , z

B
2)}. We make a distinc-

tion between B = 1 and B > 1. First, if B > 1, the same reasoning as for regular queries
applies with the difference that any query of the B-set may be successful and that the

bound of Lem. 2 part (ii) applies: [B > 1]
τ2B

2δB,C [1]q
2n−Bq ≤ τ2B

2q
2n−Bq . Now, consider B = 1. By

¬aux5(Qq), there are at most τ5 choices for (x1, z1), (x3, z3) to satisfy x1 ⊕ z1 ⊕ z3 = Z,
hence to fulfill (29b), and BitsC(x1 ⊕ z1 ⊕ x3) = 0. By Lem. 2 part (ii), the predicate query

fulfills (29) with probability at most [B = 1] τ52|C|

2n−Bq . Thus, the predicate query succeeds with

probability at most τ5[B=1]2|C|+τ2B
2q

2n−Bq .

Query π̄Φ3 (y3). Denote the query response by {(x1
3, z

1
3), . . . , (xB3 , z

B
3)}. We make a distinc-

tion between B = 1 and B > 1. First, if B > 1, the same reasoning as for regular forward
queries applies with the difference that any query of the B-set may be successful and that

the bound of Lem. 2 part (ii) applies: [B > 1]
τ3BδB,C [1]

2n−Bq ≤ τ3B
2n−Bq . Now, consider B = 1.

There are at most q2 choices for (x1, z1), (x2, z2). Similar to Lem. 2 part (iii), one can prove

that the predicate query fulfills (29) with probability at most [B = 1] 2|C|q2

22n−Bq . Thus, the

predicate query succeeds with probability at most [B=1]2|C|q2

22n−Bq + τ3B
2n−Bq .

Conclusion. Taking the maximum of all success probabilities, the ith query is successful

with probability at most (τ4+τ5)[B=1]2|C|+τ2B
2q+τ3B

2n−Bq + [B=1]2|C|q2

22n−Bq . The claimed bound is
obtained by summing over i = 1, . . . , q. ut

Lemma 12. Pr (aux1(Qq)) + Pr (aux2(Qq)) + Pr (aux3(Qq) | ¬aux1∨2(Qq)) ≤

[B = 1]

(
e2n−|C|q

(τ1 + 1)(2n − q)

)τ1+1

+ 2n−|C|
(

eB2δB,C [1]q

(τ2 + 1)(2n −Bq)

) τ2+1
B

+

2n
(

eB2q

(τ2 + 1)(2n −Bq)

) τ2+1
B

+ 2n
(

eτ2B
3δB,C [1]q2

(τ3 + 1)(2n −Bq)

) τ3+1
τ2B

.

Proof. We bound these probabilities separately.

Pr (aux1(Qq)). Recall that aux1(Qq) only applies to B = 1. Let Z be the challenge range
value. Consider the ith query. If this is a regular (forward or inverse) query (κi, xi, zi), it

satisfies the condition with probability at most 2n−|C|

2n−q . If it is a predicate query (κi, xi, zi),

it satisfies the condition with probability at most 2n−|C|

2n−q (Lem. 2 part (i)). More than τ1

solutions are obtained with probability at most
(

q
τ1+1

) (
2n−|C|

2n−q

)τ1+1

≤
(

e2n−|C|q
(τ1+1)(2n−q)

)τ1+1

.

35

As the event only applies to the challenge value Z, we obtain:

Pr (aux1(Qq)) ≤ [B = 1]

(
e2n−|C|q

(τ1 + 1)(2n − q)

)τ1+1

. (34)

Pr (aux2(Qq)). The analysis differs from the one of Lem. 7 in the fact that each hit may
add at most B solutions (rather than 1). Taking this into account results in the following
bound:

Pr (aux2(Qq)) ≤ 2n−|C|
(

eB2δB,C [1]q

(τ2 + 1)(2n −Bq)

) τ2+1
B

+ 2n
(

eB2q

(τ2 + 1)(2n −Bq)

) τ2+1
B

. (35)

Pr (aux3(Qq) | ¬aux2(Qq)). Event aux3(Qq) differs from aux3(Qq) in the fact that a single
predicate query cannot make the entire equation satisfied. Leaving out this special case in
the analysis of Lem. 8 results in the following bound:

Pr (aux3(Qq) | ¬aux2(Qq)) ≤ 2n
(

eτ2B
3δB,C [1]q2

(τ3 + 1)(2n −Bq)

) τ3+1
τ2B

. (36)

The claim is obtained by adding (34-36). ut

Lemma 13. Pr (aux4(Qq) | ¬aux1∨2(Qq)) ≤ [B = 1]

(
eτ1τ22|C|q + eτ2q

2

(τ4 + 1)(2n − q)

) τ4+1
τ2

.

Proof. Recall that aux4(Qq) only applies to B = 1. Let Z be the challenge range value. The
goal is to find distinct tuples (2, x2, z2) and (3, x3, z3) ∈ Qq such that x2 ⊕ z2 ⊕ x3 ⊕ z3 = Z
and BitsC(x2 ⊕ z2 ⊕ x3) = 0. Consider the ith query.
Regular (forward or inverse) query. We follow the analysis of aux3(Qq), only focussing
on x2 ⊕ z2 ⊕ x3 ⊕ z3 = Z. The query is successful with probability at most q

2n−q and each
hit adds at most τ2 solutions.
Predicate query to π̄2. Denote the query response by (x2, z2), which will satisfy BitsC(x2⊕
z2) = 0. By ¬aux1(Qq), there are at most τ1 choices for (x3, z3) to satisfy BitsC(x3) = 0
and BitsC(z3) = BitsC(Z). By Lem. 2 part (ii), we find that the equation is satisfied with

probability at most τ12|C|

2n−q . By ¬aux2(Qq), each hit adds at most τ2 solutions.

Predicate query to π̄3. Denote the query response by (x3, z3), which will satisfy BitsC(x3⊕
z3) = 0. There are at most q choices for (x2, z2). Similar to Lem. 2 part (ii), one can prove

that the equation is satisfied with probability at most 2n−|C|

2n2n−|C|−q · q ≤
q

2n−q : we need the

predicate query to satisfy BitsC(x3) = BitsC(x2⊕z2), BitsC(x3⊕z3) = 0 = BitsC(x2⊕z2⊕Z),
and BitsC(x3 ⊕ z3) = BitsC(x2 ⊕ z2 ⊕ Z), and this gives at most 2n−|C| possible tuples of
Σ̄k(P, PΦ). By ¬aux2(Qq), each hit adds at most τ2 solutions.
Conclusion. Thus, if B = 1, any query results in a solution with probability at most
τ12|C|+q

2n−q , and each hit adds at most τ2 solutions. Consequently, more than τ4 solutions are

obtained with probability at most
(q
τ4+1
τ2

) (
τ12|C|+q

2n−q

) τ4+1
τ2 ≤

(
eτ1τ22|C|q+eτ2q

2

(τ4+1)(2n−q)

) τ4+1
τ2

. ut

Lemma 14. Pr (aux5(Qq) | ¬aux1∨2(Qq)) ≤

[B = 1]

(
eτ1τ22|C|q + eτ2

2 2n−|C|q + eτ2q
2

(τ5 + 1)(2n − q)

) τ5+1
τ2

.

Proof. Recall that aux5(Qq) only applies to B = 1. Let Z be the challenge range value. The
goal is to find distinct tuples (1, x1, z1) and (3, x3, z3) ∈ Qq such that x1 ⊕ z1 ⊕ z3 = Z and
BitsC(x1 ⊕ z1 ⊕ x3) = 0, or equivalently x1 ⊕ z1 ⊕ z3 = Z and BitsC(x3 ⊕ z3) = 0. Consider
the ith query.

36

Regular (forward or inverse) query to π̄1. Without loss of generality, consider a forward
query. Denote the query by (x1, z1). There are at most q choices for (x3, z3). As z1 is randomly
drawn from a set of size at least 2n − q, the equation is satisfied with probability at most
q

2n−q . Each hit adds at most 1 solution.

Regular forward query to π̄3. By ¬aux2(Qq), there are at most τ22n−|C| choices for
(x1, z1) to satisfy BitsC(x1 ⊕ z1 ⊕ x3) = 0. As z3 is randomly drawn from a set of size at

least 2n− q, the equation is satisfied with probability at most τ22n−|C|

2n−q . By ¬aux2(Qq), each
hit adds at most τ2 solutions.
Regular inverse query to π̄3. By ¬aux2(Qq), there are at most τ2 choices for (x1, z1) to
satisfy x1 ⊕ z1 ⊕ z3 = Z. As x3 is randomly drawn from a set of size at least 2n − q, the

equation is satisfied with probability at most τ22n−|C|

2n−q . By ¬aux2(Qq), each hit adds at most
τ2 solutions.
Predicate query to π̄1. Denote the query response by (x1, z1), which will satisfy BitsC(x1⊕
z1) = 0. By ¬aux1(Qq), there are at most τ1 choices for (x3, z3) to satisfy BitsC(x3) = 0
and BitsC(z3) = BitsC(Z). By Lem. 2 part (ii), we find that the equation is satisfied with

probability at most τ12|C|

2n−q . Each hit adds at most 1 solution.

Predicate query to π̄3. Denote the query response by (x3, z3), which will satisfy BitsC(x3⊕
z3) = 0. There are at most q choices for (x1, z1). Similar to the proof of Lem. 13, one can

prove that the equation is satisfied with probability at most 2n−|C|

2n2n−|C|−q · q ≤
q

2n−q : we

need the predicate query to satisfy BitsC(x3) = BitsC(x1 ⊕ z1), BitsC(x3 ⊕ z3) = 0, and
z3 = x1⊕ z1⊕Z, and this gives at most 2n−|C| possible tuples of Σ̄k(P, PΦ). By ¬aux2(Qq),
each hit adds at most τ2 solutions.
Conclusion. Thus, if B = 1, any query results in a solution with probability at most
τ12|C|+τ22n−|C|+q

2n−q , and each hit adds at most τ2 solutions. Consequently, more than τ5 solu-

tions are obtained with probability at most
(q
τ5+1
τ2

) (
τ12|C|+τ22n−|C|+q

2n−q

) τ5+1
τ2 ≤(

eτ1τ22|C|q+eτ2
2 2n−|C|q+eτ2q

2

(τ5+1)(2n−q)

) τ5+1
τ2

. ut

From (30-31), (32), and the results of Lems. 11-14 we find:

Advepre
FSS

(q) ≤ (τ4 + τ5)[B = 1]2|C|q + τ2B
2q2 + τ3Bq +B2q(q + 1)

2n −Bq
+

[B = 1]2|C|q3

22n −Bq
+

[B = 1]

(
e2n−|C|q

(τ1 + 1)(2n − q)

)τ1+1

+ 2n−|C|
(

eB2δB,C [1]q

(τ2 + 1)(2n −Bq)

) τ2+1
B

+

2n
(

eB2q

(τ2 + 1)(2n −Bq)

) τ2+1
B

+ 2n
(

eτ2B
3δB,C [1]q2

(τ3 + 1)(2n −Bq)

) τ3+1
τ2B

+

[B = 1]

(
eτ1τ22|C|q + eτ2q

2

(τ4 + 1)(2n − q)

) τ4+1
τ2

+

[B = 1]

(
eτ1τ22|C|q + eτ2

2 2n−|C|q + eτ2q
2

(τ5 + 1)(2n − q)

) τ5+1
τ2

.

The proof of Prop. 10 is completed by making the following simplifications: we use the fact
that 2n −Bq ≥ 2n−1 for Bq ≤ 2n−1, and put τ2 = τB − 1, τ3 = τ ′τ2B − 1, τ1 = τ ′′ − 1, and
τ4 = τ5 = τ ′′τ2 − 1 for some integral τ, τ ′, τ ′′ > 0. Additionally, we use q + 1 ≤ 2q for q ≥ 1.

37

	On the Impact of Known-KeyAttacks on Hash Functions
	Bart Mennink and Bart Preneel

