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Abstract. The device-unique response of a physically unclonable func-
tion (PUF) can serve as the root of trust in an embedded cryptographic
system. Fuzzy extractors transform this noisy non-uniformly distributed
secret into a stable high-entropy key. The overall efficiency thereof, typ-
ically depending on error-correction with a binary [n, k, d] block code,
is determined by the universal and well-known (n − k) bound on the
min-entropy loss. We derive new considerably tighter bounds for PUF-
induced distributions that suffer from, e.g., bias or spatial correlations.
The bounds are easy-to-evaluate and apply to large non-trivial codes,
e.g., BCH, Hamming and Reed-Muller codes. Apart from an inherent
reduction in implementation footprint, the newly developed theory also
facilitates the analysis of state-of-the-art error-correction methods for
PUFs. As such, we debunk the reusability claim of the reverse fuzzy
extractor. Moreover, we provide proper quantitative motivation for de-
biasing schemes, as this was missing in the original proposals.

Keywords: fuzzy extractor, secure sketch, min-entropy, physically un-
clonable functions, coding theory

1 Introduction

Cryptography relies on reproducible uniformly distributed secret keys. Obtain-
ing affordable physically secure key-storage in embedded non-volatile memory is
hard though. Harvesting entropy from physically unclonable functions (PUFs)
comprehends an alternative that lowers the power-off state vulnerability. Unfor-
tunately, PUF responses are corrupted by noise and non-uniformities are bound



to occur. A fuzzy extractor [14] provides an information-theoretically secure
mechanism to convert PUF responses into high-quality keys. The essential build-
ing block for handling noisiness is the secure sketch, providing error-correction
with a binary [n, k, d] block code. Associated public helper data reveals informa-
tion about the PUF response though; the designer should hence quantify how
much min-entropy remains. So far, the conservative (n− k) upper bound on the
min-entropy loss has been applied. Unfortunately, the residual min-entropy is
underestimated and more PUF response bits than necessary have to be used.
Expensive die area is hence blocked by PUF circuits that are not strictly required
to obtain the desired security level, i.e., symmetric key length.

1.1 Contribution

The novelty of our work is twofold:

– First, we derive new bounds on the secure sketch min-entropy loss for PUF-
induced distributions with practical relevance. Our bounds are considerably
tighter than the well-known (n−k) formula, hereby improving the implemen-
tation efficiency of PUF-based key generators. The discrepancy is showcased
for two predominant PUF imperfections, i.e., biased and spatially corre-
lated response bits. It is important to note that a variety of commonly used
code classes is covered, regardless of their algebraic complexity. Further-
more, a large variety of distributions could be supported. Therefore, our
scope reaches considerably further than related work in [11, 27], focussing on
simple repetition codes and biased distributions only. As in the latter works,
our bounds are easy-to-evaluate and able to support large codes.

– Second, we apply the newly developed theory to state-of-the-art error-correct-
ion methods for PUFs. As such, we reveal a fundamental flaw in the reverse
fuzzy extractor, proposed by Van Herrewege et al. [33] at Financial Crypto
2012. The latter lightweight primitive is gaining momentum and has also
been adopted in the CHES 2015 protocol of Aysu et al. [2]. We debunk the
main security claim that repeated helper data exposure does not result in
additional min-entropy loss. Furthermore, we contribute to the motivation
of debiasing schemes such as the index-based syndrome (IBS) proposal of Yu
et al. [37], and the CHES 2015 proposal of Maes et al. [27]. The latter pro-
posals assume that a stand-alone sketch cannot handle biased distributions.
We eliminate the need for an educated guess that originates from either the
extrapolation of repetition code insights and/or the application of the overly
conservative (n− k) bound.

1.2 Organization

The remainder of this manuscript is organized as follows. Section 2 introduces
notation and preliminaries. Section 3 derives new tight bounds on the secure
sketch min-entropy loss. Second 4 elaborates applications of the newly developed
theory. Section 5 concludes the work.

2



2 Preliminaries

2.1 Notation

Binary vectors are denoted with a bold lowercase character, e.g., x. All vec-
tors are row vectors. All-zeros and all-ones vectors are denoted with 0 and
1 respectively. Binary matrices are denoted with a bold uppercase character,
e.g., H. A random variable and its corresponding set of outcomes are denoted
with an uppercase italic and calligraphic character respectively, e.g., X and X .
Variable assignment is denoted with an arrow, e.g., x ← X. Custom-defined
procedure names are printed in a sans-serif font, e.g., Hamming weight HW(x)
and Hamming distance HD(x, x̃). The probability of an event A is denoted as
P(A). The expected value of a function g(X) of random variable X is denoted as
Ex←X [g(X)]. The probability density function and cumulative distribution func-
tion of a standard normal distribution N(0, 1) are denoted as fnorm(·) and Fnorm(·)
respectively. For a binomial distribution with n trials and success probability p,
we use fbino(·;n, p) and Fbino(·;n, p) respectively.

2.2 Min-Entropy Definitions

The min-entropy of a random variable X is as defined in (1). Consider now a
pair of possibly correlated random variables: X and P . The conditional min-
entropy [14] of X given P is as defined in (2). Terms with P(P = p) = 0 are
evaluated as 0. Both definitions quantify the probability that an attacker guesses
x← X first time right, on a logarithmic scale. We emphasize that min-entropy is
a more conservative notion than Shannon entropy and therefore often preferred
within cryptology.

H∞(X) = − log2

(
max
x∈X

P(X = x)
)
. (1)

H̃∞(X|P ) = − log2

(
Ep←P

[
max
x∈X

P((X = x)|(P = p))
])
. (2)

2.3 Physically Unclonable Functions

A prominent category of PUFs, suitable for key generation in particular, con-
sists of an array of identically designed cells. Each cell produces a single bit, or
occasionally a few bits. This includes memory-based designs, such as the SRAM
PUF [19], as well as the coating PUF [31] and a subset of the large number of
ring oscillator-based designs, e.g., [35]. The most prominent entropy-degrading
effects for such PUFs are bias and spatial correlations. Bias comprehends an
imbalance between the number of zeros and ones. Spatial correlations implicate
that neighboring cells might influence each other.

We describe a parameterized probability distribution for the error rate of
individual PUF response bits x̃(i), with i ∈ [1, n]. Experimental validation on
various PUF circuits, e.g., in [25, 13], labelled the model as accurate. Two hidden
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random variables are incorporated: the normalized manufacturing variability
Vi ∼ N(0, 1), drawn only once for each response bit, and additive noise Nij ∼
N(0, σN ), drawn for each evaluation j of a given response bit. A response bit x̃(i)
evaluates to 1 if (vi+nij) > t and 0 vice versa, with threshold t a fixed parameter.
Bias corresponds to a nonzero t. Spatial correlations can be incorporated via a
multivariate normal distribution

(
V1 . . . Vn

)
∼ N(0,Σ), with Σ the symmetric

n× n covariance matrix.
For ease of analysis, we consider the response bits x(i) obtained by threshold-

ing vi > t as a reference. In practice, these nominal values can be approximated
via a majority vote among noisy replicas x̃(i), possibly accelerated via circuit
techniques [6, 37]. Bias parameter b, defined as the probability P(x(i) = 1), then
equals Fnorm(−t). The error rate pE of a response bit x̃(i) with respect to its
reference, i.e., the probability P(x(i) 6= x̃(i)), then equals Fnorm(−|vi − t|/σN ).

2.4 Secure Sketch and Fuzzy Extractor Definitions

Secure sketches operate on a metric space X with distance function dist. For
PUFs, we can restrict our attention to binary vectors x ∈ {0, 1}1×n and the
Hamming distance HD therebetween. An attacker knows the probability distri-
bution of x ← X. Consider a noisy version x̃ of sample x. A secure sketch [14]
is a pair of efficient and possibly randomized procedures: the sketching pro-
cedure p ← SSGen(x), with helper data p ∈ P, and the recovery procedure
x̂← SSRep(x̃,p). There are two defining properties:

– Correctness. If HD(x, x̃) ≤ t, correctness of reconstruction is guaranteed,
i.e., x̂ = x. If HD(x, x̃) > t, there is no guarantee whatsoever.

– Security. For a certain lower-bound on the ingoing min-entropy, i.e., H∞(X) ≥
hin, there is a corresponding lower-bound on the residual min-entropy, i.e.,
H̃∞(X|P ) ≥ hout. Often, but not necessarily, this condition can be satisfied
regardless of hin. Or stated otherwise, there is a certain upper bound on the
min-entropy loss ∆H∞ = H∞(X)− H̃∞(X|P ).

A slightly modified notion brings us to the fuzzy extractor [14]. Output k ∈ K
is then required to be nearly-uniform, given observation p← P , and is therefore
suitable as a secret key. There is a proven standard method to craft a fuzzy ex-
tractor from a secure sketch. In particular, a randomness extractor could derive
a key from the secure sketch output, i.e., k ← Ext(x). Universal hash func-
tions [9] are good randomness extractors, according to the (generalized) leftover
hash lemma [16, 3]. Unfortunately, their min-entropy loss is quite substantial. In
practice, key generators therefore often rely on a cryptographic hash function
that is assumed to behave as a random oracle. The latter idealized heuristic
results in zero min-entropy loss.

2.5 Coding Theory

A binary code C is a bijection from a message space M to a codeword space
W ⊆ {0, 1}1×n. The minimum distance d is the minimum number of bits in
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which any two distinct codewords differ. A procedure w ← Encode(m) maps a
message m ∈ M to a codeword w ∈ W. A procedure ŵ ← Correct(w̃) corrects
up to t = bd−12 c errors for any noise-corrupted codeword w̃ = w ⊕ e, with
HW(e) ≤ t. An extended procedure m̂← Decode(w̃) returns the corresponding
message instead. Equation (3) expresses the Hamming bound [23]. The equality
holds for perfect codes only, implicating that any vector in {0, 1}1×n is within
distance t of a codeword. All other codes are subject to the inequality.

t∑
i=0

(
n

i

)
|M| ≤ 2n. (3)

A binary [n, k, d] block code C restricts the message length k = log2(|M|) to
an integer. For a linear block code, any linear combination of codewords is again
a codeword. A k × n generator matrix G, having full rank, can then implement
the encoding procedure, i.e., w = m ·G. For any translation τ ∈ {0, 1}1×n and
linear code C, the set {τ ⊕w : w ∈ W} is referred to as a coset. Two cosets are
either disjoint or coincide. Therefore, the vector space {0, 1}1×n is fully covered
by 2n−k cosets, referred to as the standard array. The minimum weight vector ε
in a coset is called the coset leader. In case of conflict, i.e., a common minimum
HW(ε) > t, an arbitrary leader can be selected. The minimum distance d of a
linear code equals the minimum Hamming weight of its nonzero codewords. A
linear code C is cyclic if every circular shift of a codeword is again a codeword
belonging to C.

2.6 The Code-Offset Secure Sketch

Several secure sketch constructions rely on a binary code C. For ease of under-
standing, we focus on the code-offset method of Dodis et al. [14] exclusively.
Nevertheless, straightforward equivalencies in App. A prove that all results in
this manuscript apply to six other constructions equally well. The code C that
instantiates the code-offset method in Fig. 1 is not necessarily linear. Even more,
it is not required be a block code either. Linear codes (BCH, Hamming, repeti-
tion, etc.) remain the most frequently used though due to their efficient decoding
algorithms [23]. Correctness of reconstruction is guaranteed if HD(x, x̃) ≤ t, with
t the error-correcting capability of the code.

p← SSGen(x) x̂← SSRep(x̃,p)

Random w ∈ C
p← x⊕w

w̃ ← x̃⊕ p = w ⊕ e
x̂← p⊕ Correct(w̃)

Fig. 1. The code-offset secure sketch, having an n-bit reference input x.

Min-entropy loss can be understood as a one-time pad imperfection. Sketch
input x is masked with a random codeword w, i.e., an inherent entropy defi-
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ciency: H∞(W ) = log2(|M|) < n. For linear codes in particular, we highlight
a convenient interpretation using cosets. Helper data p then reveals in which
coset reference x resides. It can be seen easily that p is equal to a random
vector in the same coset as x. The residual min-entropy in (2) hence reduces
to (4) for linear codes, with ε a coset leader. We emphasize that the min-entropy
loss ∆H∞ does not depend on the decoding method, simply because the helper
data is not affected. For [n, k, d] block codes in particular, the well-known upper
bound ∆H∞ ≤ (n− k) holds, as proven in [14]. More generally, this extends to
∆H∞ ≤ n− log2(|M|).

H̃∞(X|P ) = − log2

(
Eε←E

[
max
w∈W

P((X = ε⊕w)|(E = ε))
])
. (4)

3 Tight Bounds on the Min-Entropy Loss

Currently, secure sketch implementations rely on the (n−k) upper bound on the
min-entropy loss, e.g., [28]. Unfortunately, this leads to an overly conservative
design when instantiating security parameters accordingly. We develop a graphi-
cal framework that produces tight bounds on H̃∞(X|P ) for typical PUF-induced
distributions. The critical first-order effects of bias and spatial correlations are
captured. Both lower and upper bounds are supported. The lower bounds are of
primary interest for a conservative system provider, entertaining the worst-case
scenario. We considerably improve upon the (n − k) bound, i.e., the leftmost
inequality in (5). We also improve upon the rather trivial upper bounds [14]
that comprehend the rightmost inequality in (5).

max(H∞(X)− (n− log2(|M|)), 0)︸ ︷︷ ︸
worst-case

≤ H̃∞(X|P ) ≤ min(log2(|M|),H∞(X))︸ ︷︷ ︸
best-case

.

(5)
Our lower and upper bounds combined define a relatively narrow interval in

which the exact value of H̃∞(X|P ) is enclosed. We considerably extend related
work in [11, 27] as follows. First, we cover a variety of codes, regardless of their
algebraic complexity. Prior work focussed on repetition codes only. Although
frequently used as the inner code of a concatenated code [7], full-fledged key
generators [28] typically rely on non-trivial codes, e.g., BCH codes [23]. Sec-
ond, our techniques may be applied to a variety of distributions, while prior
work covered biased distributions only. Our bounds remain easy-to-evaluate and
are able to handle large codes. Although derived for the code-offset sketch of
Dodis et al. [14] in particular, App. A establishes the equivalence with six other
constructions.

3.1 Distributions

Our work is generic in the sense that a large variety of distributions X could be
covered. We only require that X = {0, 1}1×n can be partitioned in subsets ϕj ,
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with j ∈ [1, J ], so that all elements of ϕj have the same probability of occurrence
qj . Formally, P(X = x) = qj if and only if x ∈ ϕj . These probabilities are strictly
monotonically decreasing, i.e., q1 > q2 > . . . > qJ . Occasionally, qJ = 0. The
ingoing min-entropy is easily computed as H∞(X) = − log2(q1). We determine

bounds on H̃∞(X|P ). The runtime of the corresponding algorithms is roughly
proportional to J . The crucial observation is that even a very small J might
suffice to capture realistic PUF models. Below, we describe a parameterized
distribution X for both biased and spatially correlated PUFs. Even for large
codes, bounds evaluate in milliseconds-seconds on a standard desktop computer.

– Biased distribution. We assume response bits to be independent and iden-
tically distributed (i.i.d.) so that P(X(i) = 1) = b, with i ∈ [1, n] and a
real-valued b ∈ [0, 1]. For b = 1

2 , this boils down to a uniform distribution.
The latter bias model comprehends a very popular abstraction in PUF liter-
ature. The min-entropy loss of various other helper data methods has been
analyzed as such, e.g., soft-decision decoding [26, 11] as well as IBS [37, 17]
and von Neumann [25, 32] debiasing. Therefore, our results enable adequate
comparison with related methods, all using a common baseline distribution.

– Correlated distribution. We assume response bits to be distributed so that
P(X(i) = X(i+ 1)) = c, with i ∈ [1, n−1] and a real-valued c ∈ [0, 1]. There
is no bias. For c = 1

2 , this boils down to a uniform distribution. Although
spatial correlations are generally acknowledged to be an issue, these are
usually ignored in theoretical work due to their complexity. We hope that
our results may help turn the tide on this.

Fig. 2 specifies the subsets ϕj for both distributions. For the biased dis-
tribution, we partition according to HW(x). This corresponds to a binomial
distribution with j−1 successes for n Bernoulli trials, each having success prob-
ability b? = min(b, 1 − b). For the correlated distribution, we partition accord-
ing to HD(x(1 : n − 1),x(2 : n)), i.e., the number of transitions in x. Inputs
in subset ϕj exhibit j − 1 transitions and obey either one out of two forms,
i.e., x = (0‖1‖0‖ . . .) and x = (1‖0‖1‖ . . .). A related observation is that if
x ∈ ϕj , then so is its ones’ complement, i.e., x ∈ ϕj . This explains the fac-
tors 2 and 1

2 everywhere. Set size |ϕj | is further determined with stars and bars
combinatorics [15]. In particular, we separate n indistinguishable stars into j
distinguishable bins by adding j − 1 out of n− 1 bars.

We treat the degenerate case b = c = 1
2 , i.e., a uniform distribution, sepa-

rately. There is only one set then. Formally, J = 1, |ϕ1| = 2n and q1 = 1/2n. As
proven by Reyzin [29], the min-entropy loss of a secure sketch is maximal for a
uniformly distributed input, making this a case of special interest.

3.2 Generic Bounds

Equation (6) holds for the code-offset construction of Dodis et al. [14], given
that a codeword is selected fully at random during enrollment.
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1

2

. . .

j

. . .

n

n + 1

|ϕj |
1

n

. . .(
n

j−1

)
. . .

n

1

qj

(1− b?)n

b?(1− b?)n−1

. . .

(b?)j−1(1− b?)n−j+1

. . .

(b?)n−1(1− b?)

(b?)n

j

1

2

. . .

j

. . .

n− 1

n

|ϕj |
2

2(n− 1)

. . .

2
(
n−1
j−1

)
. . .

2(n− 1)

2

qj
1
2
(1− c?)n−1

1
2
c?(1− c?)n−2

. . .

1
2
(c?)j−1(1− c?)n−j

. . .

1
2
(c?)n−2(1− c?)

1
2
(c?)n−1

Fig. 2. Subsets ϕj for a biased and correlated distribution X, left and right respectively.
We define b? = min(b, 1− b) and c? = min(c, 1− c).

P((P = p)|(X = x)) =

{
1/|M|, if ∃w : p = x⊕w
0, otherwise.

(6)

Equation (7) applies Bayes’ rule to the definition of conditional min-entropy
in (2) and fills in (6). The 0 case is resolved by switching variables for the max
operator. A direct exhaustive evaluation of the resulting formula requires up to
2n|M| operations.

H̃∞(X|P ) = − log2

(∑
p∈P

�����P(P = p) max
x∈X

P(X = x)P((P = p)|(X = x))

�����P(P = p)

)

= − log2

(
1

|M|
∑
p∈P

max
w∈W

P(X = p⊕w)

)
.

(7)

For linear codes, the workload can be reduced substantially. With a similar
derivation as before, we rewrite (4) as shown in (8). Up to 2n operations suffice.
Nevertheless, direct evaluation is only feasible for small codes. We emphasize
that our bounds are able to handle large codes, as is typically the case for a
practical key generator.

H̃∞(X|P ) = − log2

(∑
ε∈E

max
w∈W

P(X = ε⊕w)
)
. (8)

Equation (7) iterates over all p’s and selects each time the most likely x that
is within range, via the addition of a codeword w ∈ W. We now reverse the
roles, as shown in Fig. 3. We iterate over all x’s, from most likely to least likely,
i.e., from ϕ1 to ϕJ . Within a certain ϕj , the order of the x’s may be chosen
arbitrarily. Subsequently, we assign p’s to each x, as represented by the black
squares, until the set P of size 2n is depleted. For each assigned p, we assume
that the corresponding x is the most likely vector, according to (7). Let spj denote
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the number of black squares assigned to set ϕj . The residual min-entropy is then
easily computed as in (9).

H̃∞(X|P ) = − log2

(
1

|M|

J∑
j=1

spj qj

)
. (9)

|ϕ1| |ϕj−1| |ϕj | |ϕj+1| |ϕJ |

x

⊕w

p

|M|

mod(2n, |M|)

b2n/|M|c(a)

p

|M|

mod(2n, |M|)

|M| |M| mod(2n, |M|)(b)

Fig. 3. Reversal of the roles in (7). (a) A lower bound on H̃∞(X|P ). (b) An upper

bound on H̃∞(X|P ). Black squares represent terms that contribute to H̃∞(X|P ), one
for each p ∈ P. White squares represent non-contributing terms, overruled by the max
operator. In general, there are few black squares but many white squares, 2n versus
(|M| − 1)2n to be precise. For block codes, i.e., |M| = 2k, the last column of black
squares is completely filled.

Both linear and non-linear codes are supported by former graphical repre-
sentation. Nevertheless, we elaborate linear codes as a special case due to their
practical relevance. Fig. 4 swaps the order of iteration in (8). Only one row suf-
fices, i.e., each column of helper data vectors p in Figure 3 is condensed to a
single square. Black and white squares are now assigned to cosets, as represented
by their coset leaders ε. Let sεj denote the number of black squares assigned to
set ϕj . The residual min-entropy is then easily computed as in (10), hereby
dropping denominator |M| compared to (9), given that spj = 2k · sεj .

9



H̃∞(X|P ) = − log2

( J∑
j=1

sεjqj

)
. (10)

|ϕ1| |ϕj−1| |ϕj | |ϕj+1| |ϕJ |

x

⊕w

ε

2n−k(a)

ε

2k 2k 2k(b)

Fig. 4. Reversal of the roles in (8), as applied to linear codes. (a) A lower bound

on H̃∞(X|P ). (b) An upper bound on H̃∞(X|P ). Black squares represent terms that

contribute to H̃∞(X|P ), one for each ε ∈ E . White squares represent non-contributing
terms, overruled by the max operator.

In the worst-case scenario, the most likely x’s all map to unique p’s, without
overlap, resulting in a lower bound on H̃∞(X|P ). For a linear code, this would
be the case if the first 2n−k x’s all belong to different cosets. In the best-case
scenario, our sequence of x’s exhibits maximum overlap in terms of p, resulting
in an upper bound on H̃∞(X|P ). For a linear code, this would be the case if
the first 2k x’s all map to the same coset, and this repeated for all 2n−k cosets.
Algorithms 1 and 2 comprehend a literal transcript of Fig. 3 and compute the
lower bound and upper bound respectively. Auxiliary variables sp and sx accu-
mulate black and gray squares respectively. To maintain generality, we abstain
from special case algorithms for linear codes, although it would result in a few
simplifications.

Algorithms 1 and 2 may now be applied to a variety of distributions. For a
uniform distribution, the lower and upper bound both evaluate to H̃∞(X|P ) =
log2(|M|), regardless of other code specifics. Or simply k, for block codes in
particular. The min-entropy loss is hence exactly (n−k), given that H∞(X) = n.
Reyzin’s proof [29] therefore implicates that the general-purpose (n− k) bound
cannot be tightened any further. Although results are fairly presentable already
for the biased and correlated distributions, we further tighten these bounds first.

3.3 Tighter Bounds

Tighter bounds can be obtained by leveraging code properties more effectively.
Algorithms 3 and 4 generalize Algorithms 1 and 2 respectively. In the former
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Algorithm 1: BoundWorstCase

Input: List 〈|ϕj |, qj〉
Output: Lower bound on H̃∞(X|P )
j, q, sp ← 0
while sp < 2n do

j ← j + 1
spj ← min(|ϕj ||M|, 2n − sp)

sp ← sp + spj
q ← q + spj · qj

H̃∞(X|P )← − log2(q/|M|)

Algorithm 2: BoundBestCase

Input: List 〈|ϕj |, qj〉
Output: Upper bound on

H̃∞(X|P )
j, q, sp, sx ← 0
while sp < 2n do

j ← j + 1
sx ← sx + |ϕj |
spj ← d(s

x − sp)/|M|e|M|
spj ← min(max(spj , 0), 2n − sp)

sp ← sp + spj
q ← q + spj · qj

H̃∞(X|P )← − log2(q/|M|)

case, an additional input imposes an upper bound on the accumulated number
of black squares, i.e., ∀j, (sp1 + sp2 + . . .+ spj ) ≤ (up1 +up2 + . . .+upj ). In the latter
case, an additional input imposes a lower bound on the accumulated number of
black squares, i.e., ∀j, (sp1 + sp2 + . . .+ spj ) ≥ (lp1 + lp2 + . . .+ lpj ). We now provide
several examples.

Algorithm 3: BoundWorstCase2

Input: List 〈|ϕj |, qj , up
j 〉

Output: Lower bound on H̃∞(X|P )
j, q, sp, up ← 0
while sp < 2n do

j ← j + 1
up ← up + up

j

spj ← min(|ϕj ||M|, up − sp)

spj ← min(spj , 2
n − sp)

sp ← sp + spj
q ← q + spj · qj

H̃∞(X|P )← − log2(q/|M|)

Algorithm 4: BoundBestCase2

Input: List 〈|ϕj |, qj , lpj 〉
Output: Upper bound on

H̃∞(X|P )
j, q, sp, sx, lp ← 0
while sp1:j < 2n do

j ← j + 1
sx ← sx + |ϕj |
lp ← lp + lpj
spj ← d(s

x − sp)/|M|e|M|
spj ← max(spj , l

p − sp, 0)

spj ← min(spj , 2
n − sp)

sp ← sp + spj
q ← q + spj · qj

H̃∞(X|P )← − log2(q/|M|)

Worst-Case Bounds We improve the lower bound on H̃∞(X|P ) for the cor-
related distribution. At least, for linear codes having the all-ones vector 1 of
length n as a codeword. This includes Reed-Muller codes of any order [23]. This
also includes many BCH, Hamming and repetition codes, on the condition that
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these are cyclic and having d odd, as easily proven hereafter. Consider an arbi-
trary codeword with Hamming weight d. XORing all 2n circular shifts of this
codeword results in the all-ones codeword, which ends the proof. As mentioned
before, each set ϕj of the correlated distribution can be partitioned in pairs
{x,x}, with x the ones’ complement of x. Paired inputs belong to the same
coset, i.e., maximum overlap in terms of helper data p. Therefore, we impose
the cumulative upper bound in (11).

upj = |M| |ϕj |
2

= 2k−1|ϕj |. (11)

For instance, consider linear/cyclic [n, k = 1, d = n] repetition codes, i.e.,
having generator matrix G = 1, with n odd. Algorithms BoundWorstCase2 and
BoundBestCase then converge to the exact result H̃∞(X|P ) = 1, not depend-
ing on parameter c. This is the best-case scenario, given the universal bound
H̃∞(X|P ) ≤ k. Fig. 5 illustrates the former with squares for n = 5. The re-
sult also holds if the repetition code is neither linear/cyclic nor odd. As long as
w1 ⊕w2 = 1, the elements of each ϕj can be paired into cosets. Although the
term coset is usually preserved for linear codes, translations of a non-linear repe-
tition code are either disjunct or coincide and still partition the space {0, 1}1×n.
As a side note, the result offers yet another [11] refutation of the repetition code
pitfall of Koeberl et al. [22], a work that ignores that (n− k) is an upper bound
only.

2 8 12 8 2

x

⊕w

p

Fig. 5. The exact residual min-entropy H̃∞(X|P ) for the correlated distribution and
an [n = 5, k = 1, d = 5] repetition code.

Best-Case Bounds We improve the upper bound on H̃∞(X|P ) for both the
biased and correlated distribution. In particular, we take minimum distance d
into account. The main insight is that two slightly differing inputs xu 6= xv do
not overlap in terms of helper data p. More precisely, if HD(xu,xv) ∈ [1, d− 1],
then {xu ⊕w | w ∈ W} ∩ {xv ⊕w | w ∈ W} = ∅. For the biased distribution,
the following holds: HD(xu,xv) ∈ [1, d− 1] if xu 6= xv and xu,xv ∈ (ϕ1 ∪ ϕ2 ∪
. . . ∪ ϕt+1). Or stated otherwise, the elements of the first t+ 1 sets all result in
unique p’s. Therefore, we can impose the constraint given in (12). Fig. 6 depicts
the squares.
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lpj =

{
|ϕj ||M|, if j ∈ [1, t+ 1]

0, otherwise
. (12)

|ϕt+1| |ϕt+2| |ϕJ |

x

⊕w

p

|M|

mod(2n, |M|)

t∑
i=0

(
n
i

) t∑
i=0

(
n
i

)
(|M| − 1)

|M| mod(2n, |M|)

Fig. 6. A tightened upper bound on H̃∞(X|P ) for the biased distribution, hereby
making use of (12).

There is an interesting observation for perfect codes in particular. As clear
from the Hamming bound in (3), all p’s are covered by the first t + 1 sets
exclusively. BoundWorstCase and BoundBestCase2 hence produce the same out-
put. I.e., an exact evaluation of the residual min-entropy, as further simplified
in (13). This considerably extends a prior result of Delvaux et al. in [11]. The
same formula was derived for [n, k = 1, d = n] repetition codes, with n odd.
Note that such repetition codes are perfect. The formula was originally adopted
to debunk the aforementioned repetition code pitfall [22]. Maes et al. [27] fully
rebroadcasted the latter contribution from [11] at CHES 2015. It was conve-
niently unclear though that the novelty thereof is limited to a straightforward
conversion from min-entropy to Shannon entropy.

H̃∞(X|P ) = − log2

(t+1∑
j=1

|ϕj | · qj
)

= − log2(Fbino(t;n,min(b, 1− b))). (13)

For codes that do not happen to be perfect, there is still margin for improve-
ment. We inject some promising thoughts but abstain from numerical results
later-on. Consider a linear code of which the Hamming weight distribution of
the coset leaders ε is well-understood. Let |Eh| denote the number of cosets such
that h = HW(ε). Clearly, |Eh| =

(
n
h

)
for h ∈ [0, t]. Our interest concerns |Eh| for

h > t, all of which are exactly known in the ideal case, as in [10] for certain BCH
codes. The largest h for which |Eh| > 0 is also referred to as the covering radius
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hcr of the code. For a bias b < 1
2 , (14) comprehends the exact residual min-

entropy. The latter expression extends to b > 1
2 in case the all-ones vector 1 is a

codeword. This includes Reed-Muller codes as well as cyclic codes with d odd,
as has been argued earlier-on. If only bounds on |Eh| and/or hcr are known, one

might still be able to further tighten the bounds on H̃∞(X|P ) correspondingly.

H̃∞(X|P ) = − log2

(
1

|M|

hcr∑
h=0

|Eh| · |M| · qh+1

)
= − log2

( hcr∑
h=0

|Eh| · qh+1

)
. (14)

For instance, consider [n, k = 1, d = n] repetition codes with n even. These
form the non-perfect and therefore less popular counterpart of n odd. Inputs x
belonging to ϕj and ϕn+2−j are still paired in order to form the cosets. Unlike
n odd, there is a central set ϕt+2 that contains both members of each pair.
Therefore, hcr = t + 1 and |Et+1| = |ϕt+2|/2. As argued before, the operational
principles of cosets extend to non-linear repetition codes. Fig. 7 depicts the
squares for n = 4. Equation (15) evaluates the residual min-entropy.

H̃∞(X|P ) = − log2

(
Fbino(t;n,min(b, 1− b)) +

1

2

(
n
n
2

)
(b(1− b))n

2

)
. (15)

1 4 6 4 1

x

⊕w

p

Fig. 7. The exact residual min-entropy H̃∞(X|P ) for the biased distribution and an
[n = 4, k = 1, d = 4] repetition code.

Also for the correlated distribution, distance d might be incorporated to
tighten the upper bound on H̃∞(X|P ). First of all, we assign |M| unique p’s
to one out of two elements in ϕ1. For ease of understanding, assume x = 0,
comprehending the first case in (16). For each set ϕj , with j ∈ [2, n], we then
count the number of inputs x ∈ ϕj such that h = HW(x) ≤ t. The latter
constraint guarantees all assigned p’s to be unique. We distinguish between two
forms, x = (0‖1‖0‖ . . .) and x = (1‖0‖1‖ . . .), resulting in two main terms. For
each form, we apply stars and bars combinatorics twice. In particular, we assign h
indistinguishable stars, i.e., ones, to distinguishable bins and independently also
for n− h zeros. Note that lpj = 0 for j > 2t+ 1. To ensure formula correctness,

one may verify numerically that lp1 + lp2 + . . .+ lp2t+1 equals the left hand side of
the Hamming bound in (3).
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lpj =


|M|, if j = 1

|M|
(∑t

h=bj/2c
(

h−1
bj/2c−1

)(
n−h−1
dj/2e−1

)
+
∑t

h=dj/2e
(

h−1
dj/2e−1

)(
n−h−1
bj/2c−1

))
, otherwise.

(16)

3.4 Numerical Results

Fig. 8 presents numerical results for various BCH codes. We focus on small
codes, as these allow for an exact exhaustive evaluation of the residual min-
entropy using (7) and/or (8). As such, the tightness of various bounds can be
assessed adequately. Fig. 8(d) nevertheless demonstrates that our algorithms
support large codes equally well, in compliance with a practical key generator.
Note that only half of the bias interval b ∈ [0, 1] is depicted. The reason is that
all curves mirror around the vertical axis of symmetry b = 1

2 . The same holds
for the correlated distribution with parameter c.

Especially the lower bounds perform well, which benefits a conservative sys-
tem provider. The best lower bounds in Figs. 8(a), (b) and (c) visually coin-
cide with the exact result. The gap with the (n − k) bound is the most com-
pelling around b, c ≈ 0.7, where the corresponding curves hit the horizontal axis
H̃∞(X|P ) = 0. Also our upper bounds are considerably tighter than their more
general alternatives in (5). Nevertheless, the latter bounds remain open for fur-
ther improvement, with the exception of Fig. 8(b). An [n = 7, k = 4, d = 3] code
is perfect and lower and upper bounds then converge to the exact result for a
biased distribution.

4 Applications

The newly developed theory of Section 3 facilitates the design and analysis of
error-correction methods, as exemplified in twofold manner. First, we point out a
fundamental security flaw in the reverse fuzzy extractor [33]. Second, we provide
a motivational framework for debiasing schemes [37, 32, 27].

4.1 A Fundamental Security Flaw in Reverse Fuzzy Extractors

The reverse fuzzy extractor, as proposed by Van Herrewege et al. [33] at Financial
Crypto 2012, improves the lightweight perspectives of PUF-based authentication
protocols. The construction was therefore also adopted in the CHES 2015 proto-
col of Aysu et al. [2]. Instead of a single helper data exposure only, p← SSGen(x̃)
is regenerated and transferred with each protocol run by a resource-constrained
PUF-enabled device. A receiving resource-rich server, storing reference response
x, can hence reconstruct x̃← SSRec(x,p) and establish a shared secret as such.
The footprint of the device is reduced due to the absence of the heavyweight
SSRec procedure.
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(d) Bias; [n = 127, k = 64, d = 21].

Fig. 8. The secure sketch min-entropy loss for various BCH codes. Dots correspond
to an exact exhaustive evaluation of (7)/(8). The legend of the curves is as fol-
lows. (I) The ingoing min-entropy H∞(X) = − log2(q1). (II) The lower bound

H̃∞(X|P ) = max(H∞(X)− (n− k), 0). (III) The lower bound on H̃∞(X|P ) according

to BoundWorstCase. (IV) The upper bound on H̃∞(X|P ) according to BoundBestCase.

(V) The lower bound on H̃∞(X|P ) according to BoundWorstCase2. (VI) The upper

bound on H̃∞(X|P ) according to BoundBestCase2.
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We debunk the main security claim that repeated helper data exposure
does not result in additional min-entropy loss. The revealed flaw is attributed
to the misuse of a reusability proof of Boyen [8]. For the code-offset sketch
with linear codes, the exposure of p1 ← SSGen(x) and p2 ← SSGen(x ⊕ e),
with perturbation e known and fully determined by the attacker, is provably
equivalent. The latter helper data reveals that x belongs to an identical coset
{p1 ⊕ w : w ∈ W} = {p2 ⊕ e ⊕ w : w ∈ W}. However, perturbation e is
determined by PUF noisiness rather than by the attacker and its release hence
reveals new information. Given a sequence of protocol runs, the attacker can ap-
proximate all individual bit error rates pE as well as the coset to which reference
x belongs.

Fig. 9 quantifies the residual min-entropy of X with the exclusion and in-
clusion of revealed bit error rates pE respectively. In the latter case, we rely
on a Monte Carlo evaluation of (17), as enabled by choosing a small [n =
15, k = 7, d = 5] BCH code, given that an analytical approach is not so very
straightforward. Exposure of pE boils down to knowledge of threshold discrep-
ancy |v(i)− t|. For the biased distribution, the situation is identical to the flaw
in the soft-decision decoding scheme of Maes et al. [26]. As pointed out by Del-
vaux of al. [11], there is a bit-specific bias bi = P(r(i) = 1) = fnorm(t + |v(i) −
t|)/(fnorm(t+|v(i)−t|)+fnorm(t−|v(i)−t|)). For each x in the coset corresponding
to p, we then compute P(X = x) =

∏n
i=1(x(i)bi + (1−x(i))(1− bi)). Similarly,

for the spatially correlated distribution, we compute P(X = x) = fnorm(v,0,Σ),
with covariance matrix Σ exclusively depending on correlation parameter c, as
detailed in App. B.

H̃∞(X|P ) = − log2

(
Ev←V max

w∈W
P(V = t+ (1− 2w)|v − t| | |v − t|

)
. (17)
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H̃∞

(a) Bias; [n = 15, k = 7, d = 5].
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H̃∞

(a) Correlation; [n = 15, k = 7, d = 5].

Fig. 9. The residual min-entropy H̃∞(X|P ) for a BCH code. The solid lines that ex-
clude revealed bit error rates are computed with BoundWorstCase2; Fig. 8 confirms
the visual overlap with the exact result. Dots that include revealed bit error rates
correspond to Monte Carlo evaluations of size 106.
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The revealed flaw differs from existing attacks by Delvaux et al. [12] and
Becker [4] that apply to the original protocol [33] exclusively. The latter at-
tacks comprehend the modeling of the highly correlated arbiter PUF via re-
peated helper data exposure; a preemptive fix can be found in the PhD thesis of
Maes [24]. The newly revealed flaw is more fundamentally linked to the reverse
fuzzy extractor primitive and applies to all existing protocols so far [33, 24, 2].
Observe in Fig. 9 that the overly conservative (n−k) bound would compensate for
the additional unanticipated min-entropy loss. However, this somewhat defeats
the purpose in light of the original lightweight intentions, and this observation
might not necessarily hold for every possible distribution. Further theoretical
work may determine to which extent and at which cost reverse fuzzy extrac-
tors can be repaired. A potential fix already exists for biased distributions, as
illustrated later-on.

4.2 Motivation for Debiasing Schemes

Debiasing schemes transform a biased PUF-induced distribution into a uniform
distribution. A considerable fraction of the response bits is discarded in order to
restore the balance between 0 and 1. Indices of retained bits are stored as helper
data. A subsequent secure sketch, known to have an exact min-entropy loss of
(n−k) bits for uniform inputs, still corrects the errors. A first debiasing proposal
is the index-based syndrome (IBS) scheme of Yu et al. [37], further generalized
by Hiller et al. [17]. Second, there are the von Neumann debiasing schemes, as
presented by Maes et al. [27] at CHES 2015. The latter authors advertised to have
solved an important open problem, hereby conveniently overlooking the existence
of IBS. Another convenient oversight is that the basic von Neumann debiasing
scheme had already been proposed in the PhD thesis of Van Herrewege [32].

Prior debiasing schemes assume that a stand-alone sketch cannot handle
biased distributions. This conclusion originates from either the extrapolation of
repetition code insights and/or application of the (n − k) bound. The precise
entropy loss behavior for larger codes, e.g., a BCH [n = 127, k = 64, d = 21]
code as in Fig. 8, was an educated guess so far. Our newly derived bounds clearly
resolve this motivational uncertainty, in addition to making stand-alone sketches
more competitive. For low-bias situations, e.g., b ∈ [0.4, 0.6], the (n− k) already
resulted in a competitive sketch [27]; the new bounds can only improve hereupon.
We emphasize that modern high-quality PUFs tend to have a low bias. Notable
cases of a high bias can typically be attributed to an avoidable asymmetry in the
circuit. Nevertheless, for high-bias situations, the new bounds clearly indicate
the need of debiasing schemes. The benefit is amplified by choosing a sketch with
a k-bit output, several of which are listed in App. A. The uniform output is then
directly usable as a key, hereby eliminating the Hash function and its additional
min-entropy loss in case the leftover hash lemma is applied.

Finally, we highlight that one of the von Neumann debiasing schemes in [27]
was claimed to be reusable. Surprisingly, this claim holds, despite explicitly
overlooking the misuse of Boyen’s proof once again and stating that a stand-
alone sketch is reusable. A lucky side effect of retaining pairs of alternating bits
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only, i.e., 01 and 10, is that the imbalance in error rates between 0 and 1 cannot
be observed in the helper data. The scheme is considerably less efficient than
other von Neumann variants though, showing that reusability comes at a price.

5 Conclusion

Secure sketches are the main workhorse of modern PUF-based key generators.
The min-entropy loss of most sketches is upper-bounded by (n− k) bits and de-
signers typically instantiate system parameters accordingly. However, the latter
bound tends to be overly pessimistic, resulting in an unfortunate implemen-
tation overhead. We showcased the proportions for a prominent category of
PUFs, with bias and spatial correlations acting as the main non-uniformities.
New considerably tighter bounds were derived, valid for a variety of popular
but algebraically complex codes. These bounds are unified in the sense of being
applicable to seven secure sketch constructions. Deriving tighter alternatives for
the (n − k) bound counts as unexplored territory and we established the first
significant stepping stone. New techniques may have to be developed in order to
tackle more advanced second-order distributions. Elaborating a wider range of
applications would be another area of progress. We hope to have showcased the
potential by debunking the main security claim of the reverse fuzzy extractor
and by providing proper quantitative motivation for debiasing schemes.
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A Secure Sketch Equivalency Proofs

Bounds previously derived for the code-offset method of Dodis et al. [14] apply to
six other constructions equally well. For convenience, we generalize the original
secure sketch so that its reconstructed output y ← SSRep(x,p) is not necessarily
equal to x. As such, the prior notion of fuzzy commitment [20] can be supported
as well. Hereby, we commit to a secret value y by binding it to x. One may
decommit given an x̃ that is sufficiently close to x. Constructions that return a
substring of x, e.g., [21], are supported too. The fuzzy extractor definition offers
intrinsic support for both cases, without any modifications from our part. The
key is still computed as k← Hash(y).

Fig. 10 specifies the seven secure sketch constructions of interest, all instan-
tiated with a binary code C. We now review additional coding theory, before
transitioning to individual sketch discussions. A generator matrix is in standard
form if G = (Ik‖A). I.e., the first k bits of a codeword equal the message,
followed by n − k redundancy bits. A parity check matrix H, with dimensions
(n − k) × n, determines the so-called syndrome s = w̃ · HT . The syndrome
captures all the information necessary for decoding w̃. For each codeword w,
the following holds: 0 = w · HT . Therefore, the syndrome can be rewritten
as s = e ·HT . Generator and parity check matrices can be derived from each
other. E.g., for a generator matrix in standard form, H = (AT ‖In−k). There is
a one-to-one correspondence between cosets and syndromes [23].

All seven constructions exhibit an identical min-entropy loss. Or more pre-
cisely, all have the same residual min-entropy H∞(Y |P ) given in (18), as long as
the ingoing distribution X and the code C are identical. A consequence thereof is
that the well-known (n− k) upper bound on the min-entropy loss as well as our
newly derived bounds apply to all seven sketches. Simple equivalency proofs are
established in pairwise manner, as guided by Fig. 11. Several pairwise equivalen-
cies were already established in existing literature, e.g., [34, 11], but these often
impose unnecessary restrictions on the distribution. We hence make progress in
terms of completeness and generality.

H̃∞(Y |P ) = − log2

(
Ep←P

[
max
y∈Y

P((Y = y)|(P = p))
])
. (18)

A.1 Code-Offset Methods of Juels et al., Dodis et al. and
Tuyls et al.

The code-offset method of Juels et al. [20] is represented by Fig. 10(a). The code
C is not necessarily linear. Even more, it is not required be a block code either.
Fig. 10(b) represents a modification where Rep returns sketch input x rather than
codeword w, as proposed by Dodis et al. [14]. For the latter, it was proven that
the (n−k) upper bound on the min-entropy loss ∆H∞ holds, given a block code.
Fig. 10(c) represents another minor modification where Rep returns message m,
as suggested by Tuyls et al. [30]. This necessitates an implementation of Decode
rather than Correct.
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p← SSGen(x) ŷ ← SSRep(x̃,p)

Random w ∈ C
p← x⊕w

w̃ ← x̃⊕ p = w ⊕ e
ŷ = ŵ ← Correct(w̃)

(a) Code-offset method
of Juels et al. [20].

w̃ ← x̃⊕ p = w ⊕ e
ŷ = x̂← p⊕ Correct(w̃)

(b) Code-offset method
of Dodis et al. [14].

w̃ ← x̃⊕ p = w ⊕ e
ŷ = m̂← Decode(w̃)

(c) Code-offset method
of Tuyls et al. [30].

p← x ·HT s← x̃ ·HT ⊕ p = e ·HT

Determine ê

ŷ = x̂← x̃⊕ ê

(d) Syndrome method
of Bennett et al. [5].

p← x(1 : k) ·A
⊕ x(k + 1 : n)

ŵ ← Correct(x̃⊕ (0‖p))

ŷ = x̂← ŵ ⊕ (0‖p)

(e) Systematic method
of Yu [36].

ŷ = x̂(1 : k)← Decode(x̃

⊕(0‖p))

(f) Systematic method
of Kang et al. [21].

p← j so that x ∈ Cj ŷ = m̂← DecodeCj (x̃) (g) Multi-code method
of Ahlswede et al. [1].

Fig. 10. Seven secure sketch constructions, all having an n-bit input x. Correctness of
reconstruction is guaranteed, given a noisy version x̃ with HD(x, x̃) ≤ t.

Dodis et al. [14]

Juels et al. [20]

Tuyls et al. [30]

Bennett et al. [5]

Yu [36]

Kang et al. [21]

Ahlswede et al. [1]

st
a
n
d
a
rd

fo
rm

li
n
ea

r

[18]

Fig. 11. Pairwise min-entropy loss equivalencies among seven sketches, as indicated
by the arrows. Transitive relations apply when following the arrows. E.g., the schemes
of Dodis et al. and Kang et al. are equivalent, given that both are instantiated with a
linear code in standard form.
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All three code-offset methods produce the same helper data p but differ
in their reconstructed output y. Nevertheless, we argue that the residual min-
entropy is identical. This follows from an underlying one-to-one correspondence,
given in (19). Encode comprehends a bijection between message space M and
codeword space W. Furthermore, for a given p, there is a bijection between W
and a reduced response space X ′ = {p ⊕ w | w ∈ W} ⊆ X . Therefore, (18)
evaluates to the same value for all three methods. Note that |M| = |W| = |X ′|.

∀(p,m) ∈ (P ×M),P((M = m)|(P = p)) = P((W = Encode(m))|(P = p))

= P((X = Encode(m)⊕ p)|(P = p)).

(19)

A.2 Syndrome Method of Bennett et al.

The syndrome method of Bennett et al. [5] is represented by Fig. 10(d). Although
initially proposed as part of a quantum oblivious transfer protocol, it maps quite
easily to the secure sketch framework of Dodis et al. [14]. The method requires a
linear code C, given the use of a parity check matrix H. The well-known (n− k)
upper bound on the min-entropy loss ∆H∞ holds, as proven by Dodis et al. [14].
This is a trivial consequence from the universally valid expression in (20), given
that the helper data p is limited to (n− k) bits.

H̃∞(X|P ) ≥ H̃∞(X)− log2(|P|). (20)

The syndrome method of Bennett et al. and the code-offset method of Dodis
et al. both reconstruct y = x. Furthermore, for both methods, helper data
p reveals in which coset x resides. For the syndrome method, this is a trivial
consequence from the one-to-one correspondence between cosets and syndromes.
For the code-offset method, p comprehends a random element in the same coset
as x. Note that the code-offset method is being instantiated with a linear code,
given that the syndrome method is restricted to this case. The residual min-
entropy of both methods can hence be written as shown in (4).

A.3 Systematic Methods of Yu and Kang et al.

The method of Yu [36] is represented by Fig. 10(e). It requires a linear code C
with the generator matrix in standard form, i.e., G = (Ik‖A). We observe that
∆H∞ ≤ (n− k) holds due to (20), given that helper data p is limited to (n− k)
bits. Fig. 10(f) represents a slightly modified method where Rep returns x(1 : k)
rather than x. This was first proposed by Kang et al. in [21] and independently
also by Hiller et al. in [18]. Nevertheless, (21) indicates that the residual min-
entropy is identical. The main insight is that x(1 : k) and p fully determine
x(k + 1 : n).

∀(p, i,x) ∈ (P × X ),P((X(1 : k) = x(1 : k))|((P = p)))

= P((X = (x(1 : k)‖(x(1 : k) ·A⊕ p))|((P = p))).
(21)
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The methods of Bennett et al. and Yu both reconstruct the sketch input, i.e.,
y = x. We are the first to observe though that the helper data is identical as
well, as proven in (22). Of course, this assumes a generator matrix in standard
form, i.e., G = (Ik‖A), given that Yu’s method is restricted to this case.

p = x ·HT = x ·
(
A
In−k

)
= x(1 : k) ·A⊕ x(k + 1 : n). (22)

A.4 Multi-Code Method of Ahlswede et al.

The method of Ahlswede et al. [1] is represented by Fig. 10(g). Although initially
proposed for secret key transport with correlated sources, it maps quite easily
to our framework of interest, as observed by Hiller et al. [18]. A distinguishing
feature is the use of multiple codes Cj , covering mutually disjoint sets of code-
words. We restrict our attention to [n, k, d] block codes with j ∈ [0, 2n−k − 1].
Every x ∈ X then coincides with exactly one codeword, guaranteeing correct-
ness. Furthermore, ∆H∞ ≤ (n − k) holds due to (20), given that helper data
p = j is limited to (n− k) bits.

In [18], Hiller et al. proposed an efficient implementation where all codes are
derived from a single parent code C0. In particular, C0 is a linear code in standard
form, i.e., G = (Ik‖A), and all other codes are cosets: Cj = {w ⊕ (0‖p) | w ∈
C0}. This turns out to be fully equivalent with the method of Kang et al. in
Fig. 10(f), i.e., helper data p and reconstructed output y are identical. We
consider a slightly more general case. In particular, a linear code C0 that is not
necessarily in standard form, as required by the method of Bennett et al. as
well. All child codes Cj are again formed as the cosets of C0. Therefore, helper
data p = j still reveals in which coset x resides and (4) holds once again. The
one-to-one correspondence of output y in (23) finalizes our proof.

∀(p,x) ∈ (P × X ),P((X = x)|(P = p)) = P((M = DecodeCp(x))|(P = p)).
(23)

A.5 Generalization: Concatenated Codes in Parallel

The implementation footprint of Correct/Decode imposes upper bounds on code
size parameters [n, k, d]. Therefore, in order to generate a key of sufficient length,
z instances of a smaller code [n1, k1, d1] are typically applied in parallel. Further-
more, for high error rates in particular, concatenated codes are often used [7].
As a generalization, we consider z instances of [n2, k2, d2] ◦ [n1, k1, d1], with n1
an integer multiple of k2. One could think of these as a single umbrella block
code with n = z ·n2 · n1

k2
and k = z · k1. Therefore, prior equivalencies still apply.

B Covariance Matrix Σ for the Correlated Distribution

We determine the covariance matrix Σ for a spatially correlated distribution X
with parameter c. The probability cij that response bits x(i) and x(j) are equal
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is given in (24). For i = j and |i − j| = 1, the expression reduces to 1 and c
respectively.

cij = P(x(i) = x(j)) =

b|i−j|/2c∑
u=0

fbino(2u; |i− j|, 1− c), with i, j ∈ [1, n]. (24)

For i = j, the variance Σ(i, i) = E[(v(i))2] = 1. For i 6= j, a link between
covariance Σ(i, j) = E[v(i)v(j)] and cij is established in (25).

cij = 2

∫ ∞
0

∫ ∞
0

fnorm

((
vi vj

)
;
(
0 0
)
,

(
1 Σ(i, j)

Σ(i, j) 1

))
dvidvj . (25)

Integration in polar coordinates results in the more convenient relation in (26).

Σ(i, j) = sin
(
π
(
cij −

1

2

))
. (26)
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