## **ooo oo** MES-CoBraD

Multidisciplinary Expert System for the Assessment & Management of Complex Brain Disorders

# D3.2

Project Manual – CoBraD RWD, Updated MES-CoBraD Protocols and Quality and Quantity (Q&Q) Evaluation – v2

September 2021



The MES-CoBraD project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No 965422

www.mes-cobrad.eu

## PREFACE

The Multidisciplinary Expert System for the Assessment & Management of Complex Brain Disorders(MES-CoBraD) is an interdisciplinary project combining Real-World Data (RWD) from multiple clinical and consumer sources through comprehensive, cost-efficient, and fast protocols towards improving diagnostic accuracy and therapeutic outcomes in people with Complex Brain Disorders (CoBraD), as reflected in Neurocognitive (Dementia), Sleep, and Seizure (Epilepsy) disorders and their interdependence.

- It brings together internationally recognized experts in medicine, engineering, computer science, social health science, law, and marketing and communication from across Europe, and combines clinical information and scientific research in CoBraD with technical innovation in secure datasharing platforms, artificial intelligence algorithms, and expert systems of precision and personalized care, with a primary focus on improving the quality of life of patients, their caregivers, and the society at large.
- 2 It leverages RWD from diverse CoBraD populations across cultural, socioeconomic, educational, and health system backgrounds, with special attention on including vulnerable populations and minorities in an equitable manner and engaging key stakeholders to maximize project impact.
- 3 The project will deliver a rigorous and self-standing methodology that will drive the MES-CoBraD implementation and define its operational principles; The MES-CoBraD solution, through the implementation of novel, self-standing AI based components and their integration under a common platform for scientific exploitation will assist focusing on the evaluation and validation of the solution, the spread of the excellence gained, the expansion of its ecosystem and the real-life sustainability.

## CONSORTIUM



| <u>NTUA</u>       | National Technical University of Athens                                                  | EL |
|-------------------|------------------------------------------------------------------------------------------|----|
| NIA               | Neurological Institute of Athens                                                         | EL |
| HSCSP             | Fundació privada Institut de Recerca de l'Hospital de la Santa Creu i<br>Sant Pau        | IR |
| <u>VUB - LSTS</u> | VRIJE UNIVERSITEIT BRUSSEL                                                               | BE |
| ups               | UPPSALA UNIVERSITY                                                                       | SE |
| CHS-RMC           | Clalit Health Services- Rabin Medical Center Cognitive<br>Neurology and Epilepsy Clinics | IL |
| kcl               | King's College London                                                                    | UK |
| HOLISTIC          | HOLISTIC P.C.                                                                            | EL |
| <u>SIMAVI</u>     | Software Imagination & Vision                                                            | RO |
| LIBER             | STICHTING LIBER                                                                          | NL |
| ENG               | Engineering - Ingegneria Informatica S.p.A.                                              | EN |
| EVOLUTION         | MICHOPOULOS I. & CH. G.P.                                                                | EL |
| <u>UoE</u>        | University of Edinburgh                                                                  | UK |
| CEL               | CyberEthics Lab                                                                          | IT |





#### MULTIDISCIPLINARY EXPERT SYSTEM FOR THE ASSESSMENT & MANAGEMENT OF COMPLEX BRAIN DISORDERS

GA#: 965422

Topic: SC1-DTH-12-2020

Type of Action: RIA

Start Date: 01/04/2021 Duration: 36 months Coordinator: NTUA

| Deliverable Number  | 3.2                                                                                                      |
|---------------------|----------------------------------------------------------------------------------------------------------|
| Deliverable Title   | Project Manual – CoBraD RWD, Updated MES-CoBraD Protocols and Quality and Quantity (Q&Q) Evaluation – v2 |
| Work Package Number | WP3                                                                                                      |
| Task Number         | T2.3-T2.4                                                                                                |
| Date of Delivery    | 30/09/2021                                                                                               |
| Dissemination Level | Public                                                                                                   |
| Work Package Leader | RMC                                                                                                      |
| Lead Beneficiary    | RMC                                                                                                      |
| Authors             | RMC                                                                                                      |
| Contributors        | KCL, NIA, SP, UU, ENG                                                                                    |
| Reviewers           | SP, NIA                                                                                                  |

#### Disclaimer

The sole responsibility for the content of this publication lies with the authors. It does not necessarily reflect the opinion of the European Union. Neither the EASME nor the European Commission is responsible for any use that may be made of the information contained therein.

#### Copyright Message

This report, if not confidential, is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0); a copy is available here: https://creativecommons.org/licenses/by/4.0/. You are free to share (copy and redistribute the material in any medium or format) and adapt (remix, transform, and build upon the material for any purpose, even commercially) under the following terms: (i) attribution (you must give appropriate credit, provide a link to the license, and indicate if changes were made; you may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use); (ii) no additional restrictions (you may not apply legal terms or technological measures that legally restrict others from doing anything the license permits).





## **Document History**

| Version | Date       | Author (Partner)                                                                                                                                                                                                    | Remarks/Changes               |
|---------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| 0.10    | 30/08/2021 | Ophir Keret (RMC),<br>Elissaios Karageorgeou<br>(NIA),<br>Victor Montal (SP),<br>Luiz Eduardo Mateus<br>Brandao (UU),<br>Antonio Valentin Huete<br>(KCL),<br>Ioannis Stavropoulos (KCL),<br>Antonino Sirchia (ENG), | First Draft                   |
| 0.20    | 08/09/2021 | Ophir Keret (RMC),<br>Elissaios Karageorgeou<br>(NIA),<br>Victor Montal (SP),<br>Luiz Eduardo Mateus<br>Brandao (UU),<br>Antonio Valentin Huete<br>(KCL),<br>Ioannis Stavropoulos (KCL),<br>Antonino Sirchia (ENG)  | Minor Corrections             |
| 0.30    | 17/09/2021 | Ophir Keret (RMC),<br>Elissaios Karageorgeou<br>(NIA),<br>Victor Montal (SP),<br>Luiz Eduardo Mateus<br>Brandao (UU),<br>Antonio Valentin Huete<br>(KCL),<br>Ioannis Stavropoulos (KCL),<br>Antonino Sirchia (ENG)  | Final Draft                   |
| 0.50    | 25/09/2021 | Elissaios Karageorgeou (NIA)                                                                                                                                                                                        | Reviewer 1                    |
| 0.60    | 24/09/2021 | Juan Fortea (SP)                                                                                                                                                                                                    | Reviewer 2                    |
| 0.70    | 26/09/2021 | Ophir Keret (RMC)                                                                                                                                                                                                   | Corrected Draft               |
| 0.80    | 26/09/2021 | Ophir Keret (RMC)                                                                                                                                                                                                   | Corrected 2nd Draft           |
| 0.90    | 27/09/2021 | Michael Kontoulis (NTUA),<br>Christos Ntanos (NTUA)                                                                                                                                                                 | Quality Control               |
| 1.00    | 30/09/2021 | Christos Ntanos (NTUA)                                                                                                                                                                                              | Final Version to be Submitted |





## **Table of Contents**

| LIS            | st of fi              | gures                                                                                                                                                | 8  |
|----------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| LIST OF Tables |                       |                                                                                                                                                      |    |
| LIS            | LIST OF ABBREVIATIONS |                                                                                                                                                      |    |
| 1              | INTR                  | ODUCTION                                                                                                                                             | 13 |
|                | 1.1                   | Aim and Outline of the Project Manual                                                                                                                | 13 |
|                | 1.2                   | Associated Tasks and Work Packages                                                                                                                   | 14 |
|                | 1.2.1                 | Tasks Contributing to the Development of the current version of the Project Manual                                                                   | 14 |
|                | 1.2.2                 | Work Packages that directly utilise the Project's Manual                                                                                             | 14 |
| 2              | Types                 | s of Complex Brain Disorders, their Clinical Evaluation, disability and Societal Impact                                                              | 16 |
|                | 2.1                   | Major Neurocognitive Disorders                                                                                                                       | 16 |
|                | 2.2                   | Sleep Disorders                                                                                                                                      | 16 |
|                | 2.3                   | Seizures and Epilepsy                                                                                                                                | 17 |
|                | 2.4                   | CoBraD Comorbidity                                                                                                                                   | 18 |
|                | 2.5                   | Sex and Gender Considerations                                                                                                                        | 18 |
|                | 2.6                   | Ethical Considerations                                                                                                                               | 19 |
| 3              | Real                  | World Data Structure                                                                                                                                 | 20 |
|                | 3.1                   | Single Variable RWD – SVD                                                                                                                            | 21 |
|                | 3.2                   | Multiple Variables RWD – MVD                                                                                                                         | 23 |
|                | 3.3                   | Complex Structured RWD – CSD                                                                                                                         | 24 |
|                | 3.3.1                 | Images                                                                                                                                               | 24 |
|                | 3.3.2                 | Complex Object-Like Data                                                                                                                             | 25 |
|                | 3.4                   | Data Entry Considerations for RWD Acquired by a Clnician                                                                                             | 25 |
| 4              | Real                  | World Data Categories                                                                                                                                | 28 |
|                | 4.1                   | Clinic Symptoms and History                                                                                                                          | 28 |
|                | 4.1.1                 | Source, Acquisition Method, Data Abstraction                                                                                                         | 28 |
|                | 4.1.2                 | Quality Control                                                                                                                                      | 30 |
|                | 4.1.3                 | Data Storage                                                                                                                                         | 31 |
|                | 4.2                   | Physical Examination and Neuropsychological Testing                                                                                                  | 31 |
|                | 4.2.1                 | Source and Acquisition method                                                                                                                        | 32 |
|                | 4.2.2                 | Data Abstraction                                                                                                                                     | 32 |
|                | 4.2.3                 | Quality Control                                                                                                                                      | 32 |
|                | 4.2.4                 | Data Storage                                                                                                                                         | 34 |
|                | 4.3                   | Neuroimaging                                                                                                                                         | 34 |
| _              | 4.3.1                 | Source, Acquisition Method and Data Abstraction                                                                                                      | 34 |
|                |                       | The MES-CoBraD project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No 965422 | 6  |



| 4.3.2                    | Data Abstraction                                                                               | .35        |
|--------------------------|------------------------------------------------------------------------------------------------|------------|
| 4.3.3                    | Data Storage                                                                                   | .36        |
| 4.4 E                    | Biological Samples                                                                             | .36        |
| 4.4.1                    | Blood and Cerebrospinal Fluid                                                                  | .36        |
| 4.4.2                    | Hair                                                                                           | .40        |
| 4.5 F                    | Physiology                                                                                     | .41        |
| 4.5.1                    | Source, Acquisition, Data Abstraction                                                          | .41        |
| 4.5.2                    | Quality Control                                                                                | .42        |
| 4.5.3                    | Data Storage                                                                                   | .42        |
| 4.6                      | Medical Device Data                                                                            | .42        |
| 4.6.1                    | Source, Acquisition, Data Abstraction                                                          | .43        |
| 4.6.2                    | Quality Control                                                                                | .43        |
| 4.6.3                    | Data Storage                                                                                   | .43        |
| 4.7 \                    | Nearables                                                                                      | .44        |
| 4.7.1                    | Source, Acquisition, Data Abstraction                                                          | .44        |
| 4.7.2                    | Quality Control                                                                                | .45        |
| 4.7.3                    | Data Storage                                                                                   | .45        |
| 5 Real V                 | Vorld Data Shared Protocol For the Pilot Data                                                  | .46        |
| ANNEX I :                | Data Abstraction Categories                                                                    | .48        |
| Section :                | 1: H&P-based RWD categories                                                                    | .48        |
| Section 2                | 2 : STS (Severity, Temporal, Spatial) categories                                               | .49        |
| Section 3                | 3: Complex chronic condition-specific categories (CoBraD-specific categories)                  | .49        |
| Section 4                | 4: Data Quality and Acquisition categories                                                     | .51        |
| ANNEX II :<br>neuropsycł | Acquisition instruments for collecting clinical symptoms, history, physical exam a nology data | and<br>.52 |
| ANNEX III :              | Examples of qualitative observations in NPT                                                    | .54        |
| ANNEX IV :               | Sampling Procedures flow chart                                                                 | .55        |
| ANNEX V :                | Proteomic variables that can be measured from biological samples                               | .56        |
| ANNEX VI :               | Neurophysiology Variables                                                                      | .91        |
| ANNEX VII :              | Medical device RWD                                                                             | .94        |
| ANNEX VIII               | : Wearable Cloud-based data extraction                                                         | .95        |





### LIST OF FIGURES

| Figure 1: MES-CoBraD simplified scientific roadmap                                                  | .14 |
|-----------------------------------------------------------------------------------------------------|-----|
| Figure 2 MES-CoBraD Multidisciplinary Multisource RWD Assessment Protocol.                          | .21 |
| Figure 3 Proper annotation of bio-sample.                                                           | .36 |
| Figure 4 Overview of hair sample collection and analysis Error! Bookmark not defined.               |     |
| Figure 5 MES-CoBraD Multidisciplinary Multisource RWD Assessment Protocol. Error! Bookmark defined. | not |
| Figure 6 Sampling Procedure Flow chart. Error! Bookmark not defined.                                |     |
| Figure 7 Hemolytic indexes Hemolytic                                                                | .55 |
| Figure 8 EEG and PSG Electrode PlacementError! Bookmark not defined.                                |     |

Figure 9: Fitbit User AccessError! Bookmark not defined.95





#### LIST OF TABLES

Table 1: Prevalence of primary CoBraD and comorbid CoBraD in the general population **Error! Bookmark** not defined.

Table 2 Two valid representations of a sample time-series. Error! Bookmark not defined.

Table 3 Valid and invalid use of column separator checkError! Bookmark not defined.

Table 4 Valid and valid use of quotation checkError! Bookmark not defined.

Table 5 Valid and invalid csv name for single variable data. Error! Bookmark not defined.

Table 6 Valid and invalid methods of noting date and time in single variable data Error! Bookmark not defined.

Table 7 Valid and Invalid methods of value denotation in single variable data Error! Bookmark not defined.

Table 8 Valid and invalid use of excel cell styles. Error! Bookmark not defined.

Table 9 Valid and invalid csv name for multiple variable data. Error! Bookmark not defined.

Table 10 Valid and invalid denotation of multiple variable data. Error! Bookmark not defined.

Table 11 Valid and invalid filenames for images Error! Bookmark not defined.25





## LIST OF ABBREVIATIONS

| Abbreviation / Acronym | Description                                                |
|------------------------|------------------------------------------------------------|
| μΙ                     | Microliter                                                 |
| AB                     | Advisory Board                                             |
| API                    | Application programming interface                          |
| BOLD                   | Blood Oxygen Level Dependent                               |
| CC                     | Chief Complaint                                            |
| CCC                    | Chronic Complex Condition                                  |
| CEL                    | CyberEthics Lab                                            |
| CERAD                  | Consortium to Establish a Registry for Alzheimer's Disease |
| cm                     | Centimeter                                                 |
| CoBraD                 | Complex Brain Disorders                                    |
| CSD                    | Complex Structure Real World Data                          |
| CSH                    | Clinical Symptoms and History                              |
| СТ                     | Computer Tomography                                        |
| DtP                    | Direct to Platform                                         |
| Dx.y                   | Deliverable number y belonging to WP x                     |
| EB                     | Ethics Board                                               |
| EC                     | European Commission                                        |
| ECLIA                  | Electro Chemi Luminescence Immuno Assay                    |
| EDF                    | European Data format                                       |
| EDTA                   | Ethylenediaminetetraacetic acid                            |
| EEG                    | Electroencephalography                                     |
| EMR                    | Electronic Medical Records                                 |
| EU-GDRP                | European General Data Protection Regulation                |
| FH                     | Family History                                             |
| FLAIR                  | FLuid Attenuated Inversion Recovery                        |
| FS                     | Functional status                                          |
| HPA                    | Hypothalamus-Pituitary-Adrenal                             |
| JPEG                   | Joint Photographic Expert Group                            |
| JPG                    | See jpeg                                                   |
| JSON                   | Java Script Object Notation                                |
| LP                     | Lumbar puncture                                            |
| Lx- Ly                 | Space between Lumbar vertebrae x and lumber vertebrae y    |
| mg                     | Milligrams                                                 |
| MoCA                   | Montreal Cognitive Assessment                              |
| ml                     | Milliliter                                                 |
| MRI                    | Magnetic Resonance Imaging                                 |
| MVD                    | Multiple Variable Real World Data                          |
| Mx                     | Month x                                                    |





| NCD   | Neurocognitive Disorders               |  |  |
|-------|----------------------------------------|--|--|
| NPT   | Neuropsychological tests               |  |  |
| PBS   | Phosphate Buffered Saline              |  |  |
| PCA   | Principial Component Analysis          |  |  |
| PET   | Positron Emission Tomography           |  |  |
| PM    | Project Manual                         |  |  |
| PMH   | Past Medical and Developmental History |  |  |
| PSG   | Polysomnography                        |  |  |
| PST   | Plasma Separator Tube                  |  |  |
| PtP   | Paper to Platform                      |  |  |
| QC    | Quality Control                        |  |  |
| RBD   | Rapid Eye Movement Behaviour Disorder  |  |  |
| REM   | Rapid Eye Movement                     |  |  |
| ROI   | Region of Interest                     |  |  |
| ROS   | Review of Systems                      |  |  |
| RPM   | Revolutions per minute                 |  |  |
| RWD   | Real World Data                        |  |  |
| SH    | Social History                         |  |  |
| SIMOA | Single molecule array                  |  |  |
| SST   | Serum Separator Tube                   |  |  |
| SVD   | Single Variable Real World Data        |  |  |
| ТоС   | Table of Contents                      |  |  |
| UI    | User Interface                         |  |  |
| UV    | Ultraviolet                            |  |  |
| VOSP  | Visual Object Space and Perception     |  |  |
| WP    | Work Package                           |  |  |
| XML   | extensible markup language             |  |  |



## **Executive Summary**

The Multidisciplinary Expert System for the Assessment & Management of Complex Brain Disorders (MES-CoBraD) is an interdisciplinary project combining Real-World Data (RWD) from multiple sources through comprehensive, cost-efficient, and fast protocols towards improving diagnostic accuracy and therapeutic outcomes in people with CoBraD, as represented in Neurocognitive (e.g., Alzheimer's dementia), Sleep, and Seizure (i.e., Epilepsy) disorders. The principles followed within the MES-CoBraD Project can be generalized for the assessment and management of other Chronic Complex Conditions (CCC) by exploiting advanced analytics modules and RWD acquisition protocols.

#### The MES-CoBraD project identifies seven categories of RWD at the time of this version of the manual:

- 1. Expert evidence-based questionnaires and structured interview question-trees that inform on people's current clinical symptoms, and medical and social history and phenotypes, derived from information given by patients and their caregivers directly or indirectly
- 2. Neurological examination and Neuropsychological testing as derived from expert clinicianscientists
- 3. Neuroimaging, with special focus on Brain Magnetic Resonance Imaging (MRI)
- 4. Biological samples, with emphasis on deriving cerebrospinal fluid and blood biomarkers
- 5. Neurophysiological data, especially non-invasive techniques
- 6. Medical device RWD, and
- 7. Consumer technology RWD

The current Project Manual (PM) aims to be a continuously updated reference on (a) metrics that are assessed in people with CoBraD belonging to the above categories of RWD, (b) their systematic and standardised quality requirements, and (c) the agreed upon multisource RWD acquisition protocols. The PM reflects the foundation of the project's scientific roadmap by contributing directly to work packages relating to pilot data collection, CoBraD phenotyping and outcome assessment, within the framework of the integrated clinical-research MES-CoBraD Platform. On this basis, <u>it is a reference for users involved in the MES-CoBraD Project.</u>

The PM presents CoBraD, RWD, and their interrelation within the scope of the project by providing a brief overview of CoBraD and their co-morbidity as a justification for the measurement of RWD, while also providing a precise definition of RWD. The PM describes the abstracted methodology for acquisition of each RWD category used by clinical-research partner organisations, and provides information regarding their optimal sources, quality metrics, and storage parameters. In line with the overarching dynamic and modular approach that defines the MES-CoBraD Project, the specific variables and their parameters for each RWD are presented within the respective annexes of the PM, are regularly updated based on internal partner feedback and project results, as well as review of evolving CoBraD literature. The manual concludes by integrating the various sources and types of RWD into a harmonised and cross-site MES-CoBraD Protocol of RWD acquisition that will serve during the Project's lifetime and, ideally, beyond.

# Note: As a user of this manual, anticipate that the PM will be annually updated, especially with regards to its annexes, and verify that the version in your hands is the latest one as referred to in the Project's intranet.

The PM in your hands is the updated second version, reflecting general processes proposed to the European Union that is funding the Project. additional versions are planned to be delivered in 12 months, integrating feedback from stakeholders across sites, as well as cross-site test run results on the current protocol that will inform of effective and useful practices to be pursued onwards.





#### 1 INTRODUCTION

Complex brain disorders (CoBraD), as represented in Neurocognitive (e.g., Alzheimer's dementia), Sleep, and Seizure (i.e., Epilepsy) disorders, are chronic conditions that have high prevalence individually and in combination, leading to disability that interferes with activities of daily living and worsens quality of life, increasing mortality risk, and contributing to the socioeconomic burden of patients, their families, and their communities at large. CoBraD share elements of complex pathophysiological processes that lead to a breakdown of brain rhythms and function, explaining their high comorbidity, and require lifelong medical management that is usually suboptimal without available etiologic therapies. The Multidisciplinary Expert System for the Assessment & Management of Complex Brain Disorders (MES-CoBraD) is an interdisciplinary project combining Real-World Data (RWD) from multiple sources through comprehensive, cost-efficient, and fast protocols towards improving diagnostic accuracy and therapeutic outcomes in people with CoBraD and their interdependence. The primary focus of the project is improving the quality of life of patients, their caregivers, and the society at large.

Despite the efforts across the world to effectively improve the assessment and management of CoBraD, several key clinical, research and technological challenges remain that the MES-CoBraD Project aims to address. Most clinical research studies, either observational or clinical trials, in CoBraD are based on concrete sterile conceptual frameworks that are not comprehensive in the assessment of the multidimensional biological and social features of people to determine outcomes, or that fail to assess therapeutic effects in real-world settings. The end result is partial understanding of the pathophysiology of diseases and the failure of several costly clinical trials in CoBraD. Most research is performed in single academic centers, limiting the integration and exploitation of research expertise and resources from across the world. The MES-CoBraD Consortium of expert clinician-scientists, engineers, computer scientists, social health scientists, lawyers, and marketing and communication specialists from across Europe and Israel was created, among many objectives, to provide a novel and impactful unified approach and applicable solutions in improving the comprehensive evaluation and management of CoBraD.

#### 1.1 AIM AND OUTLINE OF THE PROJECT MANUAL

The current Project Manual (PM) aims to be a continuously updated reference on (a) metrics that are assessed in people with CoBraD belonging to the above categories of RWD, (b) their systematic and standardised quality requirements, and (c) the agreed upon multisource RWD acquisition protocols.

The MES-CoBraD project identifies seven categories of RWD: 1) expert evidence-based questionnaires and structured interview question-trees that inform on people's current clinical symptoms, and medical and social history and phenotypes, 2) neurological examination and neuropsychological testing as derived from expert clinician-scientists, 3) neuroimaging, 4) biosamples from sources such as hair, cerebrospinal fluid, and blood, 5) neurophysiology data, 6) medical device RWD, and 7) consumer technology RWD.

The PM presents CoBraD, RWD, and their interrelation within the scope of the project by providing a brief overview of CoBraD and their co-morbidity as a justification for the measurement of RWD, while also providing a precise definition of RWD. The PM describes the abstracted methodology for acquisition of each RWD category used by clinical-research partner organisations, and provides information regarding their optimal sources, quality metrics, and storage parameters. In line with the overarching dynamic and modular approach that defines the MES-CoBraD Project, the specific variables and their parameters for each RWD are presented within the respective Annexes of the PM, are regularly updated based on internal partner feedback and project results, as well as review of evolving CoBraD literature. The manual concludes by integrating the various sources and types of RWD into a harmonised and cross-site MES-CoBraD Protocol of RWD acquisition that will serve during the Project's lifetime and, ideally, beyond.



#### 1.2 Associated Tasks and Work Packages

The current project manual is a product (deliverable) of the MES-CoBraD Project *Landscape Analysis and Methodology Work Package* (WP3). The overall objective of WP3 is defining RWD acquisition and their pre-processing by leveraging the combined expertise and needs of CoBraD stakeholders. The tasks and deliverables of WP3 form the foundation for the project's scientific roadmap (figure 1) by contributing directly or indirectly to work packages 4, 5, 6, 7, 8, and 9.

Note: For a complete view of WP3 contribution to the Project and other WP, please review additional deliverables beyond the PM (D3.1 and D3.2).



Figure 1: MES-CoBraD simplified scientific roadmap.

#### 1.2.1 TASKS CONTRIBUTING TO THE DEVELOPMENT OF THE CURRENT VERSION OF THE PROJECT MANUAL

## 1.2.1.1 Harmonisation and interoperability protocol of CoBraD RWD acquisition and sharing (Task 3.2)

Through this task, participating organisations define essential information to be extracted from RWD, their parameters, and the integrated protocol for acquiring RWD across sites. Key harmonisation considerations include the specific CoBraD population characteristics and RWD to be acquired during the pilot use cases. To achieve harmonisation, the task identifies necessary hardware, software, and consumables required to be available for or be purchased by pilot partners, as well as localise clinical assessments to regional populations.

#### 1.2.2 WORK PACKAGES THAT DIRECTLY UTILISE THE PROJECT'S MANUAL

#### 1.2.2.1 Pilot RWD acquisition in CoBraD (Work Package 8)

Through WP8, pilot RWD will be acquired in accordance to the protocol of the PM. RWD of participants with CoBraD will be securely stored post-anonymisation in a central database developed through WP5 for secure sharing between the consortium partners and, eventually, the public.





#### 1.2.2.2 CoBraD phenotyping and outcome assessment (Work Package 4)

This WP defines the methodological process for analysing RWD acquired during pilot data acquisition (WP8) to address the challenges faced in CoBraD, and sharing the results within the consortium and through scientific publications prior to wider dissemination. Any planned analyses in WP4 depends on the PM, which defines how RWD are structured, harmonised, and collected through a predefined protocol.

#### 1.2.2.3 Integrated Clinical Research platform (Work Package 7)

WP7 will allow feature visualisation, maps, class activation mapping, and sensitivity analyses, where certain parts of the image are hidden to the effect on prediction. Going one step forward, graphical tools will be employed to visualise in an efficient manner all the significant interrelationships between hand-crafted features and deep learning ones that are developed through WP6, while leveraging the backend infrastructure developed in WP5. The main aim of WP7 within the scope of WP3 is to prototype the MES-CoBraD Platform through technological components that support Data Collection according to the MES-CoBraD Protocol.

#### 1.2.2.4 Common multi source research data lake & resource sharing (Work Package 5)

The aim of the WP is to provide the platform (WP7) with a data source layer taking care of three specific aspects: the acquisition from heterogeneous data sources, the data anonymisation and the sharing of data and their relative analysis algorithms. In order for the WP5 to acquire data from multiple source it requires the data structure conceptualisation provided by WP3, specifically as noted in the current manual.

#### 1.2.2.5 Advanced analytics (Work Package 6)

This WP provides tools needed to accomplish scientific research in the form of modules. Artificial Intelligence (AI) and machine learning tasks will develop the AI knowledge-based system, enabling machine learning capabilities and emulation of human cognitive functions. The structure, context, and interrelatedness of RWD as explicit in the manual WP3, will be central to their analysis.





### 2 TYPES OF COMPLEX BRAIN DISORDERS, THEIR CLINICAL EVALUATION, DISABILITY AND SOCIETAL IMPACT

#### 2.1 MAJOR NEUROCOGNITIVE DISORDERS

Major neurocognitive disorders (NCD), historically called dementia, are a set of syndromes in which people have cognitive impairment (i.e., deficits in memory, language, visuospatial skills or executive function) that interferes with their ability in pursuing daily activities compared to the past. If symptoms are milder and cognitive impairment does not interfere with daily activities, they are called minor neurocognitive disorders (minor NCD) or mild cognitive impairment. The different NCD syndromes are defined according to their specific cognitive and behavioural symptoms and their severity. Each dementia syndrome is associated with one or more underlying causes with neurodegenerative brain diseases, such as Alzheimer's disease (AD), and vascular brain diseases being the most common.

Characteristic features of neurodegenerative brain diseases are the abnormal clustering of brain cell proteins, called a proteinopathy, and brain cell death. Both features tend to precede NCD symptoms by more than a decade. A specific neuropathological diagnosis is dependent on the proteinopathy that is observed under the microscope, such as amyloid and tau in AD,  $\alpha$ -synuclein in Lewy Body Disease, and tau and TDP-43 in Frontotemporal Lobar Degeneration. Proteinopathy is only one aspect of neurodegeneration, and several processes, including immune, inflammatory, vascular, metabolic, and genetic, contribute to gradual functional and structural changes.

Vascular brain disease, on the other hand, refers to brain damage due to poor blood perfusion as a result of occluded vessels. This occlusion can be caused by a clot, as in atrial fibrillation or carotid artery disease, or direct damage to the brain vessels from vascular risk factors (e.g., hypertension, hyperlipidemia, diabetes, smoking, sleep apnea). When there is damage to critical brain areas, NCD develop.

Diagnosis of NCD by professional guidelines requires, in addition to a clinical evaluation by a trained specialist, neuropsychological evaluation through paper and pencil or computer-based cognitive tests, brain imaging (preferably magnetic resonance imaging [MRI]), blood and/or cerebrospinal fluid testing, explaining the inclusion of the respective types of RWD in the MES-CoBraD Protocol. NCD have high morbidity and mortality, with people eventually requiring daily assistance that increases the direct and indirect cost of care. The high disability and prevalence of 5-8% for people over 60 in NCD, especially for low socioeconomic status communities, places an immense societal burden as the world population ages and resources for optimal evaluation are scarce. The exact global financial cost for dementia care is unknown, with direct costs exceeding 355 billion dollars in the United States, and indirect costs to unpaid family caregivers providing 83% of care estimated at 256.7 billion dollars.

#### 2.2 SLEEP DISORDERS

Primary sleep and circadian sleep rhythm disorders, collectively referred here as sleep disorders, are a set of syndromes that interfere with people's sleep quality or quantity (primary sleep disorders), or timing (circadian sleep rhythm disorders), and lead to worse quality of life.

Sleep disorders interfering with sleep quality are sleep-related breathing disorders, such as sleep apnea, where people do not breathe effectively during sleep, parasomnias, such as REM sleep behaviour disorder, in which abnormal behaviours surface during different sleep stages, and sleep-related movement disorders, in which people have excessive movements around or during sleep periods. Sleep disorders of poor sleep quantity are insomnias, in which people are unable to fall asleep, maintain sleep continuity, or wake up earlier than desired despite given the opportunity to sleep, and central hypersomnia, such as narcolepsy, in which people have excessive somnolence that is not caused by poor



#### sleep quality and who tend to sleep if given the opportunity.

Sleep disorders interfering with sleep timing are circadian sleep rhythm disorders, in which people may have good sleep quality and quantity, but the timing of their sleep periods interferes with social demands, such as sleeping too early in the evening (advanced sleep phase disorder) or too late (delayed sleep phase disorder), or having an inconsistent or irregular sleep-wake schedule across the 24-hour cycle.

The pathophysiology of sleep disorders varies depending on the syndrome at hand. In most cases, central nervous system dysfunction is observed in syndromes of hypersomnia, irregular sleep-wake rhythm disorder, certain insomnias associated with neurological diseases, parasomnias, and even sleep-disordered breathing. Mental and physiological hyperarousal is a key mechanism of insomnia, justifying cognitive behavioural therapy for insomnia as a first line treatment before medications. Finally, aging, narrow upper airway anatomy, and male sex are the main risk factors associated with obstructive sleep apnea, in which the upper airway becomes narrower or collapses during sleep, leading to hypopneas or apneas that lead to arousals or hypoxias, thus interfering with sleep quality.

A comprehensive sleep evaluation may require, in addition to a clinical evaluation by a specialist, a sleep study at night (polysomnography [PSG]) or in the day (multiple sleep latency test or maintenance of wakefulness test), during which brain activity, respiratory function, muscle movement, heart rate, and even video monitoring are pursued in diagnosing sleep-related breathing disorders, parasomnias and hypersomnia. Activity measurements over several days with a special wrist accelerometer, called actigraphy, can help establish insomnia or circadian sleep rhythm disorders. Specific bio sample tests help in diagnosing certain syndromes, such as narcolepsy. The above explain the choice of the respective RWD as integral to the MES-CoBraD Protocol.

Sleep disorders are extremely common where, beyond typically causing drowsiness, impaired attention, and poor mood, they further increase occupational hazard, including worse work performance and increased risk for motor vehicle accidents. Moreover, sleep disorders pose an increased risk for medical comorbidities such as: diabetes, obesity, cardiovascular disorders, psychiatric conditions, neurocognitive disorders, and earlier all-cause mortality. Despite a combined prevalence of one in four to one in seven people having a sleep disorder at any given time, few receive care or even know of having a sleep disorder. Similar to other CoBraD, sleep disorders are more common in low socioeconomic strata, where there is poor access to specialists and to effective therapies. The above explain the high cost of care for sleep disorders reaching close to 1.55% of the gross domestic product of high-income countries.

#### 2.3 SEIZURES AND EPILEPSY

Epilepsy or seizure disorders are a group of syndromes that are defined by an enduring predisposition for recurrent unprovoked epileptic seizures, defined as abnormal hypersynchronous and sustained neuronal excitability. Epilepsy leads to adverse neurobiological, cognitive, psychological, and social effects. Aberrant neuronal firing leads to temporary abnormal brain function which can present as hyper motor convulsion, subjective abnormal perceptions (e.g., gustatory, olfactory), cognitive or behavioural impairment, or decreased level of alertness and interaction with the environment. The pathophysiology of seizure disorders is varied, including malformations during brain development, neurodegeneration, trauma, brain ischemia, tumors, infections and metabolic derangements. In half of people the cause of epilepsy is unknown, explaining seizure syndromes categorised as structural, genetic, infectious, metabolic, immune and unknown.

A comprehensive seizure disorder evaluation requires, a clinical evaluation by a specialist and electroencephalograpy (EEG), during which electrical brain activity is recorded with or without video monitoring to establish the presumed abnormal neuronal excitability. Blood or cerebrospinal fluid tests help in diagnosing certain genetic, autoimmune or metabolic syndromes. Brain imaging and neuropsychological testing are required for almost all patients, to establish the neurobiological and





cognitive-behavioural consequences of seizure disorders. The above justify the inclusion of the respective RWD types in the MES-CoBraD harmonised Protocol.

The social burden of seizure disorders is a combination of its high prevalence and morbidity, with an estimated 50 million people worldwide having epilepsy at any given point and an estimated five million people being diagnosed with epilepsy annually. The social and economic implications of seizure disorders are further complicated by the associated social stigma. The cognitive-behavioural deficits associated with seizure disorders further interfere with a person's work productivity and daily quality of life, whereas the complex morbidity with frequent hospitalisations and visits to the emergency department places a disproportionate burden to healthcare systems. The annual direct cost for epilepsy in the United States is approximately \$8,412 to \$11,354 per patient and indirect costs range between 12 – 85% of direct costs. The Global Burden of Disease study 2015 ranks epilepsy as the 5th most burdensome neurologic disorder worldwide in terms of disability-adjusted life years.

#### 2.4 CoBrad Comorbidity

In the framework of CoBraD, research results by health participating organisations (POs) in this proposal and other groups prove the high comorbidity and overlapping complex pathophysiology of NCD, sleep, and seizure disorders. As shown in Table 1, any of the three CoBraD may precede or follow another CoBraD, and by an average of four years in many cases, suggesting common pathophysiological pathways between CoBraD, whereas their comorbidity accelerates CoBraD disability and worsens prognosis.

|           |                                            |                             | Primary CoBraD                             |                                |
|-----------|--------------------------------------------|-----------------------------|--------------------------------------------|--------------------------------|
|           |                                            | Neurocognitive<br>Disorders | Sleep and<br>circadian rhythm<br>disorders | Epilepsy and seizure disorders |
| Secondary | Neurocognitive<br>Disorders                | 2-7%                        | 27-38%                                     | 16-40%                         |
| CoBraD    | Sleep and<br>circadian rhythm<br>disorders | 70-80%                      | 14-25%                                     | 25-75%                         |
|           | Epilepsy and<br>seizure disorders          | 12-40%                      | Unknown                                    | 1-3%                           |

Table 1: Prevalence of individual CoBraD in the general population (diagonal cells) and the prevalence of a secondary CoBraD when a primary CoBraD is previously diagnosed.

A large body of research studies pursuing CoBraD deep-phenotyping and endo-phenotyping (i.e., the precise and comprehensive analysis of a syndrome's symptoms and its underlying brain processes), verify common pathological processes between CoBraD syndromes. CoBraD deep-phenotyping studies using precision medicine protocols in clinical populations revealed the actual comorbidity of CoBraD can be three times higher than suggested in epidemiological studies. Thus, the presence of a primary CoBraD is highly predictive of eventual emergence of a second CoBraD over time, as in the case of Rapid Eye Movement Behaviour Disorder (RBD), whose presence precedes cognitive-motor symptoms of synucleinopathies (e.g., Lewy Body Disease) by an average of eight years.

#### 2.5 SEX AND GENDER CONSIDERATIONS

The MES-CoBraD Project takes special attention to understanding sex and gender factors in CoBraD, as well as in the conduction of research within the Consortium. In the project, the role of sex and gender is taken into account through "intersectionality," so that appraisals can be advanced on multi characteristics of social identity beyond sex and gender. The theory of intersectionality argues that various forms of discrimination centred on race, gender, class, disability, sexuality, and other forms of identity, do not work independently but interact to produce particularized forms of social oppression. Those in turn may increase risky behaviours that increase the risk for CoBraD, alter CoBraD clinical manifestation or





impact CoBraD optimal management. For these reasons the MES-CoBraD project seeks to identify and document social health determinants beyond sex and gender. Analysis of these variables in the context of brain disease will help separate social constructs from social determinants, reduce stigma and inform public health.

In order to perform this analysis, we can envisage the following RWD and their sources.

RWD obtained through pre-existing databases, or acquired through questionnaires and question-trees addressed to people with CoBraD (see Chapter 4.1 below). In addition to RWD from common categories of (a) men and women, (b) education, and (c) socioeconomic status will be acquired, further detailed questions will be available on delving into sex and gender analysis

Consortium-targeted longitudinal surveys on sex and gender metrics within and between teams.

#### 2.6 ETHICAL CONSIDERATIONS

The Consortium is fully committed to adhere to the highest ethical, fundamental rights and legal standards, as recognised at the European Union and International levels, including the Charter of Fundamental Rights of the EU (2000/c 364/01), the Clinical trials Regulation (EU 536/2014), the General Data Protection Regulation (GDPR) (Regulation (EU 2016/679) and The European Code of Conduct for Research Integrity (ALLEA, 2017 revised edition), and the OECD Council Recommendations on Health Data Governance. Moreover, the project will be carried out in accordance with the Declaration of Helsinki and Taipei as well as the Convention on the Protection of Human Rights and Human Dignity in Biology and Medicine.

Any and all research activities will be conducted based on the following core medical ethics principles:

- Autonomy: one should respect the right of individuals to make their own decisions
- > Non-maleficence: one should avoid causing harm
- > Beneficence: one should take positive steps to help others
- > Justice: benefits and risks should be fairly balanced.

Clinicians, researchers, and any member of the Consortium involved in the project are subject to these standards and are required to be compliant with the following principles:

- > **Reliability** in ensuring the quality of clinical practice and research, reflected in the design, the methodology, the analysis and the use of resources
- > **Honesty** in developing, undertaking, reviewing, reporting and communicating clinical and research information in a transparent, fair, full, and unbiased way
- > **Respect** for colleagues, clinical and research participants, society, ecosystems, cultural heritage, and the environment
- > Accountability for the research from idea to publication, for its management and organisation, for training, supervision and mentoring, and for its wider impact





#### 3 REAL WORLD DATA STRUCTURE

The focus of this chapter will be on the Real World Data (RWD) coming from the clinical facilities. The aim here is to provide terminology and technical considerations that are relevant for the MES-CoBraD project.

The RWD that adhere to the guidelines described hereafter can be considered "*MES-CoBraD Ready*" since they will be easily managed and elaborated in automatic way.

As Chapter 4 of this document will show, during the execution of the MES-CoBraD project several types of RWD will be collected and managed.

Each of these RWD types has its own optimal representation format. For example, a patient's blood pressure over time can be well represented through a series of data points indexed in time order; this kind of representation, named a time series, is optimal also for several other types of RWD, such as EEG or PSG.

Most times, however, the focus will be on the evolution over time of more than a single value; for example, in the case of MRI RWD, the interest is not on following a single value, but on observing a multidimensional construct (i.e., the entire MRI) that represents the current status of the patient through multiple interrelated values at a given time. In many cases, information will be best represented through object-like RWD.

From a technological perspective, this means that the MES-CoBraD project must will be able to deal with a plethora of different input types. Moreover, each RWD type can be serialised in several valid data formats: e.g., a time series can be serialised through a simple CSV file or through a JSON Array.

The following table shows two possible (and perfectly valid) representations of a generic time series.

| CSV                  | JSON                      |
|----------------------|---------------------------|
| "DateTime", "Value"  | [{                        |
| "01/04/2021", "14.5" | "DateTime": "01/04/2021", |
| "02/04/2021", "18.5" | "Value": "14.5"           |
| "03/04/2021", "20.3" | },{                       |
|                      | "DateTime": "02/04/2021", |
|                      | "Value": "18.5"           |
|                      | },{                       |
|                      | "DateTime": "03/04/2021", |
|                      | "Value": "20.3"           |
|                      | },]                       |

Table 2: Two valid representations of a sample time-series.

The goal of this section is to define a general framework for the RWD serialisation that can act as a guideline for the RWD collector.





#### The expected RWD types to collect is the one depicted in the following image



Figure 2: MES-CoBraD Multidisciplinary Multisource RWD Assessment Protocol. The above figure indicates the planned types of RWD towards acquisition.

To facilitate RWD acquisition towards usable information, we reduced RWD into categories. Accordingly, in addition to their semantic information, RWD can be categorised in the following three macro-areas:

- 1. Single Variable RWD (SVD e.g., single value data, etc.)
- 2. Multiple Variable RWD (MVD e.g., questionnaires, etc.)
- 3. Complex Structured RWD (CSD e.g., images, free text, etc.)

The following sections address each RWD type, presenting how the proposed framework intends to address category specific features.

Each variable is characterised by a set of parameters; such set is deeply described in the annex.

#### 3.1 SINGLE VARIABLE RWD – SVD

Single Variable RWD (SVD) are data that contain just one semantic level.

The evolution over time of a SVD can be managed like a time series. The MES-CoBraD Project is able to collect those data according to the following prioritised channels and data formats:

- 1. Direct connection to remote portals' Application Programming Interface (APIs)
- 2. Direct connection to structured databases
- 3. Collection of the data in CSV format
- 4. Direct connection to sensors and devices

The preferred way of collecting the SVD is the direct **connection to remote portals' APIs**. In this case, the only constraint is that the response of the APIs must be structured in some way and available in a non-proprietary open format. Valid formats are JSON, XML and CSV.

The second way of collecting SVDs is the direct **connection to databases** containing the raw data in a structured way. In this case, no specific constraint on data is necessary since the database itself will ensure that the data have a machine-readable structure.

In case, for whichever reason, the first two strategies are not suitable, the third supported approach is the periodic collection of the data in **CSV format**. The validation of the file will be done at two different syntax levels:





- 1. the first validation level will be done against the guideline of the official RFC4180 specification to check that the CSV is generally well-structured;
- 2. once the validation of the CSV is ensured, the following additional validation will be applied:
  - a. column separator check: the column separator must be the comma sign (,) and it must be consistent across the entire file

Table 3: Valid and invalid use of column separator check

| Valid Entry Invalid Entries                                                                   |                                                                      |
|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| "1997-07-16T19:20:30+01:00","24" "1997-07-16T<br>"1997-07-16T<br>"1997-07-16T<br>"1997-07-16T | 19:20:30+01:00";"24"<br>19:20:30+01:00":"24"<br>19:20:30+01:00" "24" |

quotation check: the CSV values must be quoted through double quotes (")

Table 4: Valid and valid use of quotation check

| Valid Entry                      | Invalid Entries                  |
|----------------------------------|----------------------------------|
| "1997-07-16T19:20:30+01:00","24" | '1997-07-16T19:20:30+01:00','24' |
|                                  | 1997-07-16T19:20:30+01:00.24     |

schema check: the overall CSV file must have one field named datetime – containing the value sample date and time – and one field named value – containing the variable value. No line containing less or more columns must be present within the file

Table 5: Valid and invalid csv name for single variable data.

| Invalid Entries                     |
|-------------------------------------|
| "datetime","value"                  |
| "1997-07-16T19:20:30+01:00"         |
| "1997-07-16T19:20:30+01:00","24","" |
| "time","val"                        |
| "1997-07-16T19:20:30+01:00","24"    |
|                                     |

## datetime column check: the dates must be compliant with the YYYY-MM-DDThh:mm:ssTZD pattern of the ISO8601 format .

Table 6: Valid and invalid methods of noting date and time in single variable data

| Valid Entry                 | Invalid Entries             |
|-----------------------------|-----------------------------|
| "1997-07-16T19:20:30+01:00" | "1997-07-16T19:20:30"       |
| "1997-07-16T00:00:00+00:00" | "1997-07-16T19:20"          |
|                             | "1997-07-16"                |
|                             | "1997/07/16T19:20:30+01:00" |
|                             | "16/07/1997T19:20:30+01:00" |

value column check: the value type should be consistent across the entire file. The first available value determines the type of the expected data in the rest of the file. Values like "NULL", "Unknown", "N/A" or similar will be treated as strings, so in case of unavailable data the value field can be left blank.

Table 7: Valid and Invalid methods of value denotation in single variable data

| Valid Data                              | Invalid Data                                 |    |
|-----------------------------------------|----------------------------------------------|----|
| "datetime","value"                      | "datetime","value"                           |    |
| "1997-07-16T19:20:30+01:00","24"        | "1997-07-16T19:20:30+01:00","24"             |    |
| "1997-07-16T00:00:00+00:00","24"        | "1997-07-16T00:00:00+00:00","NO"             |    |
| "datetime","value"                      | "datetime","value"                           |    |
| "1997-07-16T19:20:30+01:00","YES"       | "1997-07-16T19:20:30+01:00","24"             |    |
| "1997-07-16T00:00:00+00:00", "NO"       | "1997-07-16T00:00:00+00:00", "Unavailable"   |    |
| The MES-CoBraD project has received fur | nding from the European Union's Horizon 2020 | 00 |

Research and Innovation Programme under grant agreement No 965422



"datetime","value" "1997-07-16T19:20:30+01:00","24" "1997-07-16T00:00:00+00:00", "datetime","value" "1997-07-16T19:20:30+01:00","24" "1997-07-16T00:00:00+00:00",""

The last option to enter data in the MES-CoBraD Platform is through **direct connection to sensors and devices** that collect data. In this case, no specific constraint on data is necessary, since the sensors and devices themselves will ensure that the data have a machine-readable structure.

#### 3.2 MULTIPLE VARIABLES RWD – MVD

Multiple Variable RWD (MVD) are those data that contain more than one semantic level. According to this definition, the questionnaires submitted to patients can be considered a particular type of MVD.

The evolution over time of a MVD can be managed as a multidimensional time series. The MES-CoBraD Project is able to collect such data according to the following prioritised channels and data formats:

- 1. Excel file (only valid for Questionnaires)
- 2. Direct connection to remote portals' APIs
- 3. Direct connection to structured databases
- 4. Collection of data in CSV format
- 5. Direct connection to sensors and devices

In the particular case of Questionnaires, the accepted data format is a simple Excel file. Each Excel file should adhere to the following guidelines:

> Cell styling is generally accepted, but the styling must not be used to carry any semantic information.

| Table 8: Valid and invalid use of excel | cell styles | <b>.</b> |
|-----------------------------------------|-------------|----------|
|-----------------------------------------|-------------|----------|

| Valid Example                                                                                                                                  | Invalid Example                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| Responses like "YES" or "NO" where the<br>cells are styled in green or red according to<br>the text value (just for visualisation<br>purposes) | A red empty cell means "NO", a green empty cell means "YES". |

- > No Excel proprietary functionalities must be enabled in the file. Formulas, filters and tables are not allowed.
- > In case of multiple sheets in a single file, all sheets should contain data for entry into the Platform.
- Each Questionnaire type must have a reference documentation uploaded in the MES-CoBraD Project Shared Document Library that is intended to present the structure of the excel file itself.

All the MVDs, other than questionnaires, adhere to the same collecting strategies as SVDs. The preferred strategy is the direct **connection to remote portals' APIs**; the only constraint being that the response of the APIs is structured in some way and available in a non-proprietary open format. Valid formats are JSON, XML and CSV.

The second way of collecting MVDs is the direct **connection to databases** containing the raw data in a structured way. In this first case, no specific constraint on data is necessary since the database itself will ensure that the data have a machine-readable structure.

In case, for whichever reason, the first two strategies are not suitable, another supported approach is the periodic collection of the data in **CSV format**. The validation of the file will be done at two different syntax

levels:



The first validation level will be done against the guideline of the official RFC4180 to check that the CSV is generally well-structured; once the validation of the CSV is ensured, the following further validation will be applied:

- > column separator check: the column separator must be the comma sign (,) and it must be consistent across the entire file, as in table 9.
- > quotation check: the CSV values must be quoted through double quotes ("), as in table 10.
- > schema check: the overall CSV file must have:
  - $\circ$   $\,$  one datetime column, containing the value sample date and time
  - one column for each supported variable, containing the corresponding value; the column name must be equal to the variable name itself

No line containing a different number of columns must be present within the same file.

Table 9: Valid and invalid csv name for multiple variable data.

| Valid Entries                             | Invalid Entries                                  |
|-------------------------------------------|--------------------------------------------------|
| "datetime", "rem_duration", "sleep_start" | "datetime", "rem_duration", "sleep_start" "1997- |
| "1997-07-16T19:20:30+01:00","4","1997-07- | 07-16T19:20:30+01:00"                            |
| 15T22:18:10+01:00"                        | "1997-07-16T19:20:30+01:00","4"                  |
|                                           |                                                  |

- > datetime column check: the dates must be compliant with the YYYY-MM-DDThh:mm:ssTZD pattern of the ISO8601 format. (see Table 9)
- value columns check: the values of each column should be consistent across the entire file. The first available value determines the type of the expected data in the rest of column. Values like "NULL", "Unknown", "N/A" or similar will be treated as strings, so in case of unavailable data the value field can be left blank

Table 10: Valid and invalid denotation of multiple variable data.

| Valid Data                                                           | Invalid Data                                                 |
|----------------------------------------------------------------------|--------------------------------------------------------------|
| "datetime","rem_duration"                                            | "datetime","rem_duration"<br>"1007 07 16710:20:20:01:00" "8" |
| "1997-07-17T00:00:00+00:00", "7.5"                                   | "1997-07-17T00:00:00+00:00", "7.5h"                          |
| "1997-07-18T00:00:00+00:00",                                         | "1997-07-18T00:00:00+00:00", "180m"                          |
| "datetime","good_sleep_quality"<br>"1997-07-16T00:00:00+00:00","YES" | "datetime","rem_duration"<br>"1997-07-16T19:20:30+01:00","8" |
| "1997-07-16T00:00:00+00:00","NO"                                     | "1997-07-16T00:00:00+00:00"," N/A"                           |

#### 3.3 COMPLEX STRUCTURED RWD – CSD

Complex Structured RWD (CSD) are those data that, differently from SVDs and MVDs, are not easy to serialise in plain formats like CSV or JSON. Some examples of such data are EEG and MRI, but also complex, nested and object-like data structures. The following sub-sections describe the framework guidelines for collecting these types of data.

#### 3.3.1 IMAGES

In order to be collected in the MES-CoBraD platform, the images must adhere to the following rules:



#### be in JPG format;

The MES-CoBraD project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No 965422



> the filename adhere to the following pattern:

<subjectID>\_<dataType>.<extension>

where

- <subjectID> unique anonymised identifier of participant entirely written in lowercase
- o <dataType> is the data type the image represents entirely written in lowercase
- <extension> is the file extension; accepted extensions are .jpg .jpe .jif .jfif .jfi (case insensitive).

Table 11: Valid and invalid filenames for images

| Valid filename         | Invalid filename        |
|------------------------|-------------------------|
| eng2021062301_mri.jpg  | antoninosirchia_MRI.jpg |
| eng2021062301_mri.JPEG | eng2021062301.jpg       |

- > the file metadata Last Modified must be properly filled-in.
- It is worth to mention that, even if the filename contains personal data like name and surname (and other personal data may be contained within the file itself), it's important to consider that the anonymisation framework that will be described in the upcoming deliverable D5.1, will ensure that protection of personal data disclosure will be maximized.

#### 3.3.2 COMPLEX OBJECT-LIKE DATA

The object like data must be formatted either in JSON or XML format.

Due to the unique features of each CSD, it's necessary that a validation schema is agreed for object-like data. Schemas used to validate the incoming data must be:

- in XSD format for XML serialised data
- ) in JSON Schema format for JSON serialised data

Whichever new and unforeseen RWD types and/or further elaboration needs that may arise during the project execution will be managed after specific agreements among WP3 and WP5 partners.

The new specifications will be documented in the D3.2 - Project Manual – CoBraD RWD, Updated MES-CoBraD Protocols and Quality and Quantity (Q&Q) Evaluation – v2.

#### 3.4 DATA ENTRY CONSIDERATIONS FOR RWD ACQUIRED BY A CLNICIAN

#### There are two User-Interface (UI) methods for acquiring RWD:

- 1. Direct-to-Platform (DtP)
- 2. Paper-to-Platform (PtP)

It is well established that there are fewer mistakes and omissions through DtP RWD acquisition, such as limiting answers to acceptable values or mandating answers be completed to proceed. Nonetheless, in many settings this is not feasible, especially when considering vulnerable populations with little electronic education and experience, when resources to electronic acquisition tools (computers, tablets, smartphones etc.) are limited, or, even, when electronic acquisition tools fail (e.g., programs crashing, drained batteries). In such cases, PtP acquisitions are required as alternate or backup methods.

Although either method can bypass the mediation of clinical-research staff during RWD acquisition, in





many cases staff are required to clarify questions, especially as novel protocols are being developed and streamlined. This may be achieved asynchronously, however, after patients and caregivers have provided the respective RWD, and following Protocol guidelines to optimise staff time and cost.

In the case of PtP acquisitions, selection of paper-based questions according to an Expert System (ES) - derived decision tree may not be feasible, in which case instructions in paper-based questions will direct to the next set of questions that should be answered.

Irrespective of PtP or DtP UI methods, MES-CoBraD questions can be structured with internal dependencies that allow selection of subsequent questions based on answers to superordinate questions in a decision tree. The details of these dependencies for each question are documented in the dynamically evolving RWD Annex throughout the project's lifetime, and allow the flexible integration of more complex chronic conditions (CCC) on the MES-CoBraD Platform in the future. See also 4.1.3 below.

Finally, for new and ongoing protocols, most RWD will be accessed directly through the MES-CoBraD Platform according to harmonised protocols, however, historical RWD will be accessed **through existing databases**, which usually have a different structure between organisations (private or public), and require implementing harmonisers developed through the respective engineering packages according to platform interoperability protocols (see WP5). Generally speaking, RWD database extraction has two categories of data for extraction: (1) structured variables in a multidimensional tabular form, and (2) natural language text-derived RWD. The former is the case for most databases that have RWD structured in tabular form, and in which acceptable response parameters and quality of responses may be available as part of the respective database documentation and interoperability protocol. Text-derived RWD do not yet have standard protocols in deriving pertinent clinical information as represented in a clinician's note, yet the MES-CoBraD Advanced Analytics modules (WP6) could be leveraged to extract variables from text and harmonising them according to MES-CoBraD RWD variable features.

For all variables, the following parameters are defined, that can also be used in Platform variable developer tools.

- 1. Name (Cat\_Var\_User\_Input\_version) (required)
  - a. Cat reflects the category of RWD the variable represents (e.g., CSH for Clinical Symptoms and History)
  - b. Var reflects the core information of the variable (e.g., Misplace for misplacing objects)
  - c. User is usually patient, caregiver, or clinician-scientist that provides the information, not the mediator that enters it (e.g., if the question is directed to the patient, it will be Patient, even if the clinician-scientist enters it)
  - d. Input is the method of acquiring the information (Q for question to user, PE for physical exam by clinician-scientist, NPT for neuropsychological testing by neuropsychologist etc.)
  - e. Version is the version of the variable as it may differ in one or more of its following parameters, despite retaining the same core semantic information
- 2. Description (required)
  - a. Free text describing what the variable represents for clinician-scientists to understand what the variable represents
- 3. User\_interface (required for question-trees and questionnaires)
  - a. Text presented to the user in either electronic (DtP) or paper (PtP) format to input the value of the variable
- 4. Type (required)
  - a. Type of data: integer, real, Boolean, text
- 5. Measure (required)
  - a. Continuous, ordinal, categorical
- 6. Max / min (required if numeric or if acceptable\_values not completed)

#### a. Maximum and minimum acceptable value



The MES-CoBraD project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No 965422



- 7. Acceptable\_values (required if max /min not completed)
  - a. Specific acceptable values for variable. Usually for categorical or ordinal data (e.g., "Yes/No", or "Never, Rarely, Often, Always")
- 8. Missing\_value\_code (required)
  - a. Empty or -99
- 9. No\_response\_code (required)
  - a. Empty or -88. Indicative that a person chose not to provide data for a specific variables, potentially useful for certain variables
- 10. Grouping (at least one required)
  - One or more categorical groupings based on Data Abstraction hierarchical trees (see ANNEX I). Useful in pursuing analyses afterwards based on semantic associations between variables
- 11. Questionnaire assignment (optional)
  - a. For variables having question versions belonging to one or more questionnaires or tests. Useful for extracting information that can be harmonised between databases, as well as minimising repetitiveness of questions and tests within a project.
- 12. Conditional dependencies (optional)
  - a. Criterion for questions belonging in a question tree to be asked if one or more questions/variables satisfy condition superordinate а (e.g., if "CSH\_SeizureHistory Patient Question v1 == Yes" indicating that a person reported User\_interface having seizures the past, variable in then in "CSH\_SeizureFrequency\_Patient\_Question\_v1" will be displayed for variable completion of how often they have seizures)
  - b. For multiple dependencies, AND and OR operands can link clauses, and nested with parentheses

Note that variables that are composites of other variables (e.g., ISI total score for insomnia), this information is derived within the platform as a first-order latent variable and is not part of the input to the Platform by users to minimise data entry errors. Instead, individual zero-order "latent" variables that are required to be entered by users, or directly acquired through devices and databases, are the ones represented in the annex.





### 4 REAL WORLD DATA CATEGORIES

#### 4.1 CLINIC SYMPTOMS AND HISTORY

Clinical Symptoms and History (CSH) RWD are the cornerstone RWD of any assessment, and represent individuals' salient complaints related to CoBraD, e.g., memory problems in the setting of NCD, as well as historical clinical and social information that contribute to or are affected by symptoms. Symptom relief is also one of the most important benchmarks for a successful therapy. Due to the nature of CoBraD, multiple symptoms may occur in a single person, may manifest with variable severity, and differentially impact quality of life. Moreover, symptoms may be caused by other comorbid medical conditions or therapies. The high level of complexity and dimensionality of CSH requires systematic deep phenotyping of symptoms and history, ideally by trained experts as per current state-of-the-art, and subsequently integrated with findings on physical exam and laboratory testing. The CSH can be provided directly by patients or their caregivers, or indirectly by clinical-research staff, and represent:

- 1. Troubling symptoms of a patient with regards to their History of Present Illness (HPI) following a Chief Complaint (CC), current Review of Systems (ROS), and current Functional Status (FS).
- 2. Historical information of Past Medical and Developmental History (PMH), Social History (SH), Family Medical History (FH), and Medications

This type of information allows clinicians and researchers to identify features in a person's symptoms and history that allow deep-phenotyping of a patient's medical and social condition, including a possible underlying pathophysiological process, and guide further workup towards accurate diagnoses and treatment choices.

#### 4.1.1 Source, Acquisition Method, Data Abstraction

There are four main sources from where CSH are derived:

- 1. Patients
- 2. Caregivers
- 3. Clinicians-researchers and clinical-research coordinators
- 4. Existing databases

Most of the CSH RWD are acquired directly from patients or their caregivers, whereas certain information reflect metrics entered by clinician-scientists or clinical-research coordinators after interviewing patient-caregiver dyads. CSH RWD only reflect patient-caregiver perceptions and not clinician-scientist or coordinator assessments during an encounter with patients-caregivers, which are represented through Physical Examination & Neuropsychological Testing RWD. Under this premise, clinical-scientist staff serve as facilitators and, accordingly, mediators in CSH RWD acquisition. This applies to CSH RWD acquired directly from patient-caregivers through Platform self-reporting and then validated by staff, or collected first by clinical-scientist staff.

There are three acquisition formats for CSH RWD:

- 1. Structured questionnaires
- 2. Decision tree specialty-specific questions
- 3. Database extraction (e.g., Electronic Medical Records [EMR])

All formats can represent the same underlying information, so that a question in a decision tree can also be a question of a questionnaire, or be represented as a variable in a database. The high-level RWD semantic associations that MES-CoBraD is built to account for allows Advanced Analytics modules easier data integration and analysis, that are subsequently exploited through its Expert System.





**Structured questionnaires** are series of predefined questions provided in sequence to a patient or their caregiver to answer according to specific instructions. In many cases, a questionnaire score is computed through a weighted sum of all questionnaire answers, representing CSH severity at a given time, and, thus, facilitating follow up of CSH over time. This also explains why questionnaires are almost always used in clinical research and trials as primary or secondary endpoints. The MES-CoBraD Platform allows a clinician-scientist to choose through their protocols one or more structured questionnaires, or have derived questionnaire scores from answers provided through specialty-specific question trees or database information as described below. Most questionnaires represent in one form or another the information obtained through ROS, FS, PMH, FH, SH, and Medications.

When it comes to the reason a person visited the clinic in the first place, however, exhaustively going through a rigid battery of questionnaires is not practical, and can be misleading. Instead, when a patient visits their clinician, they provide CSH RWD according to **question trees**, where the answer of one question leads to deciding which is the best next question. This is best represented in a clinician's HPI questions following a person's answer to a Chief Complaint (CC) for visiting a clinic. These series of questions can be identical to the individual elements of one or more questionnaires, but they are asked (a) only if pertinent according to previous questions, and (b) often relate more to the CC. Nonetheless, if a patient or their caregiver responds to question trees that include all questions of a questionnaire, an estimated score of that questionnaire can also be derived.

Note that different CSH RWD acquisition formats can lead to different responses by users, however, as long as the question is understood by the user (patient, caregiver, or clinician-scientist), these differences are small in most cases.

<u>Data abstraction</u> of CSH RWD is based on four orthogonal categories, each having a hierarchical structure:

- 1. H&P-based RWD
- 2. STS (Severity, Temporal, Spatial)
- 3. CCC-specific RWD (i.e., CoBraD-specific RWD)
- 4. Quality and Acquisition

The orthogonal nature of the above categories allows for RWD to be classified on several dimensions, thus facilitating the grouping of variables and identifying semantic associations between them for future analyses by clinician-scientists and Expert Systems. All four data abstraction categories and their hierarchical structure are expanded on in ANNEX I:

The **H&P-based RWD** category structure is fixed for all CCC, including CoBraD, and reflects principles followed during a clinician's interview, allowing RWD to be organised into subcategories ranging from chief complaint and history of present illness, to other past history and ancillary medication information subcategories.

Such a categorisation allows for deciding on the sequence and grouping of presenting CSH RWD to users, verifying that CSH-based RWD are presented and completed by a user, thus optimising completeness of data acquisition in clinic or research.

The **STS** category, in a self-explanatory manner, indicates if CSH RWD information refers to presence/absence and severity of CSH RWD (i.e., Severity), whether it refers to the duration, periodicity, and speed of symptom progression (i.e., Temporal), or the spatial features of these symptoms (i.e., body or extrapersonal region). Note that presence of RWD that reflect Temporal and Spatial features are conditional on presence of RWD Severity.

The **CCC-specific** RWD category is a specific CCC a project aims to address. For the MES-CoBraD pilot, the variables are parts of neurocognitive, epilepsy, and sleep disorders. In line with the conceptual framework of the MES-CoBraD Project, the CCC-specific category domains (see ANNEX I hierarchal structure) are





modular, allowing tailoring to varied clinical-research settings (beyond CoBraD) and new evolving scientific knowledge. The level of depth within this CCC-specific hierarchical structure between superordinate to subordinate levels is similarly modifiable and varies according to the needs of the clinicians and scientists. Lower levels of abstraction (subordinate) allow for finer-grained information description of CSH RWD (e.g., short-term memory is a subordinate level of memory, and, in turn, cognition).

Note that CCC-specific category organisation corresponds to CCC-specific hierarchical data abstraction of clinical examinations and laboratory tests applied in clinical-research practice to objectively examine these CCC-specific categories. For example, neuropsychological tests reflect metrics of cognition, whereas sleep studies metrics of sleep. To that end, there is a large overlap of the respective data abstraction between categories of RWD (see respective chapters of the MES-CoBraD PM).

The **Quality and Acquisition** category reflects metadata of the RWD that range from the person who entered the data in the system (e.g., clinician-scientist), to the person who reports it (e.g., caregiver), to the person it involves (e.g., patient), as well as metadata of the timing of acquisition and the quality of the data provided. Quality assessment falls within the premises of Quality Control (4.1.2) below.

For example, a CSH variable relating to "seizure frequency" can be grouped in four dimensions as HPI (CSH-based RWD), Severity, and Frequency and Rhythmicity (STS), Epilepsy > Seizure (CCC-specific RWD), and data Quality and Acquisition.

#### 4.1.2 QUALITY CONTROL

Quality control of CSH RWD reflects

- 1. Responses within a prespecified value range
- 2. Completeness of data within protocol requirements
- 3. Correspondence of user responses to the intended construct

**Responses within a prespecified value range** are easily controlled for DtP acquisitions where the acceptable range of responses is provided in the annex table with the respective variable's elements.

Instead, errors are more likely to occur in PtP acquisitions, where participants may (a) circle multiple responses on a sheet of paper (e.g., "4" and "5" when they feel a value of "4.5" is more representative; or "4," "5," and "6" when they experience more variability in their symptom perception), or respond with value types different from the question at hand (e.g., "a lot" as an answer to "What year did your symptoms start?") often reflecting poor comprehension. These types of errors will be mitigated by having clinical or research coordinators review together with participants their answers, targeting specific CSH RWD where paper responses are invalid and providing clarifications. If an invalid response is missed by staff for clarification, then the acceptable response will be the median or mean value (depending on data type). If this is not possible, then the response is considered invalid, and the respective code value (e.g., -99) can be entered instead. Although most CSH RWD variables have the same missing or erroneous value codes (e.g., -99 or -88), these are defined specifically for each variable on the Platform for coordinators to choose from.

#### Completeness of data

Clinical or research protocols require that participants provide a set of information to allow diagnosis or direct treatment decisions. Completeness of data falls under a protocol's RWD quantity requirements and as RWD is entered on the Platform, coordination tools can inform of missing information to be acquired. It is the responsibility of the clinical-scientific staff to review per participant missing information through the use of such tools.

Additionally, unique to CSH RWD (as well as certain clinical and neuropsychological examination RWD), information is acquired through a sequence of questions when the acquisition format is a questionnaire





or a question tree (see above). In the case of DtP acquisition, the Platform itself is able to direct the users to answer unanswered mandatory questions before the protocol proceeds with the next question. In the case of PtP acquisition, a clinical-research coordinator or a clinician-scientist will have to ask the user (usually a patient or a caregiver) to complete the unanswered questions.

#### Correspondence of user responses to the intended construct

In addition to quality control of RWD input, an often-overlooked component of quality control is whether CSH RWD represent the intended construct, i.e., information. To mitigate this, all questions through which CSH RWD are acquired are vetted through pilot organisations, and translated and localised to their regional populations and assessed during pilot protocol test runs. Furthermore, participants will be regularly assessed through clinicians on their responses, and over time (either during protocol test runs or pilot period) poor construct representations will be flagged and corrected. Finally, construct validity of individual or composite variables can also be pursued through Platform-based analyses.

#### 4.1.3 DATA STORAGE

CSH RWD entered directly in an anonymised manner DtP will be available to the Platform, and at the same time will be available to the local site's secure and GDPR compliant repository. CSH RWD entered via PtD, will have paper-based responses scanned in pdf format on the local site's secure and GDPR compliant repository, and clinical-research coordinators will enter the information in an asynchronous manner to the Platform.

#### 4.2 Physical Examination and Neuropsychological Testing

Physical Examination (PE) and Neuropsychological Testing (NPT) refer to objective and quasi-objective physical signs and mental abilities obtained through scientifically proven methods by trained examiners. In contrast to CSH, where the information is obtained from patients or caregivers, the information in PE and NPT is obtained from clinician-scientists based on their expertise to assess patients, or by technology tools (e.g., tablet-based tests) interacting with patients. The modalities of assessment fall under the CCC-based RWD category as reported in Annex I and correspond to CSH information, allowing for an objective assessment of reported symptoms and future analyses between types of RWD.

PE within MES-CoBraD is guided by relevant signs that relate to specific CoBraD (e.g., bradykinesia, rigidity, postural instability, tremor as features of synuclein-related neurocognitive disorders, or enlarged tonsils for narrow upper airway as a contributor to sleep apnea). For purposes of harmonisation and diagnostic utility, metrics of PE are tailored to tests helpful in differential diagnosis within CoBraD, as well as those that allow composite scores to assess disease progression.

NPT are used to objectively evaluate a person's cognitive functions, traditionally divided into major domains: memory, executive, visuospatial, orientation and language). Such tests provide accurate and specific information in relation to cognitive abilities, which guides diagnosis and, occasionally, prognosis. NPT are administered to patients with CoBraD by staff trained in neuropsychological assessments and represent:

- 1. age and education appropriate NPT, whose performance is usually summarised in a single raw variable or standardised score (Z-score), or
- 2. qualitative data, which are not easily represented as a specific score, and may relay additional information. E.g., the sequence of recalled words from a list, or the type of errors made in copying a shape. Such qualitative data are not traditionally quantified, although they can be, and are instead provided either as categorical or Boolean variables or unstructured free text.

The above information allows clinicians and researchers to identify impaired domains that may correlate to a person's CSH features and allow localising changes to certain brain networks.





#### 4.2.1 SOURCE AND ACQUISITION METHOD

PE is to be performed directly on a patient by a board-certified clinician following the basics of the Neurological examination, covering all relevant signs within the abstracted subcategories of CCC-based RWD (Annex I).Similarly, NPT are to be administered through neuropsychological batteries (i.e., sets of tests), since it is important to identify useful tests, as well as their sequence in administration, especially for tests requiring interference tasks between their steps (e.g., short-term memory tests requiring working memory interference tests of the same modality between registration and recall).

Within the scope of general harmonisation and in keeping with the philosophy of the MES-CoBraD Project of being dynamic and tailored to population needs, (a) the majority of NPT administered will be identical across sites, (b) a subset of tests will be quasi-identical (e.g.,different word list verbal memory batteries), and (c) some will represent the same high-order semantic dimension but through different tests (e.g., two different tests assessing a specific cognitive function). This also facilitates within-site continuity and congruence of RWD acquisition, and provides a research substrate to assess the level of non-identity that is allowable in large multi-site studies. There are several statistical techniques to allow comparability between tests either at the low-level of quasi-identical NPT or higher-level of cognitive domains (e.g., via z-scoring and dimensionality reduction) that are under the purview of WP4 and WP6.

PE and NPT will be performed during in-person visits with patients. NPT will be performed through paperand-pencil or electronic-based tests (e.g., tablet-based) for the purposes of the main pilot data acquisition, although certain sub-projects may allow for caregiver self-assessments. Trained individuals in the specific batteries of NPT will be conducting the testing at each site. In contrast, PE will be performed by boardcertified clinicians. PE and NPT values will be documented either DtP or through PtP transfer.

As with other RWD, data can be transferred to the MES-CoBraD Platform either by the user directly (clinician-scientist in this case), or be transferred in aggregate via a site's existing database Platform (see Chapter 3 above).

#### 4.2.2 DATA ABSTRACTION

Data abstraction of PE and NPT follow the same principles as CSH RWD of a hierarchical structure within four orthogonal categories:

- 1. H&P-based RWD (same RWD category as in chapter 4.1)
- 2. STS (Severity, Temporal, Spatial)
- 3. CCC-specific RWD (i.e., CoBraD-specific RWD)
- 4. Quality and Acquisition

In addition to categories explained above in CSH RWD, the PE and NPT allow for simultaneous data acquisition and quality assessment, reflecting parameters such as degree of cooperation and procedure quality. For example, individuals with severe NCD may not fully cooperate in some tests, and this could be reflected in data quality category. Similarly, a person who is providing little effort on PE Strength testing allows for their PE to be interpreted within the context of poor quality. Also, an NPT variable, such as Mini Mental state exam (MMSE), can be grouped in four dimensions representing neuropsychological examination (H&P-based RWD), score (severity), global cognition (CCC-specific RWD), and data quality and acquisition. Assessment of data quality is guided by quality control recommendations as below.

#### 4.2.3 QUALITY CONTROL

The following guidelines are provided to maintain inter-rater reliability and ensure standard administration of PE and NPT. Following these guidelines is helpful to generate valid and accurate measurements with minimum stress and discomfort to participants.

#### Preparation





- 1. Examiner can influence testing to some degree even when standardised procedures are used, so it is desirable to have the same examiner conduct each of PE and NPT.
- 2. It is important that the testing takes place in a quiet room free of distractions and with the necessary setup (e.g., examination bed, desk). If such a setup is not available it should be documented in the quality of data.
- 3. Before testing, both the participant and their caregiver are to be asked about the participant's ability to hear and see in order to understand commands and perform tasks independent of primary sensory deficits. It is the examiner's responsibility to see that the participant understands the instructions before each test is started and that this understanding is maintained throughout the test. It is, thus, important that the participant is wearing corrective eyeglasses or hearing aides as needed.
- 4. Both the PE and NPT battery are to be administered for each person in the same order and with adherence to time limits and standardised instructions.

#### Test Administration

- 1. Instructions should be clear, and for NPT read verbatim without paraphrasing. It is acceptable for instructions to be paraphrased if verbatim instructions are poorly understood, as long as the basic concept is maintained. Instructions may be repeated according to each task's instructions, avoiding additional information, hints, or answers.
- 2. Any feedback to the participants has to be neutral, do not indicate if answers are correct or not, or whether participants are performing within or below normative limits. To that extent, it is prudent to explain to all examinees that feedback will be given at the end of a complete assessment, setting expectations and maximising attention during tasks.
- 3. If a participant provides more than one response to a NPT, the examiner will direct them to choose one answer without cueing for a specific response.
- 4. It is important to maximise effort throughout an examination. To that end
  - a. Examiners should provide regular encouragement as people advance during their assessment to maintain participants' effort. Participants who demonstrate poor effort should have their data categorised as of poor quality.
  - b. If participants give up easily or respond with generic avoidant answers (e.g., "I don't know") examiners will try and elicit answers by providing encouraging statements (e.g., "Just guess" or "Give yourself a minute to think of an answer").
  - c. Validating frustration can be helpful and build rapport (e.g., "It is anticipated to miss some," and "Even if you miss a few things, that information may help us figure out what your strengths and weaknesses are.")
- 5. Examiners should aim for participants to complete all assessments even if participants are uncertain of a response. It is more informative to have a wrong answer than no answer
- 6. An examiner can use personal notes when uncertain how to score a response, and review the PM later or discuss it offline with partners on how to best document information
- 7. Qualitative observations are useful in identifying nuances between identical quantitative responses, especially when a nuanced metric is not part of a protocol. To that end, text notes can be useful in including or even developing additional variables for assessment of participants (e.g., impulsivity, stimulus-boundness, slowed processing speed, tremor, apraxia).

#### Post Testing Quality Control

- 1. It is the responsibility of each clinician-scientist conducting an assessment to guarantee the quality and integrity of the data beyond quality control measurements post data entry to the Platform.
- 2. Annex III proposes a structured assessment of quality deviations, addressing items such as poor comprehension of testing instructions, poor effort, hearing impairment and other potential quality





deviations. The form proposed in Annex III allows flagging and/or documenting such observations should be flagged post testing to inform platform users of test quality.

3. As with other types of RWD, PE and NPT acceptable values and ranges are entered for each variable on the Platform for real-time quality control upon data entry to the Platform.

#### 4.2.4 DATA STORAGE

Data will be uploaded securely post-anonymisation to the MES-CoBraD Platform either through DtP or PtP processes. File formats are subject to Data structure guidelines (see Chapter 3 of the PM). Data will be digitally stored for a minimum of 5 years at each primary site and will also be available on the MES-CoBraD Platform for the duration of the Platform's lifetime. Physical records obtained during the examination will be also stored as per GDPR guidelines.

#### 4.3 NEUROIMAGING

Neuroimaging is the discipline that deals with the in vivo depiction of anatomy and function of the central nervous system in health and disease. There are several methods to image the brain, the most used are brain computed tomography (CT) and Magnetic response imaging (MRI). Brain CT, is the most readily available and cheapest neuroimaging modality and, thus, typically the first choice in most clinical settings. However, CT scans have low capability to separate brain white and grey matter, to properly annotate brain regions of interest (ROI), and, thus, produces scans with low quality and many imaging artifacts, while also introducing ionizing radiation to participants. For these reasons, CT scans are traditionally not employed in clinical or research settings other than in the acute management of patients, and instead most clinical diagnostic guidelines recommend MRI as the neuroimaging modality of choice. Furthermore, it is the method of choice for quantitively assessing brain structure and function in research settings. In certain settings, primarily for research purposes, Positron Emission Tomography (PET) is a neuroimaging technique often utilised to identify either specific brain neuropathologies, especially proteinopathies, or to quantify functional activity across brain regions.

#### 4.3.1 Source, Acquisition Method and Data Abstraction

MRI images will be either obtained from participants' previous medical records or newly acquired in 1.5 (or higher) Tesla scanners across sites. Each site should have designated responsible personnel that oversee neuroimaging processes, aiming to prevent and manage adverse events.

An MRI sequence is a particular setting of pulse sequences and pulsed field gradients, resulting in a particular appearance of brain tissue on images. The MRI acquisition sequences are grouped according to frequency of use, either in clinical or research settings. Analysis of MRI raw data through various methods, such a volumetry, do not fall under the PM purview and are part of Advanced Analytics modules that the Platform will support.

#### 4.3.1.1 Low-order variables: Common

- 1. T1-based MRI. 3D (Axial, Sagittal, Coronal). At most 1.5 x 1.5 x 1.5 mm voxel size
- 2. Diffusion weighted Imaging. Axial. At least one b=0. At least 16 gradient maps (32 desirable) at b=1000, sampling the whole sphere
- 3. T2-based MRI. Axial and Coronal.
- 4. FLAIR 3D (Axial, Sagittal, Coronal).
- 5. Gradient Echo or Susceptibility Weighted Imaging. Axial. To assess for (micro)hemorrhages

#### 4.3.1.2 Low-order variables: Advanced

1. Diffusion weighted Imaging. 64+ b1000 gradient directions for tractography. Multi-shell for multi-



The MES-CoBraD project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No 965422



compartment modeling. Including one b=0 with inverse encoding to correct for eddy-current/movement artifacts

- 2. <u>BOLD</u>. Resting-state functional MRI. 80+ volumes. Eyes closed during acquisition.
- 3. <u>Additional susceptibility sequences</u>. Ideal to assess microstructure alterations. More than 4 diffusion schemes. Not very robust to parameter acquisition, and post-processing harmonisation is needed.

#### 4.3.1.3 Positron Emission Tomography (PET)

- 1. Fluorodeoxyglucose PET is a versatile test that has been widely used in Alzheimer Disease, Epilepsy, and Sleep disorders.
- 2. Amyloid and tau PET can also be performed through 2nd generation tracers when considering neurodegenerative processes.
- 3. Dopamine transporter scan can be pursued for people with parkinsonism or suspected synucleinopathy

#### 4.3.2 DATA ABSTRACTION

Considering that Neuroimaging data represent CSD, their abstraction primarily reflects a hierarchical categorisation according to the main imaging modality (e.g., MRI) and its subordinate techniques/sequences applied (e.g., T1, Axial), as well as categorising to the quality of the acquired data (see 4.3.3 as well). Nonetheless, the abstraction of the information represents voxels, which in turn are combined to reflect brain area activity or volume through post-hoc analyses using analytic tools.

MRI and PET images will be exported from the different scanners to a local repository using the withinmachine exporting software. Exported data (both MRI and PET) will be stored using the DICOM format. This format was selected as it has higher fidelity than NIFTI with regard to several acquisition parameters.

#### 4.3.2.1 Quality Control

A stage process will be performed to guarantee the quality of the data. Importantly, such process will report on raw data quality, not pre-processing downstream steps.

In-site evaluation for urgent incidental findings

Common clinical-based acquisition: Most research-based neuroimaging acquisitions are at a disadvantage to clinical scans for addressing blood-brain barrier disruption, as they do not include contrast. Moreover, research neuroimaging studies are traditionally not evaluated by an expert neuroradiologist in a timely manner. For this reason, every pilot partner site should have a minimum, time efficient, non-research-based neuroimaging protocol that allows fast diagnosis of urgent findings (e.g., hemorrhage or brain tumor).

#### 4.3.2.2 In-site QC

A trained neuro-radiologist, or a neurologist with MRI expertise should visually inspect the acquired data to guarantee that there is no major movement or other artifacts. If artifacts are present, these will be assessed by the reader and the quality of a sequence will be measured using qualitative reports (due to the lack of international consensus/scales to quantify such findings).

#### 4.3.2.3 Platform QC

There are several automated tools to perform automatic QC assessment post-hoc that will be integrated on the Platform. One of the most widely used is MRIQC (for T1, T2 and BOLD images) (https://mriqc.readthedocs.io/en/latest/index.html). The computed outcomes from the QC processing can be used to establish thresholds for usability, or to train machine learning models to automatically prompt a quality status of the input images. Analytics modules of movement correction can be applied after images are uploaded on the Platform.





#### 4.3.2.4 Anonymisation and defacing

Considering the advancement of facial reconstruction from MRI images, to ascertain anonymisation and depersonalisation of participant imaging data, modules of defacing and anonymising DICOM images will be implemented prior to uploading images on the Platform.

#### 4.3.3 DATA STORAGE

Each site is expected to store its acquired data following its own protocols. It is, nonetheless, recommended to use a predefined data structure such as BIDS (https://bids.neuroimaging.io/). Data must be stored in a format closest to low-order data as possible (i.e., DICOM format). In addition, this low-level of data can be converted to the conventional NIfTI format (https://nifti.nimh.nih.gov/). If an imaging acquisition center does not provide backup, each pilot partner is responsible to have a backup process.

Within the Platform, data will be organised according to open source XNAT (www.xnat.org), which is widely used in the neuroimaging community due to its potential to organise both low-order and higher-order (processed) data, in addition to including metadata such as quality control outputs. XNAT is also able to support anonymised data (doi: 10.1016/j.neuroimage.2021.117845).

#### 4.4 BIOLOGICAL SAMPLES

To evaluate and understand how complex brain disorders impact the normal function of the central nervous system and peripheral organs and tissues, biological samples must be collected, processed, aliquoted, and appropriately stored, in accordance with a harmonised protocol across different centres involved in this consortium. This process allows determining significant differences within and between groups for the specified parameters and interventions, based on state-of-the-art molecular and biochemical analyses. The two central major types of biological samples assessed withing the scope of the current project are fluid samples (blood and cerebrospinal fluid) and hair samples.

#### 4.4.1 BLOOD AND CEREBROSPINAL FLUID

#### 4.4.1.1 Source, Acquisition, Data abstraction

CSF and blood biosamples will be collected from participants by a trained and competent staff member who follows the respective sampling protocol. Before drawing samples, the staff will ensure that all collection and aliquot tubes are marked with a water- and ethanol-resistant marker and that all text is easily readable. Collection/aliquot tubes should include the following labelling:

- 1. Participant ID
- 2. Participating Site
- 3. Date and hour of collection -Sample ID
- 4. Aliquot ID (e.g., serum, plasma, or CSF; also adding aliquot identification number 1 through 5).

Example: ID01 - UU - 21/10/01 10:00pm - SR (01/05);

ID02 - UU - 21/10/01 10:30pm - SR (02/05);



Figure 3: Proper annotation of bio-sample.




**Safety**: when handling bodily fluid samples, staff should consider wearing and eye shield, face mask, gloves, and maintain good hand hygiene. Bodily fluids, particularly blood, should always be considered contagious, and specific modified protocols may apply at each site for samples obtained as a result of the COVID-19 pandemic or other epidemics.

**Cerebrospinal fluid sampling:** A lumbar puncture (LP) is preferably performed in the morning to account for fluctuations of markers across the day and night, and the subject does not need to be in a fasting state. An LP is performed between the L3-L4 or L4-L5 spinal vertebral interspaces, the patient must be sitting or lying down. One catheter/tube can be connected to the needle extracting CSF and the sample is then collected <u>in a 10 mL polypropylene sterile tube</u>.

In general, the few first drops of CSF are discarded to minimise possible contamination. In the case of apparent (visible) blood contamination of the CSF, a larger portion is discarded, and the CSF to be analysed is collected in a new tube (i.e., not in the initial "waste" tube), when the bleeding has stopped. After collection of a minimum of 3 ml, CSF must be homogenised by turning the tube over several times. Subsequently, the CSF sample is centrifuged at 2200 relative centrifugal force (rcf G-Force) for 10 minutes with temperature set at 20°C (or in a similar normal room temperature range). The Centrifugation should take place within 90 minutes from collection.

## Blood sampling:

In the MES-CoBraD Protocol, we refer to the most common colours of blood tube caps used in practice. Selection of appropriate tubes: Note that lid colours and tube characteristics (i.e., presence or absence of certain compounds like lithium heparin, sodium heparin, silica, and others) can vary depending on the manufacturer, and some samples can be taken in several types of tubes. It is crucial to verify the correct collection tube type before starting sample collection.

- 1. It is recommended to use gel separator tubes, also known as Serum Separator Tube or SST tubes (spray-coated silica with polymer gel represented as yellow cap tubes in annex IV) and Plasma Separator Tube or PST tubes (spray-coated lithium heparin with polimer gel represented as light-green cap tubes in annex IV), since they provide a simple and efficient way to separate the liquid portion of the blood (i.e serum and plasma) with minimal risk of collecting erythrocytes or their products due to improper pipetting. However, the use of SST and PST precludes proteomics analysis, but for most purposes, this is an acceptable trade-off.
- 2. EDTA (spray-coated k2EDTA tubes represented as purple cap tubes in Annex IV) and PAXgene tubes (represented as clear-brown cap tubes in annex IV) are ideal for DNA and RNA analysis, respectively.

Blood drawing: When starting drawing blood, it is expected that the first portion drawn contains hemolyzed blood, so it is recommended to discard the first 1-2 mL of blood in a waste tube (i.e., regular tube, non-sterile), before switching to a collection tube. Also, to avoid hemolysis, pressure should not be placed around the arm when sampling. For a filled collection tube of 5 mL, 2 mL of serum or plasma can be acquired, allowing approximately six aliquots of 250 µl each (see Annex IV figure 7 for a picture of a microtube).

## Post-collection processing

After collection, specific protocols need to be followed depending on the type of sample/tubes.

- 1. PST should be centrifuged within 90 minutes after collection whereas SST must be held in an upright (or semi-upright) position at room temperature for a minimum of 30-35 min (maximum limit is 2 hours) before centrifuging and aliquoting steps.
- 2. EDTA tubes need to be mixed by turning over several times (x8) before centrifugation. For extracting DNA from whole blood in EDTA tubes, samples must be frozen immediately after mixing them WITHOUT centrifuging. For this purpose, each tube may be dipped into a freezing solution





(i.e., a mixture of dry ice and 70% ethanol; this solution will reach -80°C once dry ice stabilizes).

- 3. PAXgene tubes must NOT be centrifuged in most cases. These tubes are to be kept first for 2 hours at room temperature and after that to be placed in a -20°C freezer (for at least 24 hrs), and then for long term storage at -80°C.
- 4. All centrifugation steps need to be done at 2000 relative centrifugal force (rcf; G-Force) for 10 minutes with temperature set at 20°C.

Note: During sample collection, always verify the following:

- 1. Volume pipetted per aliquot (e.g., 250 µl) should be documented
- 2. Possible blood contamination (clots or hemolysis) should be documented (see Annex IV, figure 8 for reference)
- 3. That both lid and side of tube are congruently labelled, since mislabelled lid and/or side of tube will require re-labeling prior to shipping
- 4. Possible deviations in processing time (time at room temperature / if not frozen soon after aliquoting) should be documented

## **Aliquoting samples**

After centrifugation, pipette the samples into mini tubes (i.e., polypropylene sterile tubes, with total volume of 1.5 ml).

- 1. Plasma
  - a. Pipetting to 6 mini tubes (label them as PR[1-6], see above for full naming convention).
  - b. 250 microliters in every mini tube, if not specified otherwise.
- 2. Serum
  - a. Pipetting to 6 mini tubes (label them as SR[1-6], see above for full naming convention).
  - b. 250 microliters in every tube, if not specified otherwise.
- 3. CSF
  - a. Pipetting to 6 mini tubes (label them as CSF[1-6], see above for full naming convention).
  - b. 500 microliters in every mini tube, if not specified otherwise.

Aliquots must be placed directly into dry ice directly after aliquoting to achieve immediate freezing of the samples, being aware that freezing occurs faster if aliquots are fully submerged. It is, thus, important that there is enough dry ice for the number of aliquots, and for the duration of the whole process, since dry ice will evaporate. A few kilograms of dry ice can be stored in styrofoam boxes for some hours at room temperature, which is especially important when collection occurs outside the lab, and for several months in ultrafreezers (-80°C) if they need to be stocked. The latter works best in a lying (chest) freezer. Additionally, minimising the interface between air and dry ice in its container (e.g., by placing newspaper over the dry ice) could further delay its evaporation. When pipetting is completed, aliquots should be transferred to a -80°C freezer as soon as possible.

Once in a -80°C freezer, metabolites and biomolecules in samples usually maintain good integrity for several years. This does, however, require that the freezer does not warm up (briefly recorded higher temperature is fine, e.g., for a few minutes when removing large sets of samples). Temporary freezer warming can be greatly minimised, or entirely avoided, by proper freezer handling technique. In general, ultra-freezers are designed to be opened few times per day, and/or to be opened for short periods. Please, consult your freezer manual. Many biomolecules will degrade following even a single freeze-thaw cycle, highlighting the need for proper documentation of sample storage.

As such, clearly label each box you place in the freezer – in a consistent easily identifiable manner – and keep notes in a sampling protocol and/or in a master sample file information about box number/name, site name, freezer number and rack. Clearly label both the bottom and the top (removable lid) of each box.





## Do not freeze entire PST or SST tubes: only the final aliquots of serum/plasma, as well as EDTA (for DNA extraction) and PAXgene (for whole-blood RNA extraction) tubes should be frozen.

An overview of the above protocol is illustrated as a flowchart in ANNEX IV.

## Shipping samples

Sample analyses for the purposes of MES-CoBraD are performed at Upsala University (UU), where biomarker analysis from metabolites to genotyping can be pursued. Proteomic analysis (up to 1,536 targets, see Annex V) can be achieved using a small sample volume, and enzyme-linked immunosorbent assays (ELISAs) can be implemented for specific protein targets. More sensitive techniques examining low concentration compounds (femtogram per millilitre), such as single-molecule array technology (SIMOA) are also available. DNA methylation, RNA, and microRNA sequencing are also part of UU partners panel of analysis.

## Samples should be shipped to UU on dry ice with the following considerations:

- 1. Calculate the amount of dry ice depending on the number of days required for shipment (up to 2 days for many parts of Europe)
- 2. Remember to ship samples carefully labelled as written above record the whole number of samples and the exact name of each sample/aliquot
- 3. Ensure that no samples are contaminated by plasma or blood, as they will be discarded
- 4. Take photos of the sample layout before shipment and attach with the shipment or upload them on the MES-CoBraD Platform.
- 5. Include sample description (sample arrangement and description), label any deviations in labelling or content clearly. Also, send an e-mail with samples description and layout to handling partner at UU.
- 6. Do not allow loose samples to be shipped.
- 7. Always notify handling partner at UU before shipment and ask for a green light before shipping.
- 8. The recipient may first need to make room in their freezer, which is also why it is important to condense samples in the shipped boxes, to ensure the minimal amount of space is used.

COVID-19 related shipping limitations: As samples are collected post COVID-19, they will all be considered potentially hazardous, so detailed information on potential SARS-CoV-2 contamination is also needed (specifying whether the risk is known or unknown). This may also regulate how samples are stored and shipped locally (i.e., if a site is allowed to receive samples). This is an additional reason to ensure that samples are not dirty (e.g., with external blood / serum / plasma contamination), as these may not be handled by the recipient.

## 4.4.1.2 Data abstraction

Data abstraction of biosamples is reflected in the following orthogonal categories:

- 1. Type of biosample
- 2. Timing of sample collection
- 3. Internal Sampling Code comprised of subject ID, site ID, centrifugation protocol.

## 4.4.1.3 Quality control

It is essential to highlight that laboratory analysis should be repeatable, and if biological specimens are not correctly sampled and/or processed, the final results may be spurious and impossible to replicate. Considering that the MES-CoBraD study will continue for years and recruit a large number of patients, minor deviations from this biosample collection and processing protocol could contribute to substantial data variability and interfere with the study's goals.

For biological specimen collection, the following are important indicators of poor specimen quality, and indicate the need to discard and, if possible, re-acquire the sample:



```
D3.2
Project Manual – CoBraD RWD, Updated MES-
CoBraD Protocols and Quality and Quantity
(Q&Q Evaluation – v2
```



- > Blood contamination in CSF samples
- > Notable hemolysis in serum or plasma samples
- > Presence of clots in whole blood samples (i.e., EDTA, PAXgene tubes)

Additionally, Inappropriate handling, transport, and storage may be identified post-shipping and analysis by revealing molecular degradation noticeable during biomarker quality check control (i.e., low RNA/DNA integrity).

## 4.4.1.4 Data storage

Long term storage of biosamples will be pursued in Aliquots, EDTA, or PAXgene tubes within a deep freezer at -80 C, as per aforementioned protocols.

## 4.4.2 HAIR

Stress is one of the most common seizure triggers reported from patients with epilepsy and there are several experimental and observational data supporting a possible relation between biological stress system, namely Hypothalamus-Pituitary-Adrenal (HPA) axis, dysregulation and epilepsy. HPA axis function is traditionally studied by measurements of its final product, cortisol. Changes in cortisol levels have been linked with all the three CoBraD. There is accumulating evidence that hair cortisol is a valid biomarker of HPA axis function in chronic stress. In contrast to serum and salivary cortisol measurements, cortisol concentrations in hair are not influenced by acute stress, and, instead, assess the integrated levels of cortisol over extended periods of time before sampling. Therefore, hair samples for measurement of cortisol levels will be collected from participants during MES-CoBraD.

## 4.4.2.1 Source, Acquisition, Data abstraction

## Source and acquisition:

Around 150 strands of hair will be collected from the posterior vertex of the scalp, cut off as close to the scalp as possible. The hair will be taped to a piece of paper that will serve also as a document on which all the sample details will be included. The form with the samples will be placed in a paper folder with the identification code of the sample which then will be sealed.

## Storage and shipping:

The samples can be stored at room temperature, away from ultraviolet (UV) exposure, until they are analysed. Hair samples will be shipped and processed at Choremeion Research Laboratory at the Medical School of University of Athens, Greece. Samples should be shipped carefully labelled with the project identification code. The whole number of samples shipped should be recorded each time. Choremeion laboratory should be informed for the shipping via an e-mail with the number of samples shipped and the relevant codes. Do not allow loose samples to be shipped.

The samples are not considered hazardous but the sealed envelopes could be placed and sealed in a waterproof box ensuring optimal sample conditions. Given that hair samples do not require analysing in a specific time frame, the samples can be shipped in aggregate every several months.

## Data abstraction

Abstraction of hair samples is reflected in the following orthogonal categories:

- 1. Type of biosample
- 2. Timing of sample collection
- 3. Collection Protocol Code



## D3.2

Project Manual – CoBraD RWD, Updated MES-CoBraD Protocols and Quality and Quantity (Q&Q Evaluation – v2





Figure 4: Overview of hair sample collection and analysis

## 4.4.2.2 Quality Control

A common source of confusing results is the lack of annotation of the part of the hair that is close to the scalp. This is controlled with clear annotation of the proximal side of hair which is close to the scalp on the form that the hair is attached. To secure that the results are comparable, the same length of hair should be used for the cortisol measurement. The hair should be collected from a clean head before the electrode placement for PSG/EEG. The hair should not be treated with hair style products during the day of sample collection and if there is hair dye, it should be documented. Hair washing, shampooing otherwise does not impact results and is not routinely documented. The envelope containing the hair sample should be sealed and remain intact until reaching the laboratory. It is essential to highlight that laboratory analysis should be repeatable and this may need periodic check and confirmation by the laboratory.

## 4.4.2.3 Data Storage

Pre-processing, samples are stored as described above until shipping. Processed samples are discarded and hair cortisol results are stored on the MES-CoBraD Platform database. The remaining hair samples are stored for a period of time as per current EU guidelines.

## 4.5 PHYSIOLOGY

Physiology measurements within the MES-CoBraD Project represent Electroencephalography (EEG), Polysomnography (PSG), and Actigraphy. EEG allows for establishment of brain states of alertness and cortical activity, as well as capturing aberrant epileptic activity. PSG protocols exploit EEG information for establishing brain states of alertness, and further supplement through multiple sensors additional aspects of breathing effort and flow, oxygen saturation, snoring, and muscle and eye movement. Both physiological measures are captured as time series - a series of observations obtained via repeated measurements over time, as opposed to other measurements that are collected at a single time point. Considering the closer association of actigraphy to information acquired through Consumer Technology RWD, it is discussed in the respective chapter (4.7) in more detail. A critical feature of MES-CoBraD is that EEG and PSG are acquired concurrently through a combined protocol.

## 4.5.1 Source, Acquisition, Data Abstraction

Source: The data will be obtained from physiological studies performed as part of the multidisciplinary MES-CoBraD Protocol, as well as through pre-existing databases. Data acquired will be exported from the EEG/PSG database of each partner in anonymised European Data Format (EDF+).

## Acquisition:

The EEG and PSG recording should have a minimum number and electrodes and positions, see Annex VI.





The data to be uploaded on the Platform will not contain videos, and acquisitions will be anonymised (modified EDF+ header) prior to uploading by use of Platform tools. The recordings should ideally include one hour of awake resting EEG in addition to the overnight EEG/PSG and with acceptable artifacts (see Quality Control). Electrode position in the MES-CoBraD PSG/EEG protocol is based on the standard 10-20 configuration with recommendation for additional F9-10, T9-10, P9-10 or the Modified Maudsley system (see figure in Annex VI).

Electrodes should be placed after scrubbing the scalp and skin with special gel (e.g., NuPrep) and applying EEG paste (e.g., Ten20) while securing electrodes with gauze on which special adhesive paste is applied (e.g., EC2). Expert bandages with paste are also accepted if impedances remain low.

Data abstraction of physiology data is reflected in the following orthogonal categories:

- 1. Collection Protocol Code
- 2. Time of sample collection (start to stop)
- 3. EEG/PSG information documented by the technologist on cooperation, technical issues, artifacts, description of seizures etc.
- 4. Type of physiological test
- 5. EEG/PSG annotations

## 4.5.2 QUALITY CONTROL

Quality control will be performed in six different stages. Every time quality control is performed, results are documented to represent success and failure rates and qualitative features for improvement.

## Physiology Data

- 1. All studies will be assessed for quality by partners within a site according to the technical details in Annex VI
- 2. Data will be checked for anonymisation
- 3. Upon completion of files' quality control, retrospectively obtained and anonymised EDF+ files will be transferred to the Platform
- 4. A subset of the total sample (5% of retrospective RWD and 10% of prospectively acquired RWD) will be sampled for quality control by experts from other partners through visual inspection
- 5. Reviewers will assess whether recordings satisfy acquisition criteria as outlined above and in annexes.
- 6. In case of systematic errors in a collecting site's database, quality improvements will be tailored by the respective expert Work Group within the MES-CoBraD project (WP4 D4.4-4.5)

## 4.5.3 DATA STORAGE

Data will be stored post-anonymisation based on unique ID provided for any subject participating in the study. The EDF+ will be anonymised in a local encrypted storage device for the period specified in each center's guidelines for storage of research data. Files will be stored on the MES-CoBraD Platform for the duration of the Platform's lifetime.

## 4.6 MEDICAL DEVICE DATA

During last four decades a number of medical devices have been licensed for treating people with CoBraD who do not respond adequately to drug treatments. Those that aim to address Epilepsy and other nervous system network dysfunctions are often implantable, and their function is exerted through electrical stimulation that modulates signals of the nervous system, collectively termed Neuromodulation. Others address Sleep Disorders, and especially Sleep Disordered Breathing such as Sleep Apnea, usually





providing a mechanical intervention through an air compressor to allow airway patency and facilitate ventilation.

Two main categories of Neuromodulation devices applicable to MES-CoBraD are Vagal Nerve Stimulation (VNS), for the treatment of drug resistant epilepsy and difficult-to-treat depression, and Deep Brain Stimulation (DBS), which is used broadly for movement disorders such as Parkinson disease, essential tremor, and dystonia. DBS is also being assessed in cases of refractory epilepsy, major depressive disorder, and Alzheimer disease. At present, most of these devices do not provide any recording function for continuous data collection. DBS devices with recording capabilities are currently being developed and the MES-CoBraD Project has taken this future potential into account in its planning. In such cases, acquisition of the intracranial DBS with concurrent EEG recordings can also be performed for the purposes of MES-CoBraD. The VNS and DBS variables included in the project can be seen in annex VII.

Mechanical breathing interventions that aim to improve upper airway resistance, narrowing, or transient occlusion during sleep are defined as Positive Airway Pressure machines, where an air compressor is placed at the bedstand and through a tubing and mask interface (pillows, nasal, full face), pushes air into a person, thus preventing collapse of the upper airway. In the case where ventilatory support is also to benefit a patient, as may happen in a patient with comorbid lung or neuromuscular disease, then a pressure support is provided by the machine between inspiration and expiration, effectively making it a Non-Invasive Ventilator (NIV) that allows better respiration and ventilation.

## 4.6.1 SOURCE, ACQUISITION, DATA ABSTRACTION

Patients participating in the MES-CoBraD will be asked of device use and information documented through CSH RWD acquisition. Subsequently, any data that machines provide, especially those concurrent to MES-CoBraD Protocol acquisition, will be acquired following the respective machine's data extraction protocol. See Annex VII for details on metrics acquired by machine types. Data that involve clinic assessments and interventions that are not part of machine-provided data (e.g., magnet swaps, side effects) these will be collected through respective question-trees and questionnaires through CSH RWD. Some machines allow direct access to data through APIs, whereas for others there is a need to export data to a digital spreadsheet following RWD structure guidelines (see Chapter 3) prior to uploading to the MES-CoBraD Platform. As per all variables, data will be anonymised and coded according to a central MES-CoBraD code generator and stored in digital format on site prior to uploading on the Platform.

Variables of complex data are represented in Annex VII for the main categories of machines. Some machines allow more information than others, possibly allowing for further data abstraction.

## 4.6.2 QUALITY CONTROL

The numerical variables of Neuromodulation devices should be expressed in harmonised measurement units as agreed between the respective Work Group partners. Intensity should be expressed in mA, Voltage in mV, pulse width in msec, frequency in Hz. Similarly, for PAP/NIV pressure is in cmH2O, leak in L/min, use in h/day or h/period. Acceptable thresholds for certain metrics will depend on the respective machine's manufacturing specifications. This allows for harmonisation also between machines of a certain type that do not have identical metrics. Randomly chosen cases will be periodically chosen to confirm harmonisation followed by all partners, although this is not anticipated to be an issue once Platform harmonisation modules are implemented by each site.

## 4.6.3 DATA STORAGE

Data will be stored locally in encrypted storage media for the period specified in each center's guidelines for storage of research data, and on the MES-CoBraD Platform throughout the Platform's lifetime.





## 4.7 WEARABLES

Advances in medical-grade and consumer technology wearables have provided new tools to measure physiological biomarkers adapting photo-plethysmography and accelerometer sensors to wearables devices which are now able to infer, with good sensitivity and reliability, activity data, sleep parameters (e.g., sleep schedule variability, sleep quantity, sleep quality and sleep stages) and others (e.g., exercise intensity and heart rate variability). Their extended capacity to record data in high resolution makes them a valuable source for epidemiological studies and real-world databases. Relevant to CoBraD, consumer-based activity trackers, such as smartwatches and wrist bands, have increased in popularity in society. Such consumer technology wearables are currently evaluated in medical research also as validated instruments for sleep actigraphy monitoring.

This chapter will instruct how to acquire, process, and store actigraphy data from wearables (i.e., consumer- and medical-grade devices). It is worth noting that the same principles applied in consumer technology wearables for activity monitoring are also applied in clinical-research grade actigraphy devices, which also use accelerometers to collect and then derive data directly into proprietary sleep-wake variables.

## 4.7.1 SOURCE, ACQUISITION, DATA ABSTRACTION

## Data Source and Acquisition method

Most wearable companies offer different products that can extract high-resolution activity data and estimate sleep timing and other characteristics. Participants are required to wear their devices for at least a week to allow a relatively robust pattern of sleep-wake patterns, and concurrently complete a sleep diary. A consumer technology wearable is to be worn concurrently with a medical-grade actiwatch (see MES-CoBraD Protocol). Each device has a proprietary interface (check devices manual) for storage data on either a local application or a cloud-based platform, while other devices allow for API-based data sharing after consent is provided by a user (see Annex VIII).

Although many wearables now provide information beyond sleep-wake variables (e.g., total activity measures, burned calories, stress levels and others), for the purposes of MES-CoBraD, activity metrics and sleep related parameters are considered mandatory for acquisition and further analyses, whereas the rest are optional.

Activity data is plotted in a temporal manner, grouped in epochs that should be previously set by clinician for actigraphy devices, or follows proprietary algorithms for wearable devices. Several secondary variables can be derived from activity data. Primarily, those derived from periodogram analysis and cosine fitting curves like power, mesor, amplitude, and acrophase, provide critical information about subjects' rest-activity rhythms. Additional variables such as total daily activity, percentages of activity during the day and night, interdaily stability, intradaily variability, mean value of five consecutive hours with lowest activity, mean value of ten consecutive hours with highest activity, relative amplitude, and circadian function index are important to provide a more comprehensive characterisation of the rest-activity rhythm in subjects with complex brain disorders. Especially for sleep metrics, sleep onset, wakeup after sleep onset, time in bed, total sleep duration, sleep midpoint on work and free days, midpoint of sleep on free days corrected for sleep debt on workdays, are important. These variables will allow us to understand the main sleep characteristics affected in most CoBraD.

Important settings to be taken in consideration during activity data acquisition are the sampling frequency and the epoch length since they directly impact the output variables. These parameters cannot be controlled in wearable devices, but they need to be harmonized among sites regarding their actigraphy devices. Data is usually stored locally in the device or transferred to cloud services (check devices manual). Users may allow access to their consumer wearable data, which may be accessed and downloaded via API (see ANNEX VIII).





After download, activity data (.json files) need to be converted, cleaned, and processed (these steps could be performed using proprietary software, or algorithms from open-source programming languages like R and Python) before being imputed directly to platform.

## Data Abstraction

Activity data from wearables and actigraphy devices should be abstracted as:

- 1. Subject ID,
- 2. Site of collection,
- 3. Period of collection,
- 4. Type of wearable or actigraphy device,
- 5. Sampling rate,
- 6. Epoch length,
- 7. Type of data (

\*Variables described in ANNEX VIII.

## 4.7.2 QUALITY CONTROL

Partners from each study centre must evaluate activity data quality regarding parameters such as data extension (i.e., minimum of one week) and data continuity.

## 4.7.3 DATA STORAGE

Data from consumer technologies, multiple variables RWD (MVD), will be stored as coded results in JSON files according to chapter 3, and then directly uploaded to the platform.





## 5 REAL WORLD DATA SHARED PROTOCOL FOR THE PILOT DATA

Current state-of-the-art in evaluating people with CoBraD address a patient's specific complaint or syndromic presentation in isolation, not addressing other comorbidities or the multidisciplinary complexity of a syndrome. The lack of comprehensive assessments is one of the most important factors explaining delays in diagnosis as many patients are not aware and clinicians may overlook that a certain symptom is significant to mention in clinical practice, or are simply unaware of concerning signs.

We pursue the comprehensive assessment of CoBraD through the following novel clinical multidisciplinary multisource diagnostic protocol (Figure 5) that relies on optimising real-world practices, by integrating several modalities of RWD and their Metadata, allowing for deep-phenotyping of people with NCD, epilepsy, and sleep disorders, and assessment of their comorbidities, towards achieving precision and personalised medicine goals. Core pilot data will be acquired in a harmonized manner across sites, with additional types of RWD differing according to partner site specialization. The below clinical protocol for multisource multidisciplinary RWD acquisition and integration within and between CoBraD from multiple institutions addresses challenges of CoBraD underdiagnosis, misdiagnosis, suboptimal diagnosis, and delay in diagnosis of primary and comorbid CoBraD, by considering the complex multidimensional CoBraD pathophysiology and exploiting the combined expertise of leading researchers in their respective field from across Europe.



time

Figure 5: MES-CoBraD Multidisciplinary Multisource RWD Assessment Protocol. Core pilot data protocol acquired across MES-CoBraD clinical partners

RWD will be acquired from multiple sources and reflective of multiple disciplines of all CoBraD in a temporally structured flow within a week, to maximise their impact in deep-phenotyping of CoBraD. Baseline evaluation includes CSH and NPT administered during the daytime (within day NPT). Questionnaire data will be obtained in clinic or out-of-clinic by patients, caregivers, and clinicians. <u>A</u> consensus amongst expert systems supplemented by stakeholder feedback has identified the following CSH and NPT categories as ideally collected at baseline (see also Annex I):

- CSH- Participant Social History: Data on study partner, Nationality, Employment data, Bilinguilism, neurodevelopmental history, childhood stressors, education, housing and income, religiosity, healthcare utilization, dietary and other habits.
- > **CSH- Medical History**: Previous diagnoses, disabilities, surgeries, hospitalizations, allergies and medications.





- CSH- Chief Complaint (CC), History of Present Illness (HPI), and Review of CoBraD Systems (ROS): Data on present complaint, it's temporal progression, review of sleep, cognitive and seizure complaints through validated questionnaires and expert-derived question trees.
- NPT: Neuropsychological battery to include a single measure of global cognitive, episodic memory, language (naming), and visuospatial and multiple measures of executive function.
   (Use also of a pre and post sleep neuropsychological testing battery will be pursued during the PSG/EEG study.)
- > **Physical Exam**: A detailed neurological exam assessing the nervous system and craniofacial anatomy: mental status, cranial nerves, motor, sensory, coordination, gait.

The baseline assessment is followed by <u>a one-week multimodal assessment comprising brain rhythm</u> <u>physiology, cognitive and bio-sample assessments</u>. These RWD are significant on their own, but also of their temporal variability throughout the circadian rhythm indicating value for their assessment in a temporal manner. The protocol is as follows:

- > Wearable data +/- Medical Device Data Acquisition: Actigraphy and a sleep diary is administered on day 1 and assessed continuously throughout the week. If a person is using a medical device (e.g., CPAP, vagal nerve stimulator), their information will be captured as well.
- > Between 5-9 days of actigraphy testing, participants undergo an **overnight nested protocol**:
  - Between 6pm-9pm a pre-sleep cognitive assessment and blood sample draw
  - $\circ$   $\;$  Overnight neurophysiological testing comprising EEG, and PSG  $\;$
  - o Between 6am-9am a post sleep cognitive assessment and blood sample draw
  - Cognitive assessment is realized through a brief neuropsychological battery of sleep mediated cognitive function, comprised of both paper-based and tablet based tests.
  - Blood testing will be stored and processed for several neurodegenerative biomarkers including but not limited to: Aβ40, Aβ42, total-tau, p-tau181 and NfL

In addition to the above baseline and one-week multimodal assessment, additional RWD are acquired in an independent time frame, ideally within 2-3 months of the protocol, and include neuroimaging, biosample reports, wearable, and medical device data.





## **ANNEX I : Data Abstraction Categories**

## Section 1: H&P-based RWD categories

- 1. CC and HPI
- 2. ROS
- 3. FS / ADLs / IADLs
  - a. Driving
  - b. Cooking
  - c. Exercise and Diet
  - d. Financial management
  - e. Self-care
- 4. PMH and Development
  - a. ICD-x / DSM-y codes
  - b. Review of high-yield medical history
  - c. Review of diagnoses based on current and past medications
- 5. SH
  - a. Location of birth and growing up
  - b. Living and Relationship status
  - c. Religion
  - d. Education
  - e. School / employment history and status
  - f. Financial
  - g. Healthcare System and Utilisation
- 6. FH
  - a. Ancestry
  - b. Family Social Background
  - c. Family PMH
  - d. Review of high-yield medical history (e.g., CoBraD)
- 7. Medications
  - a. Current
    - i. Prescribed
    - ii. Day-to-day use
  - b. Historical
    - i. Review of medication class based on CCC (i.e., CoBraD)
- 8. Physical examination
  - a. General
    - i. Anthropometrics
  - b. HENT
    - i. Nasal
    - ii. Oral-Pharyngeal
    - iii. Frenulum length
    - iv. Tonsils
    - v. Jaw alignment (vs retrognathia)
    - vi. Palate shape
  - c. Cardiac
  - d. Respiratory
  - e. Neurological
    - i. Mental Status and Demeanour
    - ii. Cranial Nerves







- iii. Strength and Reflexes
- iv. Sensation and Perception
- v. Coordination and Balance
- 9. Neuropsychological Testing
  - a. Regulatory (Alertness, Attention, Processing speed)
  - b. Memory
  - c. Language
  - d. Visuospatial
  - e. Executive
  - f. Qualitative observations
- 10. Laboratory testing
  - a. Biosamples
  - b. Imaging
  - c. Neurophysiology

## Section 2: STS (Severity, Temporal, Spatial) categories

- 1. Severity
  - a. Presence
  - b. Severity
- 2. Chronic and Episodic Duration
  - a. Chronic duration
  - b. Episode duration
    - i. Usual
    - ii. Longest
- 3. Progression
  - a. Gradual
  - b. Stepwise
  - c. Stable
  - d. Relapsing Remitting
- 4. Frequency and Rhythmicity of Events
  - a. Frequency
  - b. Periodicity
- 5. Location
  - a. Body part (Ocular, Axial, Arms, Legs)
  - b. Symmetry
- 6. Symptom perception
  - a. Positive vs Negative

## Section 3: Complex chronic condition-specific categories (CoBraD-specific categories)

- 1. Cognition and Behaviour
  - a. Memory
    - i. Short-term memory
    - ii. Long-term memory
    - iii. Visual memory
    - iv. Verbal memory
  - b. Executive
    - i. Processing speed
    - ii. Attention and alertness
    - iii. Working memory



## D3.2



- iv. Planning and organisation
- v. Judgment and Complex Problem Solving
- vi. Cognitive Inhibition
- vii. Error monitoring
- viii. Set Shifting
- c. Language and Speech
  - i. Naming
  - ii. Semantic comprehension
  - iii. Praxis of speech / integrity of motor component of speech
  - iv. Grammar
  - v. Prosody
  - vi. Intensity (vs. hypophonia)
- d. Visual/Sensory Perceptual
  - i. Navigation
  - ii. Object Perception
  - iii. Movement Perception
  - iv. Auditory processing
- e. Mood
  - i. Anxiety
  - ii. Sadness
- f. Behaviour and Social Cognition
  - i. Social inhibition
  - ii. Empathy
  - iii. Motivation (vs. Apathy)
  - iv. Mental fluidity (vs. Rigidity and Perseveration)
  - v. Dietary habits (vs. Hyperorality)
- 2. Motor
  - a. Extrapyramidal
    - i. Bradykinesia and Freezing
    - ii. Rigidity
    - iii. Tremor
    - iv. Postural instability
    - v. Dystonia
    - vi. Myoclonus
    - vii. Chorea
  - b. Pyramidal
    - i. Limb-kinetic praxis
    - ii. UMN
    - iii. LMN
  - c. Coordination
    - i. Planning apraxia
    - ii. Chorea
    - iii. Cerebellar ataxia
    - iv. Myoclonus
    - v. Tardive dyskinesia
  - d. Perceptual
    - i. Sensory ataxia
- 3. Autonomic-Sensory-Perceptual
  - a. Temperature
  - b. Cardiovascular







- c. Gastrointestinal
- d. Olfaction
- e. Audition
- f. Vision
- g. Somesthesia
- h. Taste
- i. Proprioception
- 4. Sleep
  - a. Sleep Disordered Breathing
  - b. Insomnia
    - i. Sleep Onset
    - ii. Sleep Maintenance
    - iii. Early awakening
  - c. Hypersomnia and Hypersomnolence
    - i. Excessive Daytime Somnolence
    - ii. Excessive sleep time
  - d. Sleep-wake Rhythms
    - i. Infradian
    - ii. Circadian
    - iii. Ultradian
  - e. Sleep-related movements
    - i. Limb movements prior to sleep
  - f. Parasomnia and Dissociated State
    - i. NREM parasomnia
    - ii. REM parasomnia
    - iii. REM-wake dissociation
    - iv. NREM-wake dissociation
- 5. Epilepsy and Seizure Disorders
  - a. Premonitory aura symptoms
    - i. Character / Type
  - b. Seizure
    - i. Phenotype
      - 1. Focal vs Generalised
      - 2. Motor vs. Perceptual vs Autonomic
      - 3. Level of Alertness
    - ii. Triggers
  - c. Post-ictal
    - i. Injuries
    - ii. Cognitive / Behavioural deficits
    - iii. Praxis deficits
    - iv. Perceptual deficits
    - v. Autonomic and Urinary deficits

## Section 4 : Data Quality and Acquisition categories

- 1. Patient-caregiver effort and cooperation
- 2. Procedure quality
- 3. ID of target user of RWD (usually patient)
- 4. ID of user reporting RWD
- 5. ID of user entering RWD
- 6. Timing of RWD entry





# ANNEX II : Acquisition instruments for collecting clinical symptoms, history, physical exam and neuropsychology data

Bolded instruments are part of the across-site pilot acquisition protocol represented in chapter 5.

| RWD category                                                     | Sub categories                                          | Variable acquisition instruments                                                                                                       |
|------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
|                                                                  | Essential demographic , contact data and informant data | Part of intake questionnaire                                                                                                           |
|                                                                  | Social information                                      | Employment, Income, Housing, Education years,<br>Highest diploma, Religious Affinity, Developmental<br>history, Childhood trauma,      |
|                                                                  | Healthcare data                                         | Healthcare coverage/access to care/usual source of care                                                                                |
|                                                                  | Chief Complaint- Seizure                                | ASM Liverpool, SSQ                                                                                                                     |
| Clinical                                                         | Chief Complaint-Sleep                                   | Sleep Diary, PSQI, ESS, ISI, STOP-BANG, BNSQ,<br>MCTQ, rMEC                                                                            |
| symptoms<br>and history                                          | Chief Complaint-Cognitive &<br>Behavioural              | NPI-Q, NPI-12, CDR                                                                                                                     |
|                                                                  | Mood                                                    | GDS, HADS, PHQ-9, BDI, BAI                                                                                                             |
|                                                                  | Review of Systems (Neurological)                        | Ass in Annex I                                                                                                                         |
|                                                                  | Disability categories and questionnaires                | General Disability (eyesight, hearing, motor, recent<br>acute) , CDR, FAQ, QOLIE 35, TabCat BHS                                        |
|                                                                  | Habits                                                  | Smoking, Alcohol, Coffee, Illicit drug, Exercise, Diet                                                                                 |
|                                                                  | Family History                                          | As in Annex I                                                                                                                          |
|                                                                  | Physical exam                                           | As in Annex I                                                                                                                          |
|                                                                  | Global Cognition                                        | MMSE, MoCA, Addenbrook,                                                                                                                |
| Physical<br>Examination<br>and<br>Neuropsychol<br>ogical testing | Memory                                                  | CVLT short, CVLT standard, <b>CERAD,</b> WMS, <b>FCRST</b> ,<br>Sleep mediated memory consolidation, <b>TabCat</b><br><b>Favorites</b> |
|                                                                  | Executive                                               | Digit Span F&B, Phonemic Fluency, Category<br>Fluency (animals), TMT A, TMT B, Modified Trails,<br>Tabcat Match                        |





Visuospatial

Benson copy, RCFT (<65), VOSP (numbers), CERAD (figures), Poppelreuter, Clocks, CATS , TabCat Line orientation

Language

Boston naming 15 items





## ANNEX III : Examples of qualitative observations in NPT

Please check (yes/no) any qualitative observations you had during the neuropsychological evaluation, particularly if they impacted test results.

|       |                                                                                    | Mildly/not<br>impacting<br>performance | Impacting test performance |
|-------|------------------------------------------------------------------------------------|----------------------------------------|----------------------------|
|       | Tests were administered in subjects nonnative language                             |                                        |                            |
| ធ្ម   | Impaired vision                                                                    |                                        |                            |
| enei  | Impaired hearing                                                                   |                                        |                            |
| G     | External noise                                                                     |                                        |                            |
|       | Breaks in testing                                                                  |                                        |                            |
|       | Long pauses in responding / behavioral arrest                                      |                                        |                            |
|       | Slow processing speed/ Psychomotor retardation                                     |                                        |                            |
| F     | Tremor                                                                             |                                        |                            |
| Moto  | Limb paresis                                                                       |                                        |                            |
| ~     | Stutter or motor speech impairment                                                 |                                        |                            |
|       | Stereotypical behavior                                                             |                                        |                            |
|       | Echopraxia/ apraxia                                                                |                                        |                            |
|       | Agitation/motor unrest (e.g can't sit in chair or paces room frequently)           |                                        |                            |
|       | Circumlocution                                                                     |                                        |                            |
| ior   | Crying spells                                                                      |                                        |                            |
| Behav | Behavioral disinhibition                                                           |                                        |                            |
|       | Impulsivity                                                                        |                                        |                            |
|       | Low motivation                                                                     |                                        |                            |
|       | Error in comprehending instructions (as in severe cognitive impairment or aphasia) |                                        |                            |

Description:

Please write memorable quotes you think are relevant to highlight the subject's cognitive status:



#### **ANNEX IV :** Sampling Procedures flow chart CEREBROSPINAL FLUID WHOLE BLOOD Collecting Step PAXgene EDTA1 Regular tube (10ml) PST EDTA2 ▼ Participant ID SST Intervention ID Sample ID Aliquot ID Processing Step į Room temp. 2 hours Fast Freezing (Dry ice/EtOh) Homogenization by inversion (8x) emp. - 2h Room ter 30min -Freezer -20C 24 hours Centrifugation 2200 RCF(G) for 10 min at 20C Centrifugation 2000 RCF(G) 10 min at 4C or RT -----٠ Hematology keep it in dry ice (06x) 250 ul (06x) 500 ul keep it in dry ice (06x) 250 úl Ultra-Freezer -80C

Figure 6: Hemolytic indices following different degrees of hemolysis. Figure retrieved from Ni et al. 2021 DOI: 10.1002/jcla.23561



Figure 7 Hemolytic indices following different degrees of hemolysis. Figure retrieved from Ni et al. 2021 DOI: 10.1002/jcla.23561





# ANNEX V: Proteomic variables that can be measured from biological samples

| Neurology Panel |                                                                  |           |  |
|-----------------|------------------------------------------------------------------|-----------|--|
| Uniprot         | Protein name                                                     | Gene name |  |
| Q9H2W6          | 39S ribosomal protein L46, mitochondrial                         | MRPL46    |  |
| Q03393          | 6-pyruvoyl tetrahydrobiopterin synthase                          | PTS       |  |
| P07108          | Acyl-CoA-binding protein                                         | DBI       |  |
| P07741          | Adenine phosphoribosyltransferase                                | APRT      |  |
| 060242          | Adhesion G protein-coupled receptor B3                           | ADGRB3    |  |
| Q10588          | ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase 2                | BST1      |  |
| Q9UJY5          | ADP-ribosylation factor-binding protein GGA1                     | GGA1      |  |
| Q9UKK9          | ADP-sugar pyrophosphatase                                        | NUDT5     |  |
| Q9BYC5          | Alpha-                                                           | FUT8      |  |
| P30533          | Alpha-2-macroglobulin receptor-associated protein                | LRPAP1    |  |
| P06733          | Alpha-enolase                                                    | ENO1      |  |
| P02771          | Alpha-fetoprotein                                                | AFP       |  |
| Q9NZD4          | Alpha-hemoglobin-stabilizing protein                             | AHSP      |  |
| P40222          | Alpha-taxilin                                                    | TXLNA     |  |
| P05067          | Amyloid-beta precursor protein                                   | APP       |  |
| Q9UJ72          | Annexin A10                                                      | ANXA10    |  |
| P12429          | Annexin A3                                                       | ANXA3     |  |
| P08758          | Annexin A5                                                       | ANXA5     |  |
| 095994          | Anterior gradient protein 2 homolog                              | AGR2      |  |
| Q07812          | Apoptosis regulator BAX                                          | BAX       |  |
| P15289          | Arylsulfatase A                                                  | ARSA      |  |
| P07306          | Asialoglycoprotein receptor 1                                    | ASGR1     |  |
| P14868          | AspartatetRNA ligase, cytoplasmic                                | DARS1     |  |
| Q9UBB4          | Ataxin-10                                                        | ATXN10    |  |
| P48047          | ATP synthase subunit 0, mitochondrial                            | ATP5P0    |  |
| Q16740          | ATP-dependent Clp protease proteolytic subunit,<br>mitochondrial | CLPP      |  |
| Q4LE39          | AT-rich interactive domain-containing protein 4B                 | ARID4B    |  |
| 095817          | BAG family molecular chaperone regulator 3                       | BAG3      |  |
| P50895          | Basal cell adhesion molecule                                     | BCAM      |  |
| 043505          | Beta-1,4-glucuronyltransferase 1                                 | B4GAT1    |  |
| P02749          | Beta-2-glycoprotein 1                                            | APOH      |  |
| P16278          | Beta-galactosidase                                               | GLB1      |  |
| Q86Z14          | Beta-klotho                                                      | KLB       |  |
| P01138          | Beta-nerve growth factor                                         | NGF       |  |
| Q10589          | Bone marrow stromal antigen 2                                    | BST2      |  |
| P12644          | Bone morphogenetic protein 4                                     | BMP4      |  |
| Q96GW7          | Brevican core protein                                            | BCAN      |  |





| Q9UBW5 | Bridging integrator 2                            | BIN2    |
|--------|--------------------------------------------------|---------|
| Q2TAL6 | Brorin                                           | VWC2    |
| P55291 | Cadherin-15                                      | CDH15   |
| P22223 | Cadherin-3                                       | CDH3    |
| Q96JP9 | Cadherin-related family member 1                 | CDHR1   |
| P63098 | Calcineurin subunit B type 1                     | PPP3R1  |
| P01258 | Calcitonin [Cleaved into: Calcitonin; Katacalcin | CALCA   |
| Q9Y2V2 | Calcium-regulated heat-stable protein 1          | CARHSP1 |
| P22676 | Calretinin                                       | CALB2   |
| 094985 | Calsyntenin-1                                    | CLSTN1  |
| P00918 | Carbonic anhydrase 2                             | CA2     |
| P23280 | Carbonic anhydrase 6                             | CA6     |
| P48052 | Carboxypeptidase A2                              | CPA2    |
| P14384 | Carboxypeptidase M                               | CPM     |
| P29466 | Caspase-1                                        | CASP1   |
| Q92851 | Caspase-10                                       | CASP10  |
| P25774 | Cathepsin S                                      | CTSS    |
| P11717 | Cation-independent mannose-6-phosphate receptor  | IGF2R   |
| Q99731 | C-C motif chemokine 19                           | CCL19   |
| P13500 | C-C motif chemokine 2                            | CCL2    |
| 076076 | CCN family member 5                              | CCN5    |
| Q6YHK3 | CD109 antigen                                    | CD109   |
| Q8N6Q3 | CD177 antigen                                    | CD177   |
| P08962 | CD63 antigen                                     | CD63    |
| P14209 | CD99 antigen                                     | CD99    |
| Q8TCZ2 | CD99 antigen-like protein 2                      | CD99L2  |
| P41208 | Centrin-2                                        | CETN2   |
| Q9Y5P4 | Ceramide transfer protein                        | CERT    |
| Q9HD42 | Charged multivesicular body protein 1a           | CHMP1A  |
| P17538 | Chymotrypsinogen B                               | CTRB1   |
| Q9HAW4 | Claspin                                          | CLSPN   |
| Q08708 | CMRF35-like molecule 6                           | CD300C  |
| Q6UXG3 | CMRF35-like molecule 9                           | CD300LG |
| 014579 | Coatomer subunit epsilon                         | COPE    |
| Q6P1N0 | Coiled-coil and C2 domain-containing protein 1A  | CC2D1A  |
| P04118 | Colipase                                         | CLPS    |
| P45452 | Collagenase 3                                    | MMP13   |
| Q9P232 | Contactin-3                                      | CNTN3   |
| Q8IWV2 | Contactin-4                                      | CNTN4   |
| 094779 | Contactin-5                                      | CNTN5   |
| 014618 | Copper chaperone for superoxide dismutase        | CCS     |
| Q9P126 | C-type lectin domain family 1 member B           | CLEC1B  |
| Q8IUN9 | C-type lectin domain family 10 member A          | CLEC10A |
| 09Y240 | C-type lectin domain family 11 member A          | CLEC11A |





| Q86T13            | C-type lectin domain family 14 member A                        | CLEC14A   |
|-------------------|----------------------------------------------------------------|-----------|
| Q9H5V8            | CUB domain-containing protein 1                                | CDCP1     |
| 014625            | C-X-C motif chemokine 11                                       | CXCL11    |
| 043927            | C-X-C motif chemokine 13                                       | CXCL13    |
| P15336            | Cyclic AMP-dependent transcription factor ATF-2                | ATF2      |
| P28325            | Cystatin-D                                                     | CST5      |
| P52943            | Cysteine-rich protein 2                                        | CRIP2     |
| 095727            | Cytotoxic and regulatory T-cell molecule                       | CRTAM     |
| P78560            | Death domain-containing protein CRADD                          | CRADD     |
| Q14739            | Delta-14-SR                                                    | LBR       |
| Q02487            | Desmocollin-2                                                  | DSC2      |
| Q14126            | Desmoglein-2                                                   | DSG2      |
| 094907            | Dickkopf-related protein 1                                     | DKK1      |
| Q9UBT3            | Dickkopf-related protein 4                                     | DKK4      |
| P49789            | Dinucleosidetriphosphatase                                     | FHIT      |
| P16444            | Dipeptidase 1                                                  | DPEP1     |
| Q9P0K1            | Disintegrin and metalloproteinase domain-containing protein 22 | ADAM22    |
| P78325            | Disintegrin and metalloproteinase domain-containing protein 8  | ADAM8     |
| Q13426            | DNA repair protein XRCC4                                       | XRCC4     |
| Q8NBI3            | Draxin                                                         | DRAXIN    |
| P51452            | Dual specificity protein phosphatase 3                         | DUSP3     |
| 000399            | Dynactin subunit 6                                             | DCTN6     |
| Q6XZF7            | Dynamin-binding protein                                        | DNMBP     |
| Q9UKV5            | E3 ubiquitin-protein ligase AMFR                               | AMFR      |
| P14625            | Endoplasmin                                                    | HSP90B1   |
| P42892            | Endothelin-converting enzyme 1                                 | ECE1      |
| Q5JZY3            | Ephrin type-A receptor 10                                      | EPHA10    |
| 015197            | Ephrin type-B receptor 6                                       | EPHB6     |
| P20827            | Ephrin-A1                                                      | EFNA1     |
| P52798            | Ephrin-A4                                                      | EFNA4     |
| Q08345            | Epithelial discoidin domain-containing receptor 1              | DDR1      |
| P23588            | Eukaryotic translation initiation factor 4B                    | EIF4B     |
| P15311            | Ezrin                                                          | EZR       |
| Q01469            | Fatty acid-binding protein 5                                   | FABP5     |
| Q96RD9            | Fc receptor-like protein 5                                     | FCRL5     |
| P30043            | Flavin reductase                                               | BLVRB     |
| P14207            | Folate receptor beta                                           | FOLR2     |
| 095466            | Formin-like protein 1                                          | FMNL1     |
| P78423            | Fractalkine                                                    | CX3CL1    |
| Q9NQ88            | Fructose-2,6-bisphosphatase TIGAR                              | TIGAR     |
| 015117            | FYN-binding protein 1                                          | FYB1      |
| P21217_Q1112<br>8 | Galactoside 3_5                                                | FUT3_FUT5 |





| 000214 | Galectin-8                                                              | LGALS8  |
|--------|-------------------------------------------------------------------------|---------|
| P09104 | Gamma-enolase                                                           | ENO2    |
| 076070 | Gamma-synuclein                                                         | SNCG    |
| Q9NS71 | Gastrokine-1                                                            | GKN1    |
| 060609 | GDNF family receptor alpha-3                                            | GFRA3   |
| P39905 | Glial cell line-derived neurotrophic factor                             | GDNF    |
| P19440 | Glutathione hydrolase 1 proenzyme                                       | GGT1    |
| P36269 | Glutathione hydrolase 5 proenzyme                                       | GGT5    |
| P09211 | Glutathione S-transferase P                                             | GSTP1   |
| P09466 | Glycodelin                                                              | PAEP    |
| P01215 | Glycoprotein hormones alpha chain                                       | CGA     |
| Q9H1C3 | Glycosyltransferase 8 domain-containing protein 2                       | GLT8D2  |
| P78333 | Glypican-5 [Cleaved into: Secreted glypican-5]                          | GPC5    |
| Q92917 | G-patch domain and KOW motifs-containing protein                        | GPKOW   |
| P15509 | Granulocyte-macrophage colony-stimulating factor receptor subunit alpha | CSF2RA  |
| P22749 | Granulysin                                                              | GNLY    |
| 015496 | Group 10 secretory phospholipase A2                                     | PLA2G10 |
| Q02643 | Growth hormone-releasing hormone receptor                               | GHRHR   |
| Q96PP9 | Guanylate-binding protein 4                                             | GBP4    |
| Q02747 | Guanylin                                                                | GUCA2A  |
| P28906 | Hematopoietic progenitor cell antigen CD34                              | CD34    |
| P30519 | Heme oxygenase 2                                                        | HMOX2   |
| Q8TDQ0 | Hepatitis A virus cellular receptor 2                                   | HAVCR2  |
| P50135 | Histamine N-methyltransferase                                           | HNMT    |
| P12081 | HistidinetRNA ligase, cytoplasmic                                       | HARS1   |
| Q53H47 | Histone-lysine N-methyltransferase SETMAR                               | SETMAR  |
| P04233 | HLA class II histocompatibility antigen gamma chain                     | CD74    |
| Q6UXK2 | Immunoglobulin superfamily containing leucine-rich repeat protein 2     | ISLR2   |
| Q8NBJ7 | Inactive C-alpha-formylglycine-generating enzyme 2                      | SUMF2   |
| Q6UXH9 | Inactive serine protease PAMR1                                          | PAMR1   |
| Q13308 | Inactive tyrosine-protein kinase 7                                      | PTK7    |
| P55103 | Inhibin beta C chain                                                    | INHBC   |
| Q9UK53 | Inhibitor of growth protein 1                                           | ING1    |
| P29218 | Inositol monophosphatase 1                                              | IMPA1   |
| P22692 | Insulin-like growth factor-binding protein 4                            | IGFBP4  |
| P08648 | Integrin alpha-5                                                        | ITGA5   |
| P11215 | Integrin alpha-M                                                        | ITGAM   |
| Q9H0C8 | Integrin-linked kinase-associated serine/threonine phosphatase 2C       | ILKAP   |
| Q8WWN9 | Interactor protein for cytohesin exchange factors 1                     | IPCEF1  |
| P38484 | Interferon gamma receptor 2                                             | IFNGR2  |
| Q8IU54 | Interferon lambda-1                                                     | IFNL1   |
| 09NPH3 | Interleukin-1 receptor accessory protein                                | IL1RAP  |





| P14778                                                   | Interleukin-1 receptor type 1                                                                                                                                                                                                                                                                                           | IL1R1                                                             |
|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Q96F46                                                   | Interleukin-17 receptor A                                                                                                                                                                                                                                                                                               | IL17RA                                                            |
| 095256                                                   | Interleukin-18 receptor accessory protein                                                                                                                                                                                                                                                                               | IL18RAP                                                           |
| Q6ZMJ4                                                   | Interleukin-34                                                                                                                                                                                                                                                                                                          | IL34                                                              |
| P05231                                                   | Interleukin-6                                                                                                                                                                                                                                                                                                           | IL6                                                               |
| P16871                                                   | Interleukin-7 receptor subunit alpha                                                                                                                                                                                                                                                                                    | IL7R                                                              |
| P10145                                                   | Interleukin-8                                                                                                                                                                                                                                                                                                           | CXCL8                                                             |
| Q9BXS1                                                   | Isopentenyl-diphosphate delta-isomerase 2                                                                                                                                                                                                                                                                               | IDI2                                                              |
| P26440                                                   | Isovaleryl-CoA dehydrogenase, mitochondrial                                                                                                                                                                                                                                                                             | IVD                                                               |
| Q9Y624                                                   | Junctional adhesion molecule A                                                                                                                                                                                                                                                                                          | F11R                                                              |
| P57087                                                   | Junctional adhesion molecule B                                                                                                                                                                                                                                                                                          | JAM2                                                              |
| P23276                                                   | Kell blood group glycoprotein                                                                                                                                                                                                                                                                                           | KEL                                                               |
| P02533                                                   | Keratin, type I cytoskeletal 14                                                                                                                                                                                                                                                                                         | KRT14                                                             |
| P13647                                                   | Keratin, type II cytoskeletal 5                                                                                                                                                                                                                                                                                         | KRT5                                                              |
| Q6UWL6                                                   | Kin of IRRE-like protein 2                                                                                                                                                                                                                                                                                              | KIRREL2                                                           |
| 043278                                                   | Kunitz-type protease inhibitor 1                                                                                                                                                                                                                                                                                        | SPINT1                                                            |
| Q6PIL6                                                   | Kv channel-interacting protein 4                                                                                                                                                                                                                                                                                        | KCNIP4                                                            |
| Q08431                                                   | Lactadherin                                                                                                                                                                                                                                                                                                             | MFGE8                                                             |
| P22079                                                   | Lactoperoxidase                                                                                                                                                                                                                                                                                                         | LPO                                                               |
| Q9BS40                                                   | Latexin                                                                                                                                                                                                                                                                                                                 | LXN                                                               |
| Q6UX15                                                   | Layilin                                                                                                                                                                                                                                                                                                                 | LAYN                                                              |
| 043155                                                   | Leucine-rich repeat transmembrane protein FLRT2                                                                                                                                                                                                                                                                         | FLRT2                                                             |
| P15018                                                   | Leukemia inhibitory factor                                                                                                                                                                                                                                                                                              | LIF                                                               |
| P30740                                                   | Leukocyte elastase inhibitor                                                                                                                                                                                                                                                                                            | SERPINB1                                                          |
| Q8N149                                                   | Leukocyte immunoglobulin-like receptor subfamily A member 2                                                                                                                                                                                                                                                             | LILRA2                                                            |
| Q6ISS4                                                   | Leukocyte-associated immunoglobulin-like receptor 2                                                                                                                                                                                                                                                                     | LAIR2                                                             |
| Q6P1M0                                                   | Long-chain fatty acid transport protein 4                                                                                                                                                                                                                                                                               | SLC27A4                                                           |
| P06734                                                   | Low affinity immunoglobulin epsilon Fc receptor                                                                                                                                                                                                                                                                         | FCER2                                                             |
| Q14696                                                   | LRP chaperone MESD                                                                                                                                                                                                                                                                                                      | MESD                                                              |
| P05455                                                   | Lupus La protein                                                                                                                                                                                                                                                                                                        | SSB                                                               |
| Q8N2G4                                                   | Ly6/PLAUR domain-containing protein 1                                                                                                                                                                                                                                                                                   | LYPD1                                                             |
| Q9Y6Y9                                                   | Lymphocyte antigen 96                                                                                                                                                                                                                                                                                                   | LY96                                                              |
| Q14108                                                   | Lysosome membrane protein 2                                                                                                                                                                                                                                                                                             | SCARB2                                                            |
| P13473                                                   | Lysosome-associated membrane glycoprotein 2                                                                                                                                                                                                                                                                             | LAMP2                                                             |
| P14174                                                   | Maaranhaga migratian inhibitary factor                                                                                                                                                                                                                                                                                  |                                                                   |
| P21757                                                   | Macrophage migration inhibitory ractor                                                                                                                                                                                                                                                                                  | MIF                                                               |
|                                                          | Macrophage scavenger receptor types I and II                                                                                                                                                                                                                                                                            | MIF<br>MSR1                                                       |
| Q8NFP4                                                   | Macrophage migration inhibitory factor<br>Macrophage scavenger receptor types I and II<br>MAM domain-containing glycosylphosphatidylinositol anchor<br>protein 1                                                                                                                                                        | MIF<br>MSR1<br>MDGA1                                              |
| Q8NFP4<br>P48740                                         | Macrophage migration inhibitory factor<br>Macrophage scavenger receptor types I and II<br>MAM domain-containing glycosylphosphatidylinositol anchor<br>protein 1<br>Mannan-binding lectin serine protease 1                                                                                                             | MIF<br>MSR1<br>MDGA1<br>MASP1                                     |
| Q8NFP4<br>P48740<br>015232                               | Macrophage migration inhibitory factor<br>Macrophage scavenger receptor types I and II<br>MAM domain-containing glycosylphosphatidylinositol anchor<br>protein 1<br>Mannan-binding lectin serine protease 1<br>Matrilin-3                                                                                               | MIF<br>MSR1<br>MDGA1<br>MASP1<br>MATN3                            |
| Q8NFP4<br>P48740<br>015232<br>P14780                     | Macrophage migration inhibitory factor<br>Macrophage scavenger receptor types I and II<br>MAM domain-containing glycosylphosphatidylinositol anchor<br>protein 1<br>Mannan-binding lectin serine protease 1<br>Matrilin-3<br>Matrix metalloproteinase-9                                                                 | MIF<br>MSR1<br>MDGA1<br>MASP1<br>MATN3<br>MMP9                    |
| Q8NFP4<br>P48740<br>015232<br>P14780<br>Q99727           | Macrophage migration inhibitory factor<br>Macrophage scavenger receptor types I and II<br>MAM domain-containing glycosylphosphatidylinositol anchor<br>protein 1<br>Mannan-binding lectin serine protease 1<br>Matrilin-3<br>Matrix metalloproteinase-9<br>Metalloproteinase inhibitor 4                                | MIF<br>MSR1<br>MDGA1<br>MASP1<br>MATN3<br>MMP9<br>TIMP4           |
| Q8NFP4<br>P48740<br>015232<br>P14780<br>Q99727<br>P53582 | Macrophage migration inhibitory factor<br>Macrophage scavenger receptor types I and II<br>MAM domain-containing glycosylphosphatidylinositol anchor<br>protein 1<br>Mannan-binding lectin serine protease 1<br>Matrilin-3<br>Matrix metalloproteinase-9<br>Metalloproteinase inhibitor 4<br>Methionine aminopeptidase 1 | MIF<br>MSR1<br>MDGA1<br>MASP1<br>MATN3<br>MMP9<br>TIMP4<br>METAP1 |





| P20774 | Mimecan                                                          | OGN      |
|--------|------------------------------------------------------------------|----------|
| Q8WV92 | MIT domain-containing protein 1                                  | MITD1    |
| Q9Y4K4 | Mitogen-activated protein kinase kinase kinase kinase 5          | MAP4K5   |
| Q9Y6D9 | Mitotic spindle assembly checkpoint protein MAD1                 | MAD1L1   |
| P53985 | Monocarboxylate transporter 1                                    | SLC16A1  |
| Q9H3R2 | Mucin-13                                                         | MUC13    |
| P05164 | Myeloperoxidase                                                  | MPO      |
| Q99972 | Myocilin                                                         | MYOC     |
| Q02083 | N-acylethanolamine-hydrolyzing acid amidase                      | NAAA     |
| Q9NXA8 | NAD-dependent protein deacylase sirtuin-5, mitochondrial         | SIRT5    |
| 000308 | NEDD4-like E3 ubiquitin-protein ligase WWP2                      | WWP2     |
| 015394 | Neural cell adhesion molecule 2                                  | NCAM2    |
| P58417 | Neurexophilin-1                                                  | NXPH1    |
| 014594 | Neurocan core protein                                            | NCAN     |
| P07196 | Neurofilament light polypeptide                                  | NEFL     |
| Q15818 | Neuronal pentraxin-1                                             | NPTX1    |
| 060462 | Neuropilin-2                                                     | NRP2     |
| Q9NR71 | Neutral ceramidase                                               | ASAH2    |
| P22894 | Neutrophil collagenase                                           | MMP8     |
| Q9HAN9 | Nicotinamide/nicotinic acid mononucleotide adenylyltransferase 1 | NMNAT1   |
| Q14112 | Nidogen-2                                                        | NID2     |
| P29475 | Nitric oxide synthase, brain                                     | NOS1     |
| P29474 | Nitric oxide synthase, endothelial                               | NOS3     |
| Q15155 | Nodal modulator 1                                                | NOM01    |
| Q9UNZ2 | NSFL1 cofactor p47                                               | NSFL1C   |
| Q16288 | NT-3 growth factor receptor                                      | NTRK3    |
| P06748 | Nucleophosmin                                                    | NPM1     |
| A1E959 | Odontogenic ameloblast-associated protein                        | ODAM     |
| Q9NPH6 | Odorant-binding protein 2b                                       | OBP2B    |
| P01178 | Oxytocin-neurophysin 1                                           | OXT      |
| Q9UKJ1 | Paired immunoglobulin-like type 2 receptor alpha                 | PILRA    |
| Q99497 | Parkinson disease protein 7                                      | PARK7    |
| P49023 | Paxillin                                                         | PXN      |
| Q02790 | Peptidyl-prolyl cis-trans isomerase FKBP4                        | FKBP4    |
| Q13451 | Peptidyl-prolyl cis-trans isomerase FKBP5                        | FKBP5    |
| Q9Y680 | Peptidyl-prolyl cis-trans isomerase FKBP7                        | FKBP7    |
| 060240 | Perilipin-1                                                      | PLIN1    |
| Q06830 | Peroxiredoxin-1                                                  | PRDX1    |
| P30039 | Phenazine biosynthesis-like domain-containing protein            | PBLD     |
| P30086 | Phosphatidylethanolamine-binding protein 1                       | PEBP1    |
| P60484 | Phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase           | PTEN     |
| Q8TCT1 | Phosphoethanolamine/phosphocholine phosphatase                   | PHOSPH01 |
| Q96FE7 | Phosphoinositide-3-kinase-interacting protein 1                  | PIK3IP1  |
| 014523 | Phospholipid transfer protein C2CD2L                             | C2CD2L   |
|        |                                                                  |          |





| Q15126 | Phosphomevalonate kinase                                | PMVK     |
|--------|---------------------------------------------------------|----------|
| Q96CD2 | Phosphopantothenoylcysteine decarboxylase               | PPCDC    |
| Q9NRG1 | Phosphoribosyltransferase domain-containing protein 1   | PRTFDC1  |
| P16284 | Platelet endothelial cell adhesion molecule             | PECAM1   |
| Q9HCN6 | Platelet glycoprotein VI                                | GP6      |
| Q13093 | Platelet-activating factor acetylhydrolase              | PLA2G7   |
| P15151 | Poliovirus receptor                                     | PVR      |
| P01833 | Polymeric immunoglobulin receptor                       | PIGR     |
| Q9UHV9 | Prefoldin subunit 2                                     | PFDN2    |
| P11464 | Pregnancy-specific beta-1-glycoprotein 1                | PSG1     |
| P51531 | Probable global transcription activator SNF2L2          | SMARCA2  |
| 014944 | Proepiregulin [Cleaved into: Epiregulin                 | EREG     |
| Q9NZQ7 | Programmed cell death 1 ligand 1                        | CD274    |
| 014737 | Programmed cell death protein 5                         | PDCD5    |
| P28799 | Progranulin                                             | GRN      |
| P01236 | Prolactin                                               | PRL      |
| Q96B36 | Proline-rich AKT1 substrate 1                           | AKT1S1   |
| Q06323 | Proteasome activator complex subunit 1                  | PSME1    |
| Q9UL46 | Proteasome activator complex subunit 2                  | PSME2    |
| Q96IU4 | Protein ABHD14B                                         | ABHD14B  |
| Q8WUW1 | Protein BRICK1                                          | BRK1     |
| Q9NSK7 | Protein C19orf12                                        | C19orf12 |
| P53539 | Protein fosB                                            | FOSB     |
| Q6P4E1 | Protein GOLM2                                           | GOLM2    |
| P61244 | Protein max                                             | MAX      |
| Q92597 | Protein NDRG1                                           | NDRG1    |
| Q96FQ6 | Protein S100-A16                                        | S100A16  |
| Q9UM07 | Protein-arginine deiminase type-4                       | PADI4    |
| P20936 | Ras GTPase-activating protein 1                         | RASA1    |
| Q9NRW1 | Ras-related protein Rab-6B                              | RAB6B    |
| 000559 | Receptor-binding cancer antigen expressed on SiSo cells | EBAG9    |
| Q92932 | Receptor-type tyrosine-protein phosphatase N2           | PTPRN2   |
| Q96B86 | Repulsive guidance molecule A                           | RGMA     |
| P00352 | Retinal dehydrogenase 1                                 | ALDH1A1  |
| Q6NW40 | RGM domain family member B                              | RGMB     |
| P08134 | Rho-related GTP-binding protein RhoC                    | RHOC     |
| Q9H477 | Ribokinase                                              | RBKS     |
| Q15633 | RISC-loading complex subunit TARBP2                     | TARBP2   |
| Q9HCK4 | Roundabout homolog 2                                    | ROBO2    |
| Q2MKA7 | R-spondin-1                                             | RSP01    |
| Q9H446 | RWD domain-containing protein 1                         | RWDD1    |
| Q6ZMJ2 | Scavenger receptor class A member 5                     | SCARA5   |
| Q8WTV0 | Scavenger receptor class B member 1                     | SCARB1   |
| Q96GP6 | Scavenger receptor class F member 2                     | SCARF2   |





| Q86VW0 | SEC14 domain and spectrin repeat-containing protein 1 | SESTD1   |
|--------|-------------------------------------------------------|----------|
| Q8N474 | Secreted frizzled-related protein 1                   | SFRP1    |
| Q92765 | Secreted frizzled-related protein 3                   | FRZB     |
| P05060 | Secretogranin-1                                       | CHGB     |
| Q92854 | Semaphorin-4D                                         | SEMA4D   |
| P00995 | Serine protease inhibitor Kazal-type 1                | SPINK1   |
| Q9NQ38 | Serine protease inhibitor Kazal-type 5                | SPINK5   |
| Q9Y6E0 | Serine/threonine-protein kinase 24                    | STK24    |
| 096013 | Serine/threonine-protein kinase PAK 4                 | PAK4     |
| P37023 | Serine/threonine-protein kinase receptor R3           | ACVRL1   |
| Q9BRF8 | Serine/threonine-protein phosphatase CPPED1           | CPPED1   |
| P35237 | Serpin B6                                             | SERPINB6 |
| P50453 | Serpin B9                                             | SERPINB9 |
| Q6ZMC9 | Sialic acid-binding Ig-like lectin 15                 | SIGLEC15 |
| 015389 | Sialic acid-binding Ig-like lectin 5                  | SIGLEC5  |
| Q04900 | Sialomucin core protein 24                            | CD164    |
| 094813 | Slit homolog 2 protein                                | SLIT2    |
| P17405 | Sphingomyelin phosphodiesterase                       | SMPD1    |
| Q86WV1 | Src kinase-associated phosphoprotein 1                | SKAP1    |
| 095630 | STAM-binding protein                                  | STAMBP   |
| P52823 | Stanniocalcin-1                                       | STC1     |
| 076061 | Stanniocalcin-2                                       | STC2     |
| P31948 | Stress-induced-phosphoprotein 1                       | STIP1    |
| P08254 | Stromelysin-1                                         | MMP3     |
| P50225 | Sulfotransferase 1A1                                  | SULT1A1  |
| P04179 | Superoxide dismutase [Mn], mitochondrial              | SOD2     |
| Q9UGT4 | Sushi domain-containing protein 2                     | SUSD2    |
| Q9HA65 | TBC1 domain family member 17                          | TBC1D17  |
| P56279 | T-cell leukemia/lymphoma protein 1A                   | TCL1A    |
| P01732 | T-cell surface glycoprotein CD8 alpha chain           | CD8A     |
| Q92752 | Tenascin-R                                            | TNR      |
| P22105 | Tenascin-X                                            | TNXB     |
| P13385 | Teratocarcinoma-derived growth factor 1               | TDGF1    |
| Q08629 | Testican-1                                            | SPOCK1   |
| Q8NBS9 | Thioredoxin domain-containing protein 5               | TXNDC5   |
| Q16881 | Thioredoxin reductase 1, cytoplasmic                  | TXNRD1   |
| Q16762 | Thiosulfate sulfurtransferase                         | TST      |
| P35442 | Thrombospondin-2                                      | THBS2    |
| P04216 | Thy-1 membrane glycoprotein                           | THY1     |
| P63313 | Thymosin beta-10                                      | TMSB10   |
| Q9H3S3 | Transmembrane protease serine 5                       | TMPRSS5  |
| P04155 | Trefoil factor 1                                      | TFF1     |
| Q5T2D2 | Trem-like transcript 2 protein                        | TREML2   |
| P23381 | TryptophantRNA ligase, cytoplasmic                    | WARS     |





| Q9BW30  | Tubulin polymerization-promoting protein family member 3                   | TPPP3     |
|---------|----------------------------------------------------------------------------|-----------|
| Q99426  | Tubulin-folding cofactor B                                                 | TBCB      |
| Q15814  | Tubulin-specific chaperone C                                               | TBCC      |
| Q9Y2W6  | Tudor and KH domain-containing protein                                     | TDRKH     |
| P01375  | Tumor necrosis factor                                                      | TNF       |
| 043557  | Tumor necrosis factor ligand superfamily member 14                         | TNFSF14   |
| 000220  | Tumor necrosis factor receptor superfamily member 10A                      | TNFRSF10A |
| 014763  | Tumor necrosis factor receptor superfamily member 10B                      | TNFRSF10B |
| Q969Z4  | Tumor necrosis factor receptor superfamily member 19L                      | RELT      |
| P19438  | Tumor necrosis factor receptor superfamily member 1A                       | TNFRSF1A  |
| P20333  | Tumor necrosis factor receptor superfamily member 1B                       | TNFRSF1B  |
| 075509  | Tumor necrosis factor receptor superfamily member 21                       | TNFRSF21  |
| 095407  | Tumor necrosis factor receptor superfamily member 6B                       | TNFRSF6B  |
| P28908  | Tumor necrosis factor receptor superfamily member 8                        | TNFRSF8   |
| Q07011  | Tumor necrosis factor receptor superfamily member 9                        | TNFRSF9   |
| P09769  | Tyrosine-protein kinase Fgr                                                | FGR       |
| P18031  | Tyrosine-protein phosphatase non-receptor type 1                           | PTPN1     |
| Q9BZM5  | UL16-binding protein 2                                                     | ULBP2     |
| P00749  | Urokinase-type plasminogen activator                                       | PLAU      |
| Q9NP79  | Vacuolar protein sorting-associated protein VTA1 homolog                   | VTA1      |
| P13611  | Versican core protein                                                      | VCAN      |
| Q9Y279  | V-set and immunoglobulin domain-containing protein 4                       | VSIG4     |
| Q6UX27  | V-set and transmembrane domain-containing protein 1                        | VSTM1     |
| Q16864  | V-type proton ATPase subunit F                                             | ATP6V1F   |
| Q96NZ8  | WAP, Kazal, immunoglobulin, Kunitz and NTR domain-<br>containing protein 1 | WFIKKN1   |
| Q9UPY6  | Wiskott-Aldrich syndrome protein family member 3                           | WASF3     |
| Q15043  | Zinc transporter ZIP14                                                     | SLC39A14  |
|         | Cardiometabolic Panel                                                      |           |
| Uniprot | Protein name                                                               | Gene name |
| Q76LX8  | A disintegrin and metalloproteinase with thrombospondin motifs 13          | ADAMTS13  |
| Q8TE57  | A disintegrin and metalloproteinase with thrombospondin motifs 16          | ADAMTS16  |
| P62736  | Actin, aortic smooth muscle                                                | ACTA2     |
| Q9NZK5  | Adenosine deaminase 2                                                      | ADA2      |
| P23526  | Adenosylhomocysteinase                                                     | AHCY      |
| P00568  | Adenylate kinase isoenzyme 1                                               | AK1       |
| P48960  | Adhesion G protein-coupled receptor E5                                     | ADGRE5    |
| Q8IZP9  | Adhesion G-protein coupled receptor G2                                     | ADGRG2    |
| P16112  | Aggrecan core protein                                                      | ACAN      |
| P17516  | Aldo-keto reductase family 1 member C4                                     | AKR1C4    |
| P08319  | All-trans-retinol dehydrogenase [NAD                                       | ADH4      |
| P19961  | Alpha-amylase 2B                                                           | AMY2B     |
| 003154  | Aminoacylase-1                                                             | ACY1      |



## D3.2

Project Manual – CoBraD RWD, Updated MES-CoBraD Protocols and Quality and Quantity (Q&Q Evaluation – v2



| P15144 | Aminopeptidase N                                                          | ANPEP   |
|--------|---------------------------------------------------------------------------|---------|
| P51693 | Amyloid-like protein 1                                                    | APLP1   |
| P03950 | Angiogenin                                                                | ANG     |
| 095841 | Angiopoietin-related protein 1                                            | ANGPTL1 |
| Q9Y5C1 | Angiopoietin-related protein 3                                            | ANGPTL3 |
| Q9BYF1 | Angiotensin-converting enzyme 2                                           | ACE2    |
| P09525 | Annexin A4                                                                | ANXA4   |
| 095445 | Apolipoprotein M                                                          | APOM    |
| Q9UBU3 | Appetite-regulating hormone                                               | GHRL    |
| P20711 | Aromatic-L-amino-acid decarboxylase                                       | DDC     |
| P20160 | Azurocidin                                                                | AZU1    |
| P98160 | Basement membrane-specific heparan sulfate proteoglycan core protein      | HSPG2   |
| Q16620 | BDNF/NT-3 growth factors receptor                                         | NTRK2   |
| Q96KN2 | Beta-Ala-His dipeptidase                                                  | CNDP1   |
| P15907 | Beta-galactoside alpha-2,6-sialyltransferase 1                            | ST6GAL1 |
| P08236 | Beta-glucuronidase                                                        | GUSB    |
| P08118 | Beta-microseminoprotein                                                   | MSMB    |
| P34913 | Bifunctional epoxide hydrolase 2 [Includes: Cytosolic epoxide hydrolase 2 | EPHX2   |
| Q13867 | Bleomycin hydrolase                                                       | BLMH    |
| P22004 | Bone morphogenetic protein 6                                              | BMP6    |
| Q8TDL5 | BPI fold-containing family B member 1                                     | BPIFB1  |
| Q9BWV1 | Brother of CDO                                                            | BOC     |
| P12830 | Cadherin-1                                                                | CDH1    |
| Q12864 | Cadherin-17                                                               | CDH17   |
| P19022 | Cadherin-2                                                                | CDH2    |
| P33151 | Cadherin-5                                                                | CDH5    |
| P55285 | Cadherin-6                                                                | CDH6    |
| Q9HBB8 | Cadherin-related family member 5                                          | CDHR5   |
| P10644 | cAMP-dependent protein kinase type I-alpha regulatory subunit             | PRKAR1A |
| P00915 | Carbonic anhydrase 1                                                      | CA1     |
| Q8N1Q1 | Carbonic anhydrase 13                                                     | CA13    |
| P07451 | Carbonic anhydrase 3                                                      | CA3     |
| P22748 | Carbonic anhydrase 4                                                      | CA4     |
| P35218 | Carbonic anhydrase 5A, mitochondrial                                      | CA5A    |
| P15085 | Carboxypeptidase A1                                                       | CPA1    |
| P15086 | Carboxypeptidase B                                                        | CPB1    |
| P31997 | Carcinoembryonic antigen-related cell adhesion molecule 8                 | CEACAM8 |
| Q16619 | Cardiotrophin-1                                                           | CTF1    |
| Q9NQ79 | Cartilage acidic protein 1                                                | CRTAC1  |
| P49747 | Cartilage oligomeric matrix protein                                       | COMP    |
| P42574 | Caspase-3                                                                 | CASP3   |
| P21964 | Catechol O-methyltransferase                                              | COMT    |



## D3.2

Project Manual – CoBraD RWD, Updated MES-CoBraD Protocols and Quality and Quantity (Q&Q Evaluation – v2



| P07858 | Cathepsin B                                            | CTSB    |
|--------|--------------------------------------------------------|---------|
| P07339 | Cathepsin D                                            | CTSD    |
| P07711 | Cathepsin L1                                           | CTSL    |
| Q9UBR2 | Cathepsin Z                                            | CTSZ    |
| Q16627 | C-C motif chemokine 14                                 | CCL14   |
| Q16663 | C-C motif chemokine 15                                 | CCL15   |
| 015467 | C-C motif chemokine 16                                 | CCL16   |
| P55774 | C-C motif chemokine 18                                 | CCL18   |
| Q9Y4X3 | C-C motif chemokine 27                                 | CCL27   |
| P13501 | C-C motif chemokine 5                                  | CCL5    |
| P17676 | CCAAT/enhancer-binding protein beta                    | CEBPB   |
| P48745 | CCN family member 3                                    | CCN3    |
| Q13740 | CD166 antigen                                          | ALCAM   |
| Q9NNX6 | CD209 antigen                                          | CD209   |
| Q9Y5K6 | CD2-associated protein                                 | CD2AP   |
| P13987 | CD59 glycoprotein                                      | CD59    |
| Q99674 | Cell growth regulator with EF hand domain protein 1    | CGREF1  |
| P43121 | Cell surface glycoprotein MUC18                        | MCAM    |
| 095684 | Centrosomal protein 43                                 | CEP43   |
| P36222 | Chitinase-3-like protein 1                             | CHI3L1  |
| Q13231 | Chitotriosidase-1                                      | CHIT1   |
| Q6WN34 | Chordin-like protein 2                                 | CHRDL2  |
| P09093 | Chymotrypsin-like elastase family member 3A            | CELA3A  |
| P09496 | Clathrin light chain A                                 | CLTA    |
| Q15846 | Clusterin-like protein 1                               | CLUL1   |
| P00740 | Coagulation factor IX                                  | F9      |
| P08709 | Coagulation factor VII                                 | F7      |
| P27352 | Cobalamin binding intrinsic factor                     | CBLIF   |
| Q76M96 | Coiled-coil domain-containing protein 80               | CCDC80  |
| P02462 | Collagen alpha-1                                       | COL4A1  |
| P39060 | Collagen alpha-1                                       | COL18A1 |
| P02452 | Collagen alpha-1                                       | COL1A1  |
| P12111 | Collagen alpha-3                                       | COL6A3  |
| Q9BXJ1 | Complement C1q tumor necrosis factor-related protein 1 | C1QTNF1 |
| P06681 | Complement C2                                          | C2      |
| Q9NPY3 | Complement component C1q receptor                      | CD93    |
| P08174 | Complement decay-accelerating factor                   | CD55    |
| P20023 | Complement receptor type 2                             | CR2     |
| 043186 | Cone-rod homeobox protein                              | CRX     |
| Q6PJW8 | Consortin                                              | CNST    |
| Q12860 | Contactin-1                                            | CNTN1   |
| P31146 | Coronin-1A                                             | CORO1A  |
| P34998 | Corticotropin-releasing factor receptor 1              | CRHR1   |
| Q8NC01 | C-type lectin domain family 1 member A                 | CLEC1A  |



| 000        |
|------------|
| MES-CoBraD |

| Q9NY25 | C-type lectin domain family 5 member A                              | CLEC5A   |
|--------|---------------------------------------------------------------------|----------|
| Q9H2A7 | C-X-C motif chemokine 16                                            | CXCL16   |
| P42830 | C-X-C motif chemokine 5                                             | CXCL5    |
| P04080 | Cystatin-B                                                          | CSTB     |
| P01034 | Cystatin-C                                                          | CST3     |
| Q15828 | Cystatin-M                                                          | CST6     |
| Q9H773 | dCTP pyrophosphatase 1                                              | DCTPP1   |
| P07585 | Decorin                                                             | DCN      |
| Q07507 | Dermatopontin                                                       | DPT      |
| Q9NR28 | Diablo homolog, mitochondrial                                       | DIABLO   |
| Q9UBP4 | Dickkopf-related protein 3                                          | DKK3     |
| P09417 | Dihydropteridine reductase                                          | QDPR     |
| Q9UHL4 | Dipeptidyl peptidase 2                                              | DPP7     |
| P27487 | Dipeptidyl peptidase 4                                              | DPP4     |
| Q13444 | Disintegrin and metalloproteinase domain-containing protein 15      | ADAM15   |
| Q8NHS0 | DnaJ homolog subfamily B member 8                                   | DNAJB8   |
| 060496 | Docking protein 2                                                   | DOK2     |
| Q9NRD8 | Dual oxidase 2                                                      | DUOX2    |
| Q07108 | Early activation antigen CD69                                       | CD69     |
| Q13508 | Ecto-ADP-ribosyltransferase 3                                       | ART3     |
| 075356 | Ectonucleoside triphosphate diphosphohydrolase 5                    | ENTPD5   |
| 075354 | Ectonucleoside triphosphate diphosphohydrolase 6                    | ENTPD6   |
| Q13822 | Ectonucleotide pyrophosphatase/phosphodiesterase family<br>member 2 | ENPP2    |
| Q12805 | EGF-containing fibulin-like extracellular matrix protein 1          | EFEMP1   |
| 043854 | EGF-like repeat and discoidin I-like domain-containing protein 3    | EDIL3    |
| P19957 | Elafin                                                              | PI3      |
| P17813 | Endoglin                                                            | ENG      |
| Q53H82 | Endoribonuclease LACTB2                                             | LACTB2   |
| Q96AP7 | Endothelial cell-selective adhesion molecule                        | ESAM     |
| P12724 | Eosinophil cationic protein                                         | RNASE3   |
| P54760 | Ephrin type-B receptor 4                                            | EPHB4    |
| P00533 | Epidermal growth factor receptor                                    | EGFR     |
| P16581 | E-selectin                                                          | SELE     |
| Q13541 | Eukaryotic translation initiation factor 4E-binding protein 1       | EIF4EBP1 |
| Q13158 | FAS-associated death domain protein                                 | FADD     |
| P15090 | Fatty acid-binding protein, adipocyte                               | FABP4    |
| P12104 | Fatty acid-binding protein, intestinal                              | FABP2    |
| Q96LA6 | Fc receptor-like protein 1                                          | FCRL1    |
| Q9UGM5 | Fetuin-B                                                            | FETUB    |
| Q15485 | Ficolin-2                                                           | FCN2     |
| P09467 | Fructose-1,6-bisphosphatase 1                                       | FBP1     |
| P34947 | G protein-coupled receptor kinase 5                                 | GRK5     |



## D3.2

Project Manual – CoBraD RWD, Updated MES-CoBraD Protocols and Quality and Quantity (Q&Q Evaluation – v2



| P09382 | Galectin-1                                                      | LGALS1   |
|--------|-----------------------------------------------------------------|----------|
| Q05315 | Galectin-10                                                     | CLC      |
| P17931 | Galectin-3                                                      | LGALS3   |
| Q92820 | Gamma-glutamyl hydrolase                                        | GGH      |
| P51161 | Gastrotropin                                                    | FABP6    |
| Q16769 | Glutaminyl-peptide cyclotransferase                             | QPCT     |
| P35754 | Glutaredoxin-1                                                  | GLRX     |
| P08263 | Glutathione S-transferase A1                                    | GSTA1    |
| P13807 | Glycogen [starch] synthase, muscle                              | GYS1     |
| P55808 | Glycoprotein Xg                                                 | XG       |
| P20718 | Granzyme H                                                      | GZMH     |
| 075791 | GRB2-related adapter protein 2                                  | GRAP2    |
| Q14393 | Growth arrest-specific protein 6                                | GAS6     |
| Q99988 | Growth/differentiation factor 15                                | GDF15    |
| Q9UK05 | Growth/differentiation factor 2                                 | GDF2     |
| 014793 | Growth/differentiation factor 8                                 | MSTN     |
| P04792 | Heat shock protein beta-1                                       | HSPB1    |
| P09601 | Heme oxygenase 1                                                | HMOX1    |
| Q9NRV9 | Heme-binding protein 1                                          | HEBP1    |
| P08581 | Hepatocyte growth factor receptor                               | MET      |
| P61978 | Heterogeneous nuclear ribonucleoprotein K                       | HNRNPK   |
| P52789 | Hexokinase-2                                                    | HK2      |
| Q12794 | Hyaluronidase-1                                                 | HYAL1    |
| Q9Y4L1 | Hypoxia up-regulated protein 1                                  | HYOU1    |
| Q969P0 | Immunoglobulin superfamily member 8                             | IGSF8    |
| Q01973 | Inactive tyrosine-protein kinase transmembrane receptor<br>ROR1 | ROR1     |
| Q12912 | Inositol 1,4,5-triphosphate receptor associated 2               | IRAG2    |
| P08833 | Insulin-like growth factor-binding protein 1                    | IGFBP1   |
| P18065 | Insulin-like growth factor-binding protein 2                    | IGFBP2   |
| P17936 | Insulin-like growth factor-binding protein 3                    | IGFBP3   |
| P24592 | Insulin-like growth factor-binding protein 6                    | IGFBP6   |
| Q16270 | Insulin-like growth factor-binding protein 7                    | IGFBP7   |
| Q8WX77 | Insulin-like growth factor-binding protein-like 1               | IGFBPL1  |
| P05556 | Integrin beta-1                                                 | ITGB1    |
| Q9UKP3 | Integrin beta-1-binding protein 2                               | ITGB1BP2 |
| P05107 | Integrin beta-2                                                 | ITGB2    |
| Q06033 | Inter-alpha-trypsin inhibitor heavy chain H3                    | ITIH3    |
| P05362 | Intercellular adhesion molecule 1                               | ICAM1    |
| P13598 | Intercellular adhesion molecule 2                               | ICAM2    |
| P32942 | Intercellular adhesion molecule 3                               | ICAM3    |
| Q9UMF0 | Intercellular adhesion molecule 5                               | ICAM5    |
| Q01638 | Interleukin-1 receptor-like 1                                   | IL1RL1   |
| 095998 | Interleukin-18-binding protein                                  | IL18BP   |
| Q9UHD0 | Interleukin-19                                                  | IL19     |





| P01589 | Interleukin-2 receptor subunit alpha                        | IL2RA    |
|--------|-------------------------------------------------------------|----------|
| P05231 | Interleukin-6                                               | IL6      |
| P08887 | Interleukin-6 receptor subunit alpha                        | IL6R     |
| P40189 | Interleukin-6 receptor subunit beta                         | IL6ST    |
| P10145 | Interleukin-8                                               | CXCL8    |
| P21583 | Kit ligand                                                  | KITLG    |
| Q16773 | Kynurenineoxoglutarate transaminase 1                       | KYAT1    |
| Q04760 | Lactoylglutathione lyase                                    | GLO1     |
| P46379 | Large proline-rich protein BAG6                             | BAG6     |
| Q14767 | Latent-transforming growth factor beta-binding protein 2    | LTBP2    |
| P41159 | Leptin                                                      | LEP      |
| P48357 | Leptin receptor                                             | LEPR     |
| A6NI73 | Leukocyte immunoglobulin-like receptor subfamily A member 5 | LILRA5   |
| Q8NHL6 | Leukocyte immunoglobulin-like receptor subfamily B member 1 | LILRB1   |
| Q8N423 | Leukocyte immunoglobulin-like receptor subfamily B member 2 | LILRB2   |
| 075023 | Leukocyte immunoglobulin-like receptor subfamily B member 5 | LILRB5   |
| P18428 | Lipopolysaccharide-binding protein                          | LBP      |
| P06858 | Lipoprotein lipase                                          | LPL      |
| P05451 | Lithostathine-1-alpha                                       | REG1A    |
| P48304 | Lithostathine-1-beta                                        | REG1B    |
| P23141 | Liver carboxylesterase 1                                    | CES1     |
| P12318 | Low affinity immunoglobulin gamma Fc region receptor II-a   | FCGR2A   |
| 075015 | Low affinity immunoglobulin gamma Fc region receptor III-B  | FCGR3B   |
| P01130 | Low-density lipoprotein receptor                            | LDLR     |
| Q86VZ4 | Low-density lipoprotein receptor-related protein 11         | LRP11    |
| P42785 | Lysosomal Pro-X carboxypeptidase                            | PRCP     |
| Q9UEW3 | Macrophage receptor MARCO                                   | MARCO    |
| P10721 | Mast/stem cell growth factor receptor Kit                   | KIT      |
| P09237 | Matrilysin                                                  | MMP7     |
| P15529 | Membrane cofactor protein                                   | CD46     |
| Q16853 | Membrane primary amine oxidase                              | AOC3     |
| Q16820 | Meprin A subunit beta                                       | MEP1B    |
| P01033 | Metalloproteinase inhibitor 1                               | TIMP1    |
| P55082 | Microfibril-associated glycoprotein 3                       | MFAP3    |
| Q13361 | Microfibrillar-associated protein 5                         | MFAP5    |
| P08571 | Monocyte differentiation antigen CD14                       | CD14     |
| Q99549 | M-phase phosphoprotein 8                                    | MPHOSPH8 |
| Q8NI22 | Multiple coagulation factor deficiency protein 2            | MCFD2    |
| Q9H1U4 | Multiple epidermal growth factor-like domains protein 9     | MEGF9    |
| P24158 | Myeloblastin                                                | PRTN3    |
| P41218 | Myeloid cell nuclear differentiation antigen                | MNDA     |
| P02144 | Myoglobin                                                   | MB       |



## D3.2



| P58546    | Myotrophin                                                               | MTPN         |
|-----------|--------------------------------------------------------------------------|--------------|
| 095544    | NAD kinase                                                               | NADK         |
| P16860    | Natriuretic peptides B                                                   | NPPB         |
| Q92692    | Nectin-2                                                                 | NECTIN2      |
| P13591    | Neural cell adhesion molecule 1                                          | NCAM1        |
| 000533    | Neural cell adhesion molecule L1-like protein                            | CHL1         |
| Q9NQX5    | Neural proliferation differentiation and control protein 1               | NPDC1        |
| P46531    | Neurogenic locus notch homolog protein 1                                 | NOTCH1       |
| Q9UM47    | Neurogenic locus notch homolog protein 3                                 | NOTCH3       |
| Q92823    | Neuronal cell adhesion molecule                                          | NRCAM        |
| 095502    | Neuronal pentraxin receptor                                              | NPTXR        |
| 014786    | Neuropilin-1                                                             | NRP1         |
| P59665    | Neutrophil defensin 1                                                    | DEFA1_DEFA1B |
| P80188    | Neutrophil gelatinase-associated lipocalin                               | LCN2         |
| Q6GTS8    | N-fatty-acyl-amino acid synthase/hydrolase PM20D1                        | PM20D1       |
| P14543    | Nidogen-1                                                                | NID1         |
| NT-proBNP | NT-proBNP                                                                | NTproBNP     |
| P31483    | Nucleolysin TIA-1 isoform p40                                            | TIA1         |
| Q99650    | Oncostatin-M-specific receptor subunit beta                              | OSMR         |
| P10451    | Osteopontin                                                              | SPP1         |
| P78380    | Oxidized low-density lipoprotein receptor 1                              | OLR1         |
| Q9UKJ0    | Paired immunoglobulin-like type 2 receptor beta                          | PILRB        |
| P04746    | Pancreatic alpha-amylase                                                 | AMY2A        |
| P55259    | Pancreatic secretory granule membrane major glycoprotein GP2             | GP2          |
| 075594    | Peptidoglycan recognition protein 1                                      | PGLYRP1      |
| P19021    | Peptidyl-glycine alpha-amidating monooxygenase                           | PAM          |
| P23284    | Peptidyl-prolyl cis-trans isomerase B                                    | PPIB         |
| 060664    | Perilipin-3                                                              | PLIN3        |
| Q15067    | Peroxisomal acyl-coenzyme A oxidase 1                                    | ACOX1        |
| P04054    | Phospholipase A2                                                         | PLA2G1B      |
| P14555    | Phospholipase A2, membrane associated                                    | PLA2G2A      |
| P55058    | Phospholipid transfer protein                                            | PLTP         |
| Q9NWQ8    | Phosphoprotein associated with glycosphingolipid-enriched microdomains 1 | PAG1         |
| P05121    | Plasminogen activator inhibitor 1                                        | SERPINE1     |
| Q5VY43    | Platelet endothelial aggregation receptor 1                              | PEAR1        |
| P07359    | Platelet glycoprotein lb alpha chain                                     | GP1BA        |
| P16234    | Platelet-derived growth factor receptor alpha                            | PDGFRA       |
| P09619    | Platelet-derived growth factor receptor beta                             | PDGFRB       |
| P04085    | Platelet-derived growth factor subunit A                                 | PDGFA        |
| P21246    | Pleiotrophin                                                             | PTN          |
| 015031    | Plexin-B2                                                                | PLXNB2       |
| Q9ULL4    | Plexin-B3                                                                | PLXNB3       |





| P09668     | Pro-cathepsin H [Cleaved into: Cathepsin H mini chain;<br>Cathepsin H | CTSH      |
|------------|-----------------------------------------------------------------------|-----------|
| Q15113     | Procollagen C-endopeptidase enhancer 1                                | PCOLCE    |
| 075340     | Programmed cell death protein 6                                       | PDCD6     |
| Q12884     | Prolyl endopeptidase FAP                                              | FAP       |
| Q8NBP7     | Proprotein convertase subtilisin/kexin type 9                         | PCSK9     |
| 015354     | Prosaposin receptor GPR37                                             | GPR37     |
| P41222     | Prostaglandin-H2 D-isomerase                                          | PTGDS     |
| Q9Y2B0     | Protein canopy homolog 2                                              | CNPY2     |
| P80370     | Protein delta homolog 1                                               | DLK1      |
| Q92520     | Protein FAM3C                                                         | FAM3C     |
| P41236     | Protein phosphatase inhibitor 2                                       | PPP1R2    |
| P31949     | Protein S100-A11                                                      | S100A11   |
| P25815     | Protein S100-P                                                        | S100P     |
| P21980     | Protein-glutamine gamma-glutamyltransferase 2                         | TGM2      |
| 014917     | Protocadherin-17                                                      | PCDH17    |
| P16109     | P-selectin                                                            | SELP      |
| P35247     | Pulmonary surfactant-associated protein D                             | SFTPD     |
| 094903     | Pyridoxal phosphate homeostasis protein                               | PLPBP     |
| P10586     | Receptor-type tyrosine-protein phosphatase F                          | PTPRF     |
| Q13332     | Receptor-type tyrosine-protein phosphatase S                          | PTPRS     |
| Q06141     | Regenerating islet-derived protein 3-alpha                            | REG3A     |
| P00797     | Renin                                                                 | REN       |
| Q9HD89     | Resistin                                                              | RETN      |
| Q9UKL0     | REST corepressor 1                                                    | RCOR1     |
| Q99969     | Retinoic acid receptor responder protein 2                            | RARRES2   |
| 000584     | Ribonuclease T2                                                       | RNASET2   |
| Q14162     | Scavenger receptor class F member 1                                   | SCARF1    |
| Q8WTU2     | Scavenger receptor cysteine-rich domain-containing group B protein    | SSC4D     |
| Q86VB7     | Scavenger receptor cysteine-rich type 1 protein M130                  | CD163     |
| Q9BQB4     | Sclerostin                                                            | SOST      |
| Q13275     | Semaphorin-3F                                                         | SEMA3F    |
| 075326     | Semaphorin-7A                                                         | SEMA7A    |
| Q9BQR3     | Serine protease 27                                                    | PRSS27    |
| Q13043     | Serine/threonine-protein kinase 4                                     | STK4      |
| 096017     | Serine/threonine-protein kinase Chk2                                  | CHEK2     |
| Q15831     | Serine/threonine-protein kinase STK11                                 | STK11     |
| P21549     | Serinepyruvate aminotransferase                                       | AGXT      |
| Q86U17     | Serpin A11                                                            | SERPINA11 |
| Q8IW75     | Serpin A12                                                            | SERPINA12 |
| P36952     | Serpin B5                                                             | SERPINB5  |
| 015165     | Serum paraoxonase/arvlesterase 2                                      | PON2      |
| 09Y286     | Sialic acid-binding lg-like lectin 7                                  | SIGLEC7   |
| <br>Q9H5Y7 | SLIT and NTRK-like protein 6                                          | SLITRK6   |



# MES-CoBraD

| Q8WVQ1 | Soluble calcium-activated nucleotidase 1                                 | CANT1     |
|--------|--------------------------------------------------------------------------|-----------|
| A1L4H1 | Soluble scavenger receptor cysteine-rich domain-containing protein SSC5D | SSC5D     |
| P01241 | Somatotropin                                                             | GH1       |
| Q99523 | Sortilin                                                                 | SORT1     |
| Q9Y5X1 | Sorting nexin-9                                                          | SNX9      |
| Q14515 | SPARC-like protein 1                                                     | SPARCL1   |
| Q9BUD6 | Spondin-2                                                                | SPON2     |
| P00441 | Superoxide dismutase [Cu-Zn]                                             | SOD1      |
| Q6UWL2 | Sushi domain-containing protein 1                                        | SUSD1     |
| 000161 | Synaptosomal-associated protein 23                                       | SNAP23    |
| P18827 | Syndecan-1                                                               | SDC1      |
| P31431 | Syndecan-4                                                               | SDC4      |
| P13686 | Tartrate-resistant acid phosphatase type 5                               | ACP5      |
| Q96H15 | T-cell immunoglobulin and mucin domain-containing protein 4              | TIMD4     |
| 095988 | T-cell leukemia/lymphoma protein 1B                                      | TCL1B     |
| P24821 | Tenascin                                                                 | TNC       |
| 060635 | Tetraspanin-1                                                            | TSPAN1    |
| P52888 | Thimet oligopeptidase                                                    | THOP1     |
| P07204 | Thrombomodulin                                                           | THBD      |
| P40225 | Thrombopoietin                                                           | THPO      |
| P35443 | Thrombospondin-4                                                         | THBS4     |
| Q969D9 | Thymic stromal lymphopoietin                                             | TSLP      |
| P19971 | Thymidine phosphorylase                                                  | TYMP      |
| P01222 | Thyrotropin subunit beta                                                 | TSHB      |
| P04066 | Tissue alpha-L-fucosidase                                                | FUCA1     |
| P10646 | Tissue factor pathway inhibitor                                          | TFPI      |
| P00750 | Tissue-type plasminogen activator                                        | PLAT      |
| P20062 | Transcobalamin-2                                                         | TCN2      |
| P02786 | Transferrin receptor protein 1                                           | TFRC      |
| Q03167 | Transforming growth factor beta receptor type 3                          | TGFBR3    |
| Q15582 | Transforming growth factor-beta-induced protein ig-h3                    | TGFBI     |
| Q14956 | Transmembrane glycoprotein NMB                                           | GPNMB     |
| Q07654 | Trefoil factor 3                                                         | TFF3      |
| P19429 | Troponin I, cardiac muscle                                               | TNNI3     |
| P07478 | Trypsin-2                                                                | PRSS2     |
| Q9GZM7 | Tubulointerstitial nephritis antigen-like                                | TINAGL1   |
| P01375 | Tumor necrosis factor                                                    | TNF       |
| Q9Y275 | Tumor necrosis factor ligand superfamily member 13B                      | TNFSF13B  |
| 014798 | Tumor necrosis factor receptor superfamily member 10C                    | TNFRSF10C |
| P25445 | Tumor necrosis factor receptor superfamily member 6                      | FAS       |
| Q96A56 | Tumor protein p53-inducible nuclear protein 1                            | TP53INP1  |
| P35590 | Tyrosine-protein kinase receptor Tie-1                                   | TIE1      |
| Q06418 | Tyrosine-protein kinase receptor TYR03                                   | TYR03     |


# MES-CoBraD

| P30530  | Tyrosine-protein kinase receptor UFO                                        | AXL       |
|---------|-----------------------------------------------------------------------------|-----------|
| P78324  | Tyrosine-protein phosphatase non-receptor type substrate 1                  | SIRPA     |
| P40818  | Ubiquitin carboxyl-terminal hydrolase 8                                     | USP8      |
| P07911  | Uromodulin                                                                  | UMOD      |
| P19320  | Vascular cell adhesion protein 1                                            | VCAM1     |
| Q6EMK4  | Vasorin                                                                     | VASN      |
| 095183  | Vesicle-associated membrane protein 5                                       | VAMP5     |
| P08670  | Vimentin                                                                    | VIM       |
| P04070  | Vitamin K-dependent protein C                                               | PROC      |
| P04275  | von Willebrand factor                                                       | VWF       |
| Q96N03  | V-set and transmembrane domain-containing protein 2-like protein            | VSTM2L    |
| Q9H7M9  | V-type immunoglobulin domain-containing suppressor of T-<br>cell activation | VSIR      |
| Q92558  | Wiskott-Aldrich syndrome protein family member 1                            | WASF1     |
| Q13105  | Zinc finger and BTB domain-containing protein 17                            | ZBTB17    |
|         | Inflammation Panel                                                          |           |
| Uniprot | Protein name                                                                | Gene name |
| Q16698  | 2,4-dienoyl-CoA reductase, mitochondrial                                    | DECR1     |
| 043598  | 2'-deoxynucleoside 5'-phosphate N-hydrolase 1                               | DNPH1     |
| Q9Y478  | 5'-AMP-activated protein kinase subunit beta-1                              | PRKAB1    |
| Q92484  | Acid sphingomyelinase-like phosphodiesterase 3a                             | SMPDL3A   |
| P00813  | Adenosine deaminase                                                         | ADA       |
| Q9UHX3  | Adhesion G protein-coupled receptor E2                                      | ADGRE2    |
| Q15109  | Advanced glycosylation end product-specific receptor                        | AGER      |
| 000253  | Agouti-related protein                                                      | AGRP      |
| 000468  | Agrin                                                                       | AGRN      |
| P30838  | Aldehyde dehydrogenase, dimeric NADP-preferring                             | ALDH3A1   |
| Q7Z6M3  | Allergin-1                                                                  | MILR1     |
| 043707  | Alpha-actinin-4                                                             | ACTN4     |
| Q9NP70  | Ameloblastin                                                                | AMBN      |
| P19801  | Amiloride-sensitive amine oxidase [copper-containing]                       | AOC1      |
| Q15389  | Angiopoietin-1                                                              | ANGPT1    |
| Q9UKU9  | Angiopoietin-related protein 2                                              | ANGPTL2   |
| Q9BY76  | Angiopoietin-related protein 4                                              | ANGPTL4   |
| P50995  | Annexin A11                                                                 | ANXA11    |
| Q5T4W7  | Artemin                                                                     | ARTN      |
| P27540  | Aryl hydrocarbon receptor nuclear translocator                              | ARNT      |
| Q9UII2  | ATPase inhibitor, mitochondrial                                             | ATP5IF1   |
| 015169  | Axin-1                                                                      | AXIN1     |
| P35613  | Basigin                                                                     | BSG       |
| P40259  | B-cell antigen receptor complex-associated protein beta chain               | CD79B     |
| P20273  | B-cell receptor CD22                                                        | CD22      |
| 08NDB2  | B-cell scaffold protein with ankyrin repeats                                | BANK1     |



# D3.2

Project Manual – CoBraD RWD, Updated MES-CoBraD Protocols and Quality and Quantity (Q&Q Evaluation – v2



| 043521-2 | Bcl-2-like protein 11, Isoform BimL                                                | BCL2L11  |
|----------|------------------------------------------------------------------------------------|----------|
| P15291   | Beta-1,4-galactosyltransferase 1                                                   | B4GALT1  |
| P55957   | BH3-interacting domain death agonist                                               | BID      |
| Q06520   | Bile salt sulfotransferase                                                         | SULT2A1  |
| P11274   | Breakpoint cluster region protein                                                  | BCR      |
| Q7KYR7   | Butyrophilin subfamily 2 member A1                                                 | BTN2A1   |
| P78410   | Butyrophilin subfamily 3 member A2                                                 | BTN3A2   |
| Q9H4D0   | Calsyntenin-2                                                                      | CLSTN2   |
| Q9UDT6   | CAP-Gly domain-containing linker protein 2                                         | CLIP2    |
| Q3KPI0   | Carcinoembryonic antigen-related cell adhesion molecule 21                         | CEACAM21 |
| P42575   | Caspase-2                                                                          | CASP2    |
| P43234   | Cathepsin O                                                                        | CTSO     |
| Q99616   | C-C motif chemokine 13                                                             | CCL13    |
| Q92583   | C-C motif chemokine 17                                                             | CCL17    |
| P78556   | C-C motif chemokine 20                                                             | CCL20    |
| 000585   | C-C motif chemokine 21                                                             | CCL21    |
| 000626   | C-C motif chemokine 22                                                             | CCL22    |
| P55773   | C-C motif chemokine 23                                                             | CCL23    |
| 000175   | C-C motif chemokine 24                                                             | CCL24    |
| 015444   | C-C motif chemokine 25                                                             | CCL25    |
| Q9Y258   | C-C motif chemokine 26                                                             | CCL26    |
| Q9NRJ3   | C-C motif chemokine 28                                                             | CCL28    |
| P10147   | C-C motif chemokine 3                                                              | CCL3     |
| P13236   | C-C motif chemokine 4                                                              | CCL4     |
| P80098   | C-C motif chemokine 7                                                              | CCL7     |
| P29279   | CCN family member 2                                                                | CCN2     |
| 095971   | CD160 antigen                                                                      | CD160    |
| Q5ZPR3   | CD276 antigen                                                                      | CD276    |
| P29965   | CD40 ligand                                                                        | CD40LG   |
| P09326   | CD48 antigen                                                                       | CD48     |
| P32970   | CD70 antigen                                                                       | CD70     |
| Q01151   | CD83 antigen                                                                       | CD83     |
| Q4KMG0   | Cell adhesion molecule-related/down-regulated by<br>oncogenes                      | CDON     |
| Q8TD46   | Cell surface glycoprotein CD200 receptor 1                                         | CD200R1  |
| Q9UPV0   | Centrosomal protein of 164 kDa                                                     | CEP164   |
| Q9BU40   | Chordin-like protein 1                                                             | CHRDL1   |
| Q99895   | Chymotrypsin-C                                                                     | CTRC     |
| P20849   | Collagen alpha-1                                                                   | COL9A1   |
| Q5KU26   | Collectin-12                                                                       | COLEC12  |
| P02745   | Complement C1q subcomponent subunit A                                              | C1QA     |
| Q9UHC6   | Contactin-associated protein-like 2                                                | CNTNAP2  |
| Q15517   | Corneodesmosin                                                                     | CDSN     |
| P28845   | Corticosteroid 11-beta-dehydrogenase isozyme 1                                     | HSD11B1  |
| P24387   | Corticotropin-releasing factor-binding protein                                     | CRHBP    |
|          | The MEC CoDroD project has reactived funding from the European Union's Having 2000 | _        |





| P78310 | Coxsackievirus and adenovirus receptor                                        | CXADR             |
|--------|-------------------------------------------------------------------------------|-------------------|
| P12532 | Creatine kinase U-type, mitochondrial                                         | CKMT1A_CKMT1<br>B |
| P46109 | Crk-like protein                                                              | CRKL              |
| Q9UMR7 | C-type lectin domain family 4 member A                                        | CLEC4A            |
| Q8WTT0 | C-type lectin domain family 4 member C                                        | CLEC4C            |
| Q8WXI8 | C-type lectin domain family 4 member D                                        | CLEC4D            |
| Q6UXB4 | C-type lectin domain family 4 member G                                        | CLEC4G            |
| Q9BXN2 | C-type lectin domain family 7 member A                                        | CLEC7A            |
| P23582 | C-type natriuretic peptide [Cleaved into: CNP-22; CNP-29; CNP-53]             | NPPC              |
| P02778 | C-X-C motif chemokine 10                                                      | CXCL10            |
| 095715 | C-X-C motif chemokine 14                                                      | CXCL14            |
| Q6UXB2 | C-X-C motif chemokine 17                                                      | CXCL17            |
| P19876 | C-X-C motif chemokine 3                                                       | CXCL3             |
| P80162 | C-X-C motif chemokine 6                                                       | CXCL6             |
| Q07325 | C-X-C motif chemokine 9                                                       | CXCL9             |
| 076096 | Cystatin-F                                                                    | CST7              |
| Q9NZV1 | Cysteine-rich motor neuron 1 protein                                          | CRIM1             |
| 075462 | Cytokine receptor-like factor 1                                               | CRLF1             |
| 043639 | Cytoplasmic protein NCK2                                                      | NCK2              |
| Q07065 | Cytoskeleton-associated protein 4                                             | CKAP4             |
| P28838 | Cytosol aminopeptidase                                                        | LAP3              |
| Q9H0P0 | Cytosolic 5'-nucleotidase 3A                                                  | NT5C3A            |
| P47712 | Cytosolic phospholipase A2                                                    | PLA2G4A           |
| Q8NFT8 | Delta and Notch-like epidermal growth factor-related receptor                 | DNER              |
| Q13574 | Diacylglycerol kinase zeta                                                    | DGKZ              |
| P53634 | Dipeptidyl peptidase 1                                                        | CTSC              |
| 075077 | Disintegrin and metalloproteinase domain-containing protein 23                | ADAM23            |
| 000273 | DNA fragmentation factor subunit alpha                                        | DFFA              |
| 060884 | DnaJ homolog subfamily A member 2                                             | DNAJA2            |
| Q9UJU6 | Drebrin-like protein                                                          | DBNL              |
| Q9UN19 | Dual adapter for phosphotyrosine and 3-phosphotyrosine and 3-phosphoinositide | DAPP1             |
| P52564 | Dual specificity mitogen-activated protein kinase kinase 6                    | MAP2K6            |
| Q14118 | Dystroglycan                                                                  | DAG1              |
| P19474 | E3 ubiquitin-protein ligase TRIM21                                            | TRIM21            |
| Q9UJA9 | Ectonucleotide pyrophosphatase/phosphodiesterase family<br>member 5           | ENPP5             |
| Q6UWV6 | Ectonucleotide pyrophosphatase/phosphodiesterase family member 7              | ENPP7             |
| Q9GZT9 | Egl nine homolog 1                                                            | EGLN1             |
| Q9NQ30 | Endothelial cell-specific molecule 1                                          | ESM1              |
| P51671 | Eotaxin                                                                       | CCL11             |
| P21709 | Ephrin type-A receptor 1                                                      | EPHA1             |





| P16422 | Epithelial cell adhesion molecule                                               | EPCAM   |
|--------|---------------------------------------------------------------------------------|---------|
| P01588 | Erythropoietin                                                                  | EPO     |
| Q04637 | Eukaryotic translation initiation factor 4 gamma 1                              | EIF4G1  |
| P63241 | Eukaryotic translation initiation factor 5A-1                                   | EIF5A   |
| Q0Z7S8 | Fatty acid-binding protein 9                                                    | FABP9   |
| P07148 | Fatty acid-binding protein, liver                                               | FABP1   |
| Q96LA5 | Fc receptor-like protein 2                                                      | FCRL2   |
| Q96P31 | Fc receptor-like protein 3                                                      | FCRL3   |
| Q6DN72 | Fc receptor-like protein 6                                                      | FCRL6   |
| 095750 | Fibroblast growth factor 19                                                     | FGF19   |
| P09038 | Fibroblast growth factor 2                                                      | FGF2    |
| P12034 | Fibroblast growth factor 5                                                      | FGF5    |
| P49771 | Fms-related tyrosine kinase 3 ligand                                            | FLT3LG  |
| P19883 | Follistatin                                                                     | FST     |
| 095633 | Follistatin-related protein 3                                                   | FSTL3   |
| Q12778 | Forkhead box protein O1                                                         | FOX01   |
| Q96DB9 | FXYD domain-containing ion transport regulator 5                                | FXYD5   |
| P22466 | Galanin peptides [Cleaved into: Galanin; Galanin message-<br>associated peptide | GAL     |
| P56470 | Galectin-4                                                                      | LGALS4  |
| 000182 | Galectin-9                                                                      | LGALS9  |
| Q9HC38 | Glyoxalase domain-containing protein 4                                          | GLOD4   |
| P36959 | GMP reductase 1                                                                 | GMPR    |
| Q9HD26 | Golgi-associated PDZ and coiled-coil motif-containing protein                   | GOPC    |
| P09919 | Granulocyte colony-stimulating factor                                           | CSF3    |
| P12544 | Granzyme A                                                                      | GZMA    |
| P10144 | Granzyme B                                                                      | GZMB    |
| P09341 | Growth-regulated alpha protein                                                  | CXCL1   |
| P32456 | Guanylate-binding protein 2                                                     | GBP2    |
| PODMV8 | Heat shock 70 kDa protein 1A                                                    | HSPA1A  |
| P14317 | Hematopoietic lineage cell-specific protein                                     | HCLS1   |
| P14210 | Hepatocyte growth factor                                                        | HGF     |
| P37235 | Hippocalcin-like protein 1                                                      | HPCAL1  |
| P13747 | HLA class I histocompatibility antigen, alpha chain E                           | HLA-E   |
| P01903 | HLA class II histocompatibility antigen, DR alpha chain                         | HLA-DRA |
| P22304 | Iduronate 2-sulfatase                                                           | IDS     |
| P24071 | Immunoglobulin alpha Fc receptor                                                | FCAR    |
| P01591 | Immunoglobulin J chain                                                          | JCHAIN  |
| Q8N608 | Inactive dipeptidyl peptidase 10                                                | DPP10   |
| 043736 | Integral membrane protein 2A                                                    | ITM2A   |
| Q9UKX5 | Integrin alpha-11                                                               | ITGA11  |
| P23229 | Integrin alpha-6                                                                | ITGA6   |
| P18564 | Integrin beta-6                                                                 | ITGB6   |
| Q14773 | Intercellular adhesion molecule 4                                               | ICAM4   |
| P01579 | Interferon gamma                                                                | IFNG    |





| P15260 | Interferon gamma receptor 1                | IFNGR1  |
|--------|--------------------------------------------|---------|
| Q8IU57 | Interferon lambda receptor 1               | IFNLR1  |
| P01583 | Interleukin-1 alpha                        | IL1A    |
| P01584 | Interleukin-1 beta                         | IL1B    |
| P18510 | Interleukin-1 receptor antagonist protein  | IL1RN   |
| P27930 | Interleukin-1 receptor type 2              | IL1R2   |
| P51617 | Interleukin-1 receptor-associated kinase 1 | IRAK1   |
| Q9NWZ3 | Interleukin-1 receptor-associated kinase 4 | IRAK4   |
| Q9HB29 | Interleukin-1 receptor-like 2              | IL1RL2  |
| P22301 | Interleukin-10                             | IL10    |
| Q13651 | Interleukin-10 receptor subunit alpha      | IL10RA  |
| Q08334 | Interleukin-10 receptor subunit beta       | IL10RB  |
| P20809 | Interleukin-11                             | IL11    |
| P42701 | Interleukin-12 receptor subunit beta-1     | IL12RB1 |
| P29460 | Interleukin-12 subunit beta                | IL12B   |
| P35225 | Interleukin-13                             | IL13    |
| P40933 | Interleukin-15                             | IL15    |
| Q13261 | Interleukin-15 receptor subunit alpha      | IL15RA  |
| Q9NRM6 | Interleukin-17 receptor B                  | IL17RB  |
| Q16552 | Interleukin-17A                            | IL17A   |
| Q9P0M4 | Interleukin-17C                            | IL17C   |
| Q8TAD2 | Interleukin-17D                            | IL17D   |
| Q96PD4 | Interleukin-17F                            | IL17F   |
| Q14116 | Interleukin-18                             | IL18    |
| Q13478 | Interleukin-18 receptor 1                  | IL18R1  |
| P60568 | Interleukin-2                              | IL2     |
| P14784 | Interleukin-2 receptor subunit beta        | IL2RB   |
| Q9NYY1 | Interleukin-20                             | IL20    |
| Q9UHF4 | Interleukin-20 receptor subunit alpha      | IL20RA  |
| Q8N6P7 | Interleukin-22 receptor subunit alpha-1    | IL22RA1 |
| Q13007 | Interleukin-24                             | IL24    |
| P26951 | Interleukin-3 receptor subunit alpha       | IL3RA   |
| P24001 | Interleukin-32                             | IL32    |
| 095760 | Interleukin-33                             | IL33    |
| P05112 | Interleukin-4                              | IL4     |
| P24394 | Interleukin-4 receptor subunit alpha       | IL4R    |
| P05113 | Interleukin-5                              | IL5     |
| Q01344 | Interleukin-5 receptor subunit alpha       | IL5RA   |
| P05231 | Interleukin-6                              | IL6     |
| P13232 | Interleukin-7                              | IL7     |
| P10145 | Interleukin-8                              | CXCL8   |
| P03956 | Interstitial collagenase                   | MMP1    |
| Q05084 | Islet cell autoantigen 1                   | ICA1    |
| B1AKI9 | Isthmin-1                                  | ISM1    |





| P08727            | Keratin, type I cytoskeletal 19                             | KRT19     |
|-------------------|-------------------------------------------------------------|-----------|
| Q12918            | Killer cell lectin-like receptor subfamily B member 1       | KLRB1     |
| 043291            | Kunitz-type protease inhibitor 2                            | SPINT2    |
| Q16719            | Kynureninase                                                | KYNU      |
| Q16363            | Laminin subunit alpha-4                                     | LAMA4     |
| Q99538            | Legumain                                                    | LGMN      |
| Q6UXK5            | Leucine-rich repeat neuronal protein 1                      | LRRN1     |
| P42702            | Leukemia inhibitory factor receptor                         | LIFR      |
| Q8NHJ6            | Leukocyte immunoglobulin-like receptor subfamily B member 4 | LILRB4    |
| Q6GTX8            | Leukocyte-associated immunoglobulin-like receptor 1         | LAIR1     |
| 043561            | Linker for activation of T-cells family member 1            | LAT       |
| Q14210            | Lymphocyte antigen 6D                                       | LY6D      |
| 060449            | Lymphocyte antigen 75                                       | LY75      |
| P19256            | Lymphocyte function-associated antigen 3                    | CD58      |
| P33241            | Lymphocyte-specific protein 1                               | LSP1      |
| P01374            | Lymphotoxin-alpha                                           | LTA       |
| Q9UQV4            | Lysosome-associated membrane glycoprotein 3                 | LAMP3     |
| P09603            | Macrophage colony-stimulating factor 1                      | CSF1      |
| Q8WU39            | Marginal zone B- and B1-cell-specific protein               | MZB1      |
| 000339            | Matrilin-2                                                  | MATN2     |
| Q9NQ76            | Matrix extracellular phosphoglycoprotein                    | MEPE      |
| 095866            | Megakaryocyte and platelet inhibitory receptor G6b          | MPIG6B    |
| P55145            | Mesencephalic astrocyte-derived neurotrophic factor         | MANF      |
| P35625            | Metalloproteinase inhibitor 3                               | TIMP3     |
| Q6UB28            | Methionine aminopeptidase 1D, mitochondrial                 | METAP1D   |
| P16455            | Methylated-DNAprotein-cysteine methyltransferase            | MGMT      |
| Q03426            | Mevalonate kinase                                           | MVK       |
| Q29980_Q2998<br>3 | MHC class I polypeptide-related sequence B_A                | MICB_MICA |
| Q9Y3D6            | Mitochondrial fission 1 protein                             | FIS1      |
| P45984            | Mitogen-activated protein kinase 9                          | MAPK9     |
| Q99685            | Monoglyceride lipase                                        | MGLL      |
| Q96KG7            | Multiple epidermal growth factor-like domains protein 10    | MEGF10    |
| 076036            | Natural cytotoxicity triggering receptor 1                  | NCR1      |
| Q9BZW8            | Natural killer cell receptor 2B4                            | CD244     |
| Q13241            | Natural killer cells antigen CD94                           | KLRD1     |
| Q9Y5A7            | NEDD8 ultimate buster 1                                     | NUB1      |
| Q96SB3            | Neurabin-2                                                  | PPP1R9B   |
| 094856            | Neurofascin                                                 | NFASC     |
| P20783            | Neurotrophin-3                                              | NTF3      |
| Q99748            | Neurturin                                                   | NRTN      |
| P19878            | Neutrophil cytosol factor 2                                 | NCF2      |
| Q9Y6K9            | NF-kappa-B essential modulator                              | IKBKG     |
| 060934            | Nibrin                                                      | NBN       |





| Q969V3 | Nicalin                                                            | NCLN     |
|--------|--------------------------------------------------------------------|----------|
| 095644 | Nuclear factor of activated T-cells, cytoplasmic 1                 | NFATC1   |
| Q12968 | Nuclear factor of activated T-cells, cytoplasmic 3                 | NFATC3   |
| Q9Y266 | Nuclear migration protein nudC                                     | NUDC     |
| Q13232 | Nucleoside diphosphate kinase 3                                    | NME3     |
| P13725 | Oncostatin-M                                                       | OSM      |
| Q8IYS5 | Osteoclast-associated immunoglobulin-like receptor                 | OSCAR    |
| Q99983 | Osteomodulin                                                       | OMD      |
| P41217 | OX-2 membrane glycoprotein                                         | CD200    |
| P54317 | Pancreatic lipase-related protein 2                                | PNLIPRP2 |
| Q13219 | Pappalysin-1                                                       | PAPPA    |
| Q03431 | Parathyroid hormone/parathyroid hormone-related peptide receptor   | PTH1R    |
| 075475 | PC4 and SFRS1-interacting protein                                  | PSIP1    |
| Q9NR12 | PDZ and LIM domain protein 7                                       | PDLIM7   |
| P26022 | Pentraxin-related protein PTX3                                     | PTX3     |
| P68106 | Peptidyl-prolyl cis-trans isomerase FKBP1B                         | FKBP1B   |
| P30044 | Peroxiredoxin-5, mitochondrial                                     | PRDX5    |
| 060542 | Persephin                                                          | PSPN     |
| Q6ZUJ8 | Phosphoinositide 3-kinase adapter protein 1                        | PIK3AP1  |
| Q9H008 | Phospholysine phosphohistidine inorganic pyrophosphate phosphatase | LHPP     |
| P49763 | Placenta growth factor                                             | PGF      |
| P01127 | Platelet-derived growth factor subunit B                           | PDGFB    |
| Q9HCM2 | Plexin-A4                                                          | PLXNA4   |
| P09874 | Poly [ADP-ribose] polymerase 1                                     | PARP1    |
| Q14435 | Polypeptide N-acetylgalactosaminyltransferase 3                    | GALNT3   |
| Q8TCS8 | Polyribonucleotide nucleotidyltransferase 1, mitochondrial         | PNPT1    |
| P01133 | Pro-epidermal growth factor                                        | EGF      |
| Q14005 | Pro-interleukin-16 [Cleaved into: Interleukin-16                   | IL16     |
| P58294 | Prokineticin-1                                                     | PROK1    |
| Q9HCU5 | Prolactin regulatory element-binding protein                       | PREB     |
| P51888 | Prolargin                                                          | PRELP    |
| P12872 | Promotilin [Cleaved into: Motilin; Motilin-associated peptide      | MLN      |
| Q16651 | Prostasin                                                          | PRSS8    |
| Q9BT73 | Proteasome assembly chaperone 3                                    | PSMG3    |
| Q9BXJ7 | Protein amnionless [Cleaved into: Soluble protein amnionless]      | AMN      |
| Q6UXH1 | Protein disulfide isomerase CRELD2                                 | CRELD2   |
| Q8N8S7 | Protein enabled homolog                                            | ENAH     |
| 094992 | Protein HEXIM1                                                     | HEXIM1   |
| Q04759 | Protein kinase C theta type                                        | PRKCQ    |
| Q99435 | Protein kinase C-binding protein NELL2                             | NELL2    |
| Q8WV07 | Protein LTO1 homolog                                               | LT01     |
| 043597 | Protein sprouty homolog 2                                          | SPRY2    |





| 014904 | Protein Wnt-9a                                                                         | WNT9A    |
|--------|----------------------------------------------------------------------------------------|----------|
| Q9Y2J8 | Protein-arginine deiminase type-2                                                      | PADI2    |
| P25116 | Proteinase-activated receptor 1                                                        | F2R      |
| Q08174 | Protocadherin-1                                                                        | PCDH1    |
| P01135 | Protransforming growth factor alpha [Cleaved into:<br>Transforming growth factor alpha | TGFA     |
| Q14242 | P-selectin glycoprotein ligand 1                                                       | SELPLG   |
| P30613 | Pyruvate kinase PKLR                                                                   | PKLR     |
| Q5R372 | Rab GTPase-activating protein 1-like                                                   | RABGAP1L |
| Q96AX2 | Ras-related protein Rab-37                                                             | RAB37    |
| P20340 | Ras-related protein Rab-6A                                                             | RAB6A    |
| P21860 | Receptor tyrosine-protein kinase erbB-3                                                | ERBB3    |
| P28827 | Receptor-type tyrosine-protein phosphatase mu                                          | PTPRM    |
| Q9BYZ8 | Regenerating islet-derived protein 4                                                   | REG4     |
| P57771 | Regulator of G-protein signaling 8                                                     | RGS8     |
| Q9NZN5 | Rho guanine nucleotide exchange factor 12                                              | ARHGEF12 |
| Q9Y6N7 | Roundabout homolog 1                                                                   | ROB01    |
| Q12765 | Secernin-1                                                                             | SCRN1    |
| 076038 | Secretagogin                                                                           | SCGN     |
| Q96PL1 | Secretoglobin family 3A member 2                                                       | SCGB3A2  |
| Q8WXD2 | Secretogranin-3                                                                        | SCG3     |
| P34896 | Serine hydroxymethyltransferase, cytosolic                                             | SHMT1    |
| 060575 | Serine protease inhibitor Kazal-type 4                                                 | SPINK4   |
| P50452 | Serpin B8                                                                              | SERPINB8 |
| Q15166 | Serum paraoxonase/lactonase 3                                                          | PON3     |
| 060880 | SH2 domain-containing protein 1A                                                       | SH2D1A   |
| Q96LC7 | Sialic acid-binding Ig-like lectin 10                                                  | SIGLEC10 |
| Q9BZZ2 | Sialoadhesin                                                                           | SIGLEC1  |
| Q13291 | Signaling lymphocytic activation molecule                                              | SLAMF1   |
| Q9Y3P8 | Signaling threshold-regulating transmembrane adapter 1                                 | SIT1     |
| 000241 | Signal-regulatory protein beta-1                                                       | SIRPB1   |
| Q9UIB8 | SLAM family member 5                                                                   | CD84     |
| Q9NQ25 | SLAM family member 7                                                                   | SLAMF7   |
| Q9H3U7 | SPARC-related modular calcium-binding protein 2                                        | SMOC2    |
| Q9HCB6 | Spondin-1                                                                              | SPON1    |
| 075563 | Src kinase-associated phosphoprotein 2                                                 | SKAP2    |
| P78362 | SRSF protein kinase 2                                                                  | SRPK2    |
| Q8IVG5 | Sterile alpha motif domain-containing protein 9-like                                   | SAMD9L   |
| P48061 | Stromal cell-derived factor 1                                                          | CXCL12   |
| P09238 | Stromelysin-2                                                                          | MMP10    |
| Q9UNK0 | Syntaxin-8                                                                             | STX8     |
| Q92609 | TBC1 domain family member 5                                                            | TBC1D5   |
| P30203 | T-cell differentiation antigen CD6                                                     | CD6      |
| P01730 | T-cell surface glycoprotein CD4                                                        | CD4      |
| P30048 | Thioredoxin-dependent peroxide reductase, mitochondrial                                | PRDX3    |
|        |                                                                                        |          |





| Q9HBG7  | T-lymphocyte surface antigen Ly-9                                                         | LY9       |
|---------|-------------------------------------------------------------------------------------------|-----------|
| Q12933  | TNF receptor-associated factor 2                                                          | TRAF2     |
| 015455  | Toll-like receptor 3                                                                      | TLR3      |
| Q92844  | TRAF family member-associated NF-kappa-B activator                                        | TANK      |
| P05412  | Transcription factor AP-1                                                                 | JUN       |
| 014867  | Transcription regulator protein BACH1                                                     | BACH1     |
| P01137  | Transforming growth factor beta-1 proprotein [Cleaved into:<br>Latency-associated peptide | TGFB1     |
| P13693  | Translationally-controlled tumor protein                                                  | TPT1      |
| Q03403  | Trefoil factor 2                                                                          | TFF2      |
| Q9NZC2  | Triggering receptor expressed on myeloid cells 2                                          | TREM2     |
| Q9C035  | Tripartite motif-containing protein 5                                                     | TRIM5     |
| 014773  | Tripeptidyl-peptidase 1                                                                   | TPP1      |
| Q15661  | Tryptase alpha/beta-1                                                                     | TPSAB1    |
| Q7L8A9  | Tubulinyl-Tyr carboxypeptidase 1                                                          | VASH1     |
| P01375  | Tumor necrosis factor                                                                     | TNF       |
| 095379  | Tumor necrosis factor alpha-induced protein 8                                             | TNFAIP8   |
| P50591  | Tumor necrosis factor ligand superfamily member 10                                        | TNFSF10   |
| 014788  | Tumor necrosis factor ligand superfamily member 11                                        | TNFSF11   |
| 043508  | Tumor necrosis factor ligand superfamily member 12                                        | TNFSF12   |
| 075888  | Tumor necrosis factor ligand superfamily member 13                                        | TNFSF13   |
| P48023  | Tumor necrosis factor ligand superfamily member 6                                         | FASLG     |
| Q9Y6Q6  | Tumor necrosis factor receptor superfamily member 11A                                     | TNFRSF11A |
| 000300  | Tumor necrosis factor receptor superfamily member 11B                                     | TNFRSF11B |
| 014836  | Tumor necrosis factor receptor superfamily member 13B                                     | TNFRSF13B |
| Q96RJ3  | Tumor necrosis factor receptor superfamily member 13C                                     | TNFRSF13C |
| Q92956  | Tumor necrosis factor receptor superfamily member 14                                      | TNFRSF14  |
| P36941  | Tumor necrosis factor receptor superfamily member 3                                       | LTBR      |
| P43489  | Tumor necrosis factor receptor superfamily member 4                                       | TNFRSF4   |
| P25942  | Tumor necrosis factor receptor superfamily member 5                                       | CD40      |
| Q9UNE0  | Tumor necrosis factor receptor superfamily member EDAR                                    | EDAR      |
| Q12866  | Tyrosine-protein kinase Mer                                                               | MERTK     |
| P29350  | Tyrosine-protein phosphatase non-receptor type 6                                          | PTPN6     |
| Q13459  | Unconventional myosin-IXb                                                                 | MYO9B     |
| Q03405  | Urokinase plasminogen activator surface receptor                                          | PLAUR     |
| P11684  | Uteroglobin                                                                               | SCGB1A1   |
| P15692  | Vascular endothelial growth factor A                                                      | VEGFA     |
| 043915  | Vascular endothelial growth factor D                                                      | VEGFD     |
| Q8TEU8  | WAP, Kazal, immunoglobulin, Kunitz and NTR domain-<br>containing protein 2                | WFIKKN2   |
| P42768  | Wiskott-Aldrich syndrome protein                                                          | WAS       |
| Q7Z739  | YTH domain-containing family protein 3                                                    | YTHDF3    |
| Q6ZMH5  | Zinc transporter ZIP5                                                                     | SLC39A5   |
|         | Oncology Panel                                                                            |           |
| Uniprot | Protein name                                                                              | Gene name |



# MES-CoBraD

| 000233 | 26S proteasome non-ATPase regulatory subunit 9                                           | PSMD9         |
|--------|------------------------------------------------------------------------------------------|---------------|
| P09110 | 3-ketoacyl-CoA thiolase, peroxisomal                                                     | ACAA1         |
| P21589 | 5'-nucleotidase                                                                          | NT5E          |
| 060825 | 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 2                                   | PFKFB2        |
| Q8TE58 | A disintegrin and metalloproteinase with thrombospondin motifs 15                        | ADAMTS15      |
| Q9UP79 | A disintegrin and metalloproteinase with thrombospondin motifs 8                         | ADAMTS8       |
| Q9Y653 | Adhesion G-protein coupled receptor G1                                                   | ADGRG1        |
| P28907 | ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase 1                                        | CD38          |
| Q9BTE6 | Alanyl-tRNA editing protein Aarsd1                                                       | AARSD1        |
| P15121 | Aldo-keto reductase family 1 member B1                                                   | AKR1B1        |
| P05187 | Alkaline phosphatase, placental type                                                     | ALPP          |
| P55008 | Allograft inflammatory factor 1                                                          | AIF1          |
| P35475 | Alpha-L-iduronidase                                                                      | IDUA          |
| P15514 | Amphiregulin                                                                             | AREG          |
| Q86SJ2 | Amphoterin-induced protein 2                                                             | AMIG02        |
| Q7Z5R6 | Amyloid beta A4 precursor protein-binding family B member 1-interacting protein          | APBB1IP       |
| Q6FI81 | Anamorsin                                                                                | CIAPIN1       |
| Q02763 | Angiopoietin-1 receptor                                                                  | TEK           |
| 015123 | Angiopoietin-2                                                                           | ANGPT2        |
| 043827 | Angiopoietin-related protein 7                                                           | ANGPTL7       |
| Q6NXT1 | Ankyrin repeat domain-containing protein 54                                              | ANKRD54       |
| Q8TD06 | Anterior gradient protein 3                                                              | AGR3          |
| 095786 | Antiviral innate immune response receptor RIG-I                                          | DDX58         |
| 095831 | Apoptosis-inducing factor 1, mitochondrial                                               | AIFM1         |
| P05089 | Arginase-1                                                                               | ARG1          |
| P15848 | Arylsulfatase B                                                                          | ARSB          |
| Q13490 | Baculoviral IAP repeat-containing protein 2                                              | BIRC2         |
| Q02742 | Beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N-<br>acetylglucosaminyltransferase | GCNT1         |
| 015263 | Beta-defensin 4A                                                                         | DEFB4A_DEFB4B |
| Q9Y223 | Bifunctional UDP-N-acetylglucosamine 2-epimerase/N-<br>acetylmannosamine kinase          | GNE           |
| P21810 | Biglycan                                                                                 | BGN           |
| Q13145 | BMP and activin membrane-bound inhibitor homolog                                         | BAMBI         |
| Q9UQB8 | Brain-specific angiogenesis inhibitor 1-associated protein 2                             | BAIAP2        |
| P20851 | C4b-binding protein beta chain                                                           | C4BPB         |
| Q9BYE9 | Cadherin-related family member 2                                                         | CDHR2         |
| P05937 | Calbindin                                                                                | CALB1         |
| Q8N5S9 | Calcium/calmodulin-dependent protein kinase kinase 1                                     | CAMKK1        |
| Q9P1Z2 | Calcium-binding and coiled-coil domain-containing protein 1                              | CALCOCO1      |
| 043570 | Carbonic anhydrase 12                                                                    | CA12          |
| Q9ULX7 | Carbonic anhydrase 14                                                                    | CA14          |
| Q16790 | Carbonic anhydrase 9                                                                     | CA9           |





| 075493 | Carbonic anhydrase-related protein 11                                        | CA11    |
|--------|------------------------------------------------------------------------------|---------|
| Q6UWW8 | Carboxylesterase 3                                                           | CES3    |
| P16870 | Carboxypeptidase E                                                           | CPE     |
| P13688 | Carcinoembryonic antigen-related cell adhesion molecule 1                    | CEACAM1 |
| P40198 | Carcinoembryonic antigen-related cell adhesion molecule 3                    | CEACAM3 |
| P06731 | Carcinoembryonic antigen-related cell adhesion molecule 5                    | CEACAM5 |
| Q14790 | Caspase-8                                                                    | CASP8   |
| Q9UBX1 | Cathepsin F                                                                  | CTSF    |
| 060911 | Cathepsin L2                                                                 | CTSV    |
| P80075 | C-C motif chemokine 8                                                        | CCL8    |
| 000622 | CCN family member 1                                                          | CCN1    |
| 095388 | CCN family member 4                                                          | CCN4    |
| P26842 | CD27 antigen                                                                 | CD27    |
| Q8IX05 | CD302 antigen                                                                | CD302   |
| P30260 | Cell division cycle protein 27 homolog                                       | CDC27   |
| Q9NX58 | Cell growth-regulating nucleolar protein                                     | LYAR    |
| Q99795 | Cell surface A33 antigen                                                     | GPA33   |
| P04637 | Cellular tumor antigen p53                                                   | TP53    |
| Q96NB1 | Centrosomal protein 20                                                       | CEP20   |
| Q6P2H3 | Centrosomal protein of 85 kDa                                                | CEP85   |
| Q9NTU7 | Cerebellin-4                                                                 | CBLN4   |
| Q49AH0 | Cerebral dopamine neurotrophic factor                                        | CDNF    |
| Q7Z5A7 | Chemokine-like protein TAFA-5                                                | TAFA5   |
| Q11201 | CMP-N-acetylneuraminate-beta-galactosamide-alpha-2,3-<br>sialyltransferase 1 | ST3GAL1 |
| Q8TDQ1 | CMRF35-like molecule 1                                                       | CD300LF |
| Q496F6 | CMRF35-like molecule 2                                                       | CD300E  |
| 000748 | Cocaine esterase                                                             | CES2    |
| Q02246 | Contactin-2                                                                  | CNTN2   |
| 000244 | Copper transport protein ATOX1                                               | ATOX1   |
| Q9UBG3 | Cornulin                                                                     | CRNN    |
| P06850 | Corticoliberin                                                               | CRH     |
| POCG37 | Cryptic protein                                                              | CFC1    |
| Q9UJ71 | C-type lectin domain family 4 member K                                       | CD207   |
| Q6EIG7 | C-type lectin domain family 6 member A                                       | CLEC6A  |
| Q9H6B4 | CXADR-like membrane protein                                                  | CLMP    |
| P55273 | Cyclin-dependent kinase 4 inhibitor D                                        | CDKN2D  |
| P38936 | Cyclin-dependent kinase inhibitor 1                                          | CDKN1A  |
| Q8WYN0 | Cysteine protease ATG4A                                                      | ATG4A   |
| P16562 | Cysteine-rich secretory protein 2                                            | CRISP2  |
| P10606 | Cytochrome c oxidase subunit 5B, mitochondrial                               | COX5B   |
| 000548 | Delta-like protein 1                                                         | DLL1    |
| P32926 | Desmoglein-3                                                                 | DSG3    |
| Q86SJ6 | Desmoglein-4                                                                 | DSG4    |
| P55039 | Developmentally-regulated GTP-binding protein 2                              | DRG2    |





| P50583 | Diadenosine tetraphosphatase                                       | NUDT2              |
|--------|--------------------------------------------------------------------|--------------------|
| Q9UK85 | Dickkopf-like protein 1                                            | DKKL1              |
| 094760 | Dimethylarginine dimethylaminohydrolase 1                          | DDAH1              |
| Q9H4A9 | Dipeptidase 2                                                      | DPEP2              |
| P42658 | Dipeptidyl aminopeptidase-like protein 6                           | DPP6               |
| P98082 | Disabled homolog 2                                                 | DAB2               |
| Q96PD2 | Discoidin, CUB and LCCL domain-containing protein 2                | DCBLD2             |
| P27695 | DNA-(apurinic or apyrimidinic site) endonuclease                   | APEX1              |
| P61218 | DNA-directed RNA polymerases I, II, and III subunit RPABC2         | POLR2F             |
| P25685 | DnaJ homolog subfamily B member 1                                  | DNAJB1             |
| Q14203 | Dynactin subunit 1                                                 | DCTN1              |
| Q13561 | Dynactin subunit 2                                                 | DCTN2              |
| Q9H4P4 | E3 ubiquitin-protein ligase NRDP1                                  | RNF41              |
| Q7L5Y9 | E3 ubiquitin-protein transferase MAEA                              | MAEA               |
| Q9Y5L3 | Ectonucleoside triphosphate diphosphohydrolase 2                   | ENTPD2             |
| Q9BSW2 | EF-hand calcium-binding domain-containing protein 4B               | CRACR2A            |
| Q14241 | Elongin-A                                                          | ELOA               |
| Q9BS26 | Endoplasmic reticulum resident protein 44                          | ERP44              |
| P98073 | Enteropeptidase                                                    | TMPRSS15           |
| P29317 | Ephrin type-A receptor 2                                           | EPHA2              |
| Q9H6S3 | Epidermal growth factor receptor kinase substrate 8-like protein 2 | EPS8L2             |
| Q9UHF1 | Epidermal growth factor-like protein 7                             | EGFL7              |
| Q96RT1 | Erbin                                                              | ERBIN              |
| P55789 | FAD-linked sulfhydryl oxidase ALR                                  | GFER               |
| 060907 | F-box-like/WD repeat-containing protein TBL1X                      | TBL1X              |
| Q6BAA4 | Fc receptor-like B                                                 | FCRLB              |
| Q9NSA1 | Fibroblast growth factor 21                                        | FGF21              |
| Q9GZV9 | Fibroblast growth factor 23                                        | FGF23              |
| P21802 | Fibroblast growth factor receptor 2                                | FGFR2              |
| Q14512 | Fibroblast growth factor-binding protein 1                         | FGFBP1             |
| P39748 | Flap endonuclease 1                                                | FEN1               |
| P15328 | Folate receptor alpha                                              | FOLR1              |
| P41439 | Folate receptor gamma                                              | FOLR3              |
| 043524 | Forkhead box protein 03                                            | F0X03              |
| Q16595 | Frataxin, mitochondrial                                            | FXN                |
| Q01543 | Friend leukemia integration 1 transcription factor                 | FLI1               |
| P09958 | Furin                                                              | FURIN              |
| P47929 | Galectin-7                                                         | LGALS7_LGALS7<br>B |
| A4D1B5 | Gamma-secretase-activating protein                                 | GSAP               |
| P56159 | GDNF family receptor alpha-1                                       | GFRA1              |
| 000451 | GDNF family receptor alpha-2                                       | GFRA2              |
| 060763 | General vesicular transport factor p115                            | US01               |
| P14136 | Glial fibrillary acidic protein                                    | GFAP               |



# MES-CoBraD

| Q3B7J2            | Glucose-fructose oxidoreductase domain-containing protein 2                   | GF0D2       |
|-------------------|-------------------------------------------------------------------------------|-------------|
| Q16772            | Glutathione S-transferase A3                                                  | GSTA3       |
| Q8WUX2            | Glutathione-specific gamma-glutamylcyclotransferase 2                         | CHAC2       |
| P35052            | Glypican-1 [Cleaved into: Secreted glypican-1]                                | GPC1        |
| P01242            | Growth hormone variant                                                        | GH2         |
| Q9HAV7            | GrpE protein homolog 1, mitochondrial                                         | GRPEL1      |
| 014558            | Heat shock protein beta-6                                                     | HSPB6       |
| 060760            | Hematopoietic prostaglandin D synthase                                        | HPGDS       |
| P09105            | Hemoglobin subunit theta-1                                                    | HBQ1        |
| Q9Y662            | Heparan sulfate glucosamine 3-0-sulfotransferase 3B1                          | HS3ST3B1    |
| 060243            | Heparan-sulfate 6-0-sulfotransferase 1                                        | HS6ST1      |
| Q96D42            | Hepatitis A virus cellular receptor 1                                         | HAVCR1      |
| 014964            | Hepatocyte growth factor-regulated tyrosine kinase substrate                  | HGS         |
| P51858            | Hepatoma-derived growth factor                                                | HDGF        |
| Q16543            | Hsp90 co-chaperone Cdc37                                                      | CDC37       |
| Q9UJM8            | Hydroxyacid oxidase 1                                                         | HAO1        |
| Q16775            | Hydroxyacylglutathione hydrolase, mitochondrial                               | HAGH        |
| 075144            | ICOS ligand                                                                   | ICOSLG      |
| 075054            | Immunoglobulin superfamily member 3                                           | IGSF3       |
| P49441            | Inositol polyphosphate 1-phosphatase                                          | INPP1       |
| P08069            | Insulin-like growth factor 1 receptor                                         | IGF1R       |
| P06756            | Integrin alpha-V                                                              | ITGAV       |
| 014713            | Integrin beta-1-binding protein 1                                             | ITGB1BP1    |
| P18084            | Integrin beta-5                                                               | ITGB5       |
| P26010            | Integrin beta-7                                                               | ITGB7       |
| 075569            | Interferon-inducible double-stranded RNA-dependent protein kinase activator A | PRKRA       |
| P29459_P2946<br>0 | Interleukin-12                                                                | IL12A_IL12B |
| P78552            | Interleukin-13 receptor subunit alpha-1                                       | IL13RA1     |
| Q14213_Q8NEV<br>9 | Interleukin-27                                                                | EBI3_IL27   |
| P05231            | Interleukin-6                                                                 | IL6         |
| P10145            | Interleukin-8                                                                 | CXCL8       |
| P06870            | Kallikrein-1                                                                  | KLK1        |
| 043240            | Kallikrein-10                                                                 | KLK10       |
| Q9UBX7            | Kallikrein-11                                                                 | KLK11       |
| Q9UKR0            | Kallikrein-12                                                                 | KLK12       |
| Q9UKR3            | Kallikrein-13                                                                 | KLK13       |
| Q9P0G3            | Kallikrein-14                                                                 | KLK14       |
| Q9Y5K2            | Kallikrein-4                                                                  | KLK4        |
| Q92876            | Kallikrein-6                                                                  | KLK6        |
| 060259            | Kallikrein-8                                                                  | KLK8        |
| Q96182            | Kazal-type serine protease inhibitor domain-containing protein 1              | KAZALD1     |





| P05783 | Keratin, type I cytoskeletal 18                                      | KRT18   |
|--------|----------------------------------------------------------------------|---------|
| Q96EK5 | KIF-binding protein                                                  | KIFBP   |
| P43628 | Killer cell immunoglobulin-like receptor 2DL3                        | KIR2DL3 |
| P43629 | Killer cell immunoglobulin-like receptor 3DL1                        | KIR3DL1 |
| Q9NS15 | Latent-transforming growth factor beta-binding protein 3             | LTBP3   |
| 000292 | Left-right determination factor 2                                    | LEFTY2  |
| Q8N386 | Leucine-rich repeat-containing protein 25                            | LRRC25  |
| Q96JA1 | Leucine-rich repeats and immunoglobulin-like domains protein 1       | LRIG1   |
| P09960 | Leukotriene A-4 hydrolase                                            | LTA4H   |
| Q9GZY6 | Linker for activation of T-cells family member 2                     | LAT2    |
| P31994 | Low affinity immunoglobulin gamma Fc region receptor II-b            | FCGR2B  |
| P01229 | Lutropin subunit beta                                                | LHB     |
| Q7Z4W1 | L-xylulose reductase                                                 | DCXR    |
| 095274 | Ly6/PLAUR domain-containing protein 3                                | LYPD3   |
| Q6UX82 | Ly6/PLAUR domain-containing protein 8                                | LYPD8   |
| P18627 | Lymphocyte activation gene 3 protein                                 | LAG3    |
| P47992 | Lymphotactin                                                         | XCL1    |
| Q9NPH0 | Lysophosphatidic acid phosphatase type 6                             | ACP6    |
| Q7L5N7 | Lysophosphatidylcholine acyltransferase 2                            | LPCAT2  |
| P39900 | Macrophage metalloelastase                                           | MMP12   |
| P40121 | Macrophage-capping protein                                           | CAPG    |
| P34949 | Mannose-6-phosphate isomerase                                        | MPI     |
| Q9H8J5 | MANSC domain-containing protein 1                                    | MANSC1  |
| Q9BUE0 | Mediator of RNA polymerase II transcription subunit 18               | MED18   |
| Q9Y5V3 | Melanoma-associated antigen D1                                       | MAGED1  |
| Q16674 | Melanoma-derived growth regulatory protein                           | MIA     |
| Q13421 | Mesothelin                                                           | MSLN    |
| P50579 | Methionine aminopeptidase 2                                          | METAP2  |
| P21741 | Midkine                                                              | MDK     |
| Q7Z434 | Mitochondrial antiviral-signaling protein                            | MAVS    |
| Q9UJ68 | Mitochondrial peptide methionine sulfoxide reductase                 | MSRA    |
| Q99683 | Mitogen-activated protein kinase kinase kinase 5                     | MAP3K5  |
| Q08AG7 | Mitotic-spindle organising protein 1                                 | MZT1    |
| Q15797 | Mothers against decapentaplegic homolog 1                            | SMAD1   |
| Q99717 | Mothers against decapentaplegic homolog 5                            | SMAD5   |
| Q8WXI7 | Mucin-16                                                             | MUC16   |
| Q16653 | Myelin-oligodendrocyte glycoprotein                                  | MOG     |
| P20138 | Myeloid cell surface antigen CD33                                    | CD33    |
| Q86SF2 | N-acetylgalactosaminyltransferase 7                                  | GALNT7  |
| Q8IXJ6 | NAD-dependent protein deacetylase sirtuin-2                          | SIRT2   |
| 075380 | NADH dehydrogenase [ubiquinone] iron-sulfur protein 6, mitochondrial | NDUFS6  |
| Q96NY8 | Nectin-4                                                             | NECTIN4 |
| P08473 | Neprilysin                                                           | MME     |





| P32004 | Neural cell adhesion molecule L1                                                                   | L1CAM     |
|--------|----------------------------------------------------------------------------------------------------|-----------|
| P41271 | Neuroblastoma suppressor of tumorigenicity 1                                                       | NBL1      |
| P62166 | Neuronal calcium sensor 1                                                                          | NCS1      |
| Q9Y639 | Neuroplastin                                                                                       | NPTN      |
| P34130 | Neurotrophin-4                                                                                     | NTF4      |
| 000221 | NF-kappa-B inhibitor epsilon                                                                       | NFKBIE    |
| P43490 | Nicotinamide phosphoribosyltransferase                                                             | NAMPT     |
| Q92982 | Ninjurin-1                                                                                         | NINJ1     |
| P22307 | Non-specific lipid-transfer protein                                                                | SCP2      |
| P80303 | Nucleobindin-2                                                                                     | NUCB2     |
| P23515 | Oligodendrocyte-myelin glycoprotein                                                                | OMG       |
| Q9NZT2 | Opioid growth factor receptor                                                                      | OGFR      |
| Q9UBM4 | Opticin                                                                                            | OPTC      |
| P01298 | Pancreatic prohormone                                                                              | PPY       |
| P20472 | Parvalbumin alpha                                                                                  | PVALB     |
| P30041 | Peroxiredoxin-6                                                                                    | PRDX6     |
| 015357 | Phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase 2                                           | INPPL1    |
| Q8NCC3 | Phospholipase A2 group XV                                                                          | PLA2G15   |
| P41586 | Pituitary adenylate cyclase-activating polypeptide type I receptor                                 | ADCYAP1R1 |
| Q9NRA1 | Platelet-derived growth factor C                                                                   | PDGFC     |
| Q8IUK5 | Plexin domain-containing protein 1                                                                 | PLXDC1    |
| 000592 | Podocalyxin                                                                                        | PODXL     |
| Q9NZ53 | Podocalyxin-like protein 2                                                                         | PODXL2    |
| 060828 | Polyglutamine-binding protein 1                                                                    | PQBP1     |
| Q86SR1 | Polypeptide N-acetylgalactosaminyltransferase 10                                                   | GALNT10   |
| Q10471 | Polypeptide N-acetylgalactosaminyltransferase 2                                                    | GALNT2    |
| P08397 | Porphobilinogen deaminase                                                                          | HMBS      |
| P35318 | Pro-adrenomedullin                                                                                 | ADM       |
| Q96SM3 | Probable carboxypeptidase X1                                                                       | CPXM1     |
| Q8N9I9 | Probable E3 ubiquitin-protein ligase DTX3                                                          | DTX3      |
| Q9H3G5 | Probable serine carboxypeptidase CPVL                                                              | CPVL      |
| P35070 | Probetacellulin [Cleaved into: Betacellulin                                                        | BTC       |
| P01275 | Pro-glucagon                                                                                       | GCG       |
| Q9BQ51 | Programmed cell death 1 ligand 2                                                                   | PDCD1LG2  |
| Q15116 | Programmed cell death protein 1                                                                    | PDCD1     |
| Q99075 | Proheparin-binding EGF-like growth factor [Cleaved into:<br>Heparin-binding EGF-like growth factor | HBEGF     |
| Q6PGN9 | Proline/serine-rich coiled-coil protein 1                                                          | PSRC1     |
| Q07954 | Prolow-density lipoprotein receptor-related protein 1                                              | LRP1      |
| P01303 | Pro-neuropeptide Y [Cleaved into: Neuropeptide Y                                                   | NPY       |
| P25786 | Proteasome subunit alpha type-1                                                                    | PSMA1     |
| P02760 | Protein AMBP [Cleaved into: Alpha-1-microglobulin                                                  | AMBP      |
| Q8N129 | Protein canopy homolog 4                                                                           | CNPY4     |
| 075629 | Protein CREG1                                                                                      | CREG1     |



# D3.2

Project Manual – CoBraD RWD, Updated MES-CoBraD Protocols and Quality and Quantity (Q&Q Evaluation – v2



| P07237 | Protein disulfide-isomerase                            | P4HB     |
|--------|--------------------------------------------------------|----------|
| Q9C005 | Protein dpy-30 homolog                                 | DPY30    |
| P58499 | Protein FAM3B                                          | FAM3B    |
| Q92832 | Protein kinase C-binding protein NELL1                 | NELL1    |
| 014974 | Protein phosphatase 1 regulatory subunit 12A           | PPP1R12A |
| P35813 | Protein phosphatase 1A                                 | PPM1A    |
| Q9Y570 | Protein phosphatase methylesterase 1                   | PPME1    |
| P80511 | Protein S100-A12                                       | S100A12  |
| P26447 | Protein S100-A4                                        | S100A4   |
| Q9Y2Z0 | Protein SGT1 homolog                                   | SUGT1    |
| 075695 | Protein XRP2                                           | RP2      |
| Q2VWP7 | Protogenin                                             | PRTG     |
| P07949 | Proto-oncogene tyrosine-protein kinase receptor Ret    | RET      |
| P12931 | Proto-oncogene tyrosine-protein kinase Src             | SRC      |
| Q8IWL2 | Pulmonary surfactant-associated protein A1             | SFTPA1   |
| Q8IWL1 | Pulmonary surfactant-associated protein A2             | SFTPA2   |
| Q9POJ1 | Pyruvate dehydrogenase phosphatase catalytic subunit 1 | PDP1     |
| Q7Z6M1 | Rab9 effector protein with kelch motifs                | RABEPK   |
| Q96NA2 | Rab-interacting lysosomal protein                      | RILP     |
| Q9Y243 | RAC-gamma serine/threonine-protein kinase              | AKT3     |
| P46060 | Ran GTPase-activating protein 1                        | RANGAP1  |
| P50749 | Ras association domain-containing protein 2            | RASSF2   |
| Q13576 | Ras GTPase-activating-like protein IQGAP2              | IQGAP2   |
| P04626 | Receptor tyrosine-protein kinase erbB-2                | ERBB2    |
| Q15303 | Receptor tyrosine-protein kinase erbB-4                | ERBB4    |
| P36888 | Receptor-type tyrosine-protein kinase FLT3             | FLT3     |
| 075787 | Renin receptor                                         | ATP6AP2  |
| Q9BSG5 | Retbindin                                              | RTBDN    |
| Q9BZR6 | Reticulon-4 receptor                                   | RTN4R    |
| P49788 | Retinoic acid receptor responder protein 1             | RARRES1  |
| P50120 | Retinol-binding protein 2                              | RBP2     |
| P82980 | Retinol-binding protein 5                              | RBP5     |
| Q07960 | Rho GTPase-activating protein 1                        | ARHGAP1  |
| P42331 | Rho GTPase-activating protein 25                       | ARHGAP25 |
| P31350 | Ribonucleoside-diphosphate reductase subunit M2        | RRM2     |
| Q7LG56 | Ribonucleoside-diphosphate reductase subunit M2 B      | RRM2B    |
| P35637 | RNA-binding protein FUS                                | FUS      |
| Q9BXY4 | R-spondin-3                                            | RSP03    |
| Q9Y265 | RuvB-like 1                                            | RUVBL1   |
| P13521 | Secretogranin-2                                        | SCG2     |
| 014828 | Secretory carrier-associated membrane protein 3        | SCAMP3   |
| Q9BYH1 | Seizure 6-like protein                                 | SEZ6L    |
| Q6UXD5 | Seizure 6-like protein 2                               | SEZ6L2   |
| Q96I15 | Selenocysteine lyase                                   | SCLY     |



# D3.2

Project Manual – CoBraD RWD, Updated MES-CoBraD Protocols and Quality and Quantity (Q&Q Evaluation – v2



| Q9C0C4 | Semaphorin-4C                                         | SEMA4C    |
|--------|-------------------------------------------------------|-----------|
| Q9UHD8 | Septin-9                                              | SEPTIN9   |
| 043464 | Serine protease HTRA2, mitochondrial                  | HTRA2     |
| Q6UWN8 | Serine protease inhibitor Kazal-type 6                | SPINK6    |
| Q86WD7 | Serpin A9                                             | SERPINA9  |
| Q9UQQ2 | SH2B adapter protein 3                                | SH2B3     |
| Q9HAT2 | Sialate O-acetylesterase                              | SIAE      |
| 043699 | Sialic acid-binding Ig-like lectin 6                  | SIGLEC6   |
| Q9Y336 | Sialic acid-binding Ig-like lectin 9                  | SIGLEC9   |
| P37108 | Signal recognition particle 14 kDa protein            | SRP14     |
| P51692 | Signal transducer and activator of transcription 5B   | STAT5B    |
| Q96DU3 | SLAM family member 6                                  | SLAMF6    |
| Q9P0V8 | SLAM family member 8                                  | SLAMF8    |
| Q9H156 | SLIT and NTRK-like protein 2                          | SLITRK2   |
| Q00796 | Sorbitol dehydrogenase                                | SORD      |
| P09486 | SPARC                                                 | SPARC     |
| Q9H4F8 | SPARC-related modular calcium-binding protein 1       | SMOC1     |
| Q15427 | Splicing factor 3B subunit 4                          | SF3B4     |
| Q06787 | Synaptic functional regulator FMR1                    | FMR1      |
| Q99536 | Synaptic vesicle membrane protein VAT-1 homolog       | VAT1      |
| 095721 | Synaptosomal-associated protein 29                    | SNAP29    |
| 014662 | Syntaxin-16                                           | STX16     |
| Q12846 | Syntaxin-4                                            | STX4      |
| 043752 | Syntaxin-6                                            | STX6      |
| 000186 | Syntaxin-binding protein 3                            | STXBP3    |
| Q9NUY8 | TBC1 domain family member 23                          | TBC1D23   |
| P29017 | T-cell surface glycoprotein CD1c                      | CD1C      |
| P06127 | T-cell surface glycoprotein CD5                       | CD5       |
| P10747 | T-cell-specific surface glycoprotein CD28             | CD28      |
| P48643 | T-complex protein 1 subunit epsilon                   | CCT5      |
| P37173 | TGF-beta receptor type-2                              | TGFBR2    |
| P51580 | Thiopurine S-methyltransferase                        | TPMT      |
| Q96J42 | Thioredoxin domain-containing protein 15              | TXNDC15   |
| Q5JTD0 | Tight junction-associated protein 1                   | TJAP1     |
| P13726 | Tissue factor                                         | F3        |
| P48307 | Tissue factor pathway inhibitor 2                     | TFPI2     |
| 043715 | TP53-regulated inhibitor of apoptosis 1               | TRIAP1    |
| Q9Y6A5 | Transforming acidic coiled-coil-containing protein 3  | TACC3     |
| P01375 | Tumor necrosis factor                                 | TNF       |
| Q9NP84 | Tumor necrosis factor receptor superfamily member 12A | TNFRSF12A |
| Q9NS68 | Tumor necrosis factor receptor superfamily member 19  | TNFRSF19  |
| Q9HAV5 | Tumor necrosis factor receptor superfamily member 27  | EDA2R     |
| P09758 | Tumor-associated calcium signal transducer 2          | TACSTD2   |
| P00519 | Tyrosine-protein kinase ABL1                          | ABL1      |



# MES-CoBraD

| P07332 | Tyrosine-protein kinase Fes/Fps                                                                                               | FES     |
|--------|-------------------------------------------------------------------------------------------------------------------------------|---------|
| P07948 | Tyrosine-protein kinase Lyn                                                                                                   | LYN     |
| P07947 | Tyrosine-protein kinase Yes                                                                                                   | YES1    |
| 015116 | U6 snRNA-associated Sm-like protein LSm1                                                                                      | LSM1    |
| Q9BSL1 | Ubiquitin-associated domain-containing protein 1                                                                              | UBAC1   |
| Q8NBZ7 | UDP-glucuronic acid decarboxylase 1                                                                                           | UXS1    |
| P54727 | UV excision repair protein RAD23 homolog B                                                                                    | RAD23B  |
| Q8NEZ2 | Vacuolar protein sorting-associated protein 37A                                                                               | VPS37A  |
| Q5VIR6 | Vacuolar protein sorting-associated protein 53 homolog                                                                        | VPS53   |
| P49767 | Vascular endothelial growth factor C                                                                                          | VEGFC   |
| P17948 | Vascular endothelial growth factor receptor 1                                                                                 | FLT1    |
| P35968 | Vascular endothelial growth factor receptor 2                                                                                 | KDR     |
| P35916 | Vascular endothelial growth factor receptor 3                                                                                 | FLT4    |
| 095498 | Vascular non-inflammatory molecule 2                                                                                          | VNN2    |
| Q7Z5L0 | Vitelline membrane outer layer protein 1 homolog                                                                              | VM01    |
| Q6PCB0 | von Willebrand factor A domain-containing protein 1                                                                           | VWA1    |
| Q96PQ0 | VPS10 domain-containing receptor SorCS2 [Cleaved into:<br>SorCS2 122 kDa chain; SorCS2 104 kDa chain; SorCS2 18<br>kDa chain] | SORCS2  |
| Q7Z7D3 | V-set domain-containing T-cell activation inhibitor 1                                                                         | VTCN1   |
| Q9Y5K8 | V-type proton ATPase subunit D                                                                                                | ATP6V1D |
| Q8WWY7 | WAP four-disulfide core domain protein 12                                                                                     | WFDC12  |
| Q14508 | WAP four-disulfide core domain protein 2                                                                                      | WFDC2   |
| Q9Y5W5 | Wnt inhibitory factor 1                                                                                                       | WIF1    |
| 043895 | Xaa-Pro aminopeptidase 2                                                                                                      | XPNPEP2 |
| Q05516 | Zinc finger and BTB domain-containing protein 16                                                                              | ZBTB16  |
| Q9UKS7 | Zinc finger protein Helios                                                                                                    | IKZF2   |





# ANNEX VI: Neurophysiology Variables

# EEG

Bio-Calibration should be performed to ensure integrity of the biological signal. This is done by recording briefly on a referential montage using the input reference electrode. This is to verify that the EEG signal in the input referential montage is of good quality, with no electrode artefact and without the presence of 50 Hz. In addition, it is necessary to carry out machine checks at the beginning and end of every recording. This is done with the input of a square wave into the amplifier and adjusting our filters (HFF, LFF), time base and sensitivity, and ensure the square wave behaves accordingly.

Electrode position, standard 10-20 or Modified Maudsley system

Electrode/contact impedances <5KΩ

Sampling rate of  $\geq$ 256Hz.

Recording frequencies 0.1Hz to 70Hz, with the notch (50Hz) filter OFF.

# ECG

1 bipolar ECG: left anterior axillary line (~6th intercostal) to right subclavicular area (2nd intercostal area)

Low Frequency Filter (LF) 0.3 and High Frequency Filter (HF)70

# Electro-Oculo-Gram (EOG) electrodes

Right EOG: 1cm above and lateral; Left EOG: 1 cm below and lateral

LF 0.5Hz, HF 70Hz

Sampling rate of ≥256Hz

# **EMG electrodes**

Chin (2-3 electrodes), genu, right and left digastric area (monopolar); right and left Tibialis anterior, +/- R and L extensor digitorum communis (bipolar electrodes 2-3 cm apart)

LF 10Hz, HF 100Hz

Sampling rate of ≥256Hz

# Respiratory belts for respiratory effort

chest and abdomen; preferred

Sampling rate of  $\geq$ 64Hz

# Oral-nasal airflow

LF 0.03Hz (or DC) and HF 100Hz

Sampling rate of ≥64Hz

# Thermistor

Position sensor points under nostrils and over mouth to capture nasal and oral breathing

LF 0.1Hz and HF 15Hz

# Sampling rate of $\geq$ 64Hz

# Snore sensor

Position at highest vibration point on neck when humming

# LF 10Hz HF 100Hz





# Sampling rate of $\geq$ 256Hz

# Oximetry

Place over non-dominant index finger. Remove nail polish if interfering with signal

Verify that plethysmography also capturing

Sampling rate of  $\geq$ 25Hz

\*see also AASM current guidelines for sensor placement







Modified Maudsley Electrode Placement System

Proposed in 1956 by Pampiglione at Great Ormond Street Hospital and initially for children
Revised in 1970 at Mauduley Hospital by Marzerison and took its name







Cortical signals-EEG , (2)Eye potentials -EOG,
Muscle potential-EMG,





Figure 8: EEG and PSG Electrode Placement











# ANNEX VII : Medical device RWD

# VNS variables

- 1. Indication for VNS
- 2. VNS Model
- 3. Year of implantation
- 4. Dates of battery/Device replacement
- 5. Current parameters and previous parameters
  - a. Intensity
  - b. Frequency of stimulation
  - c. Cycle On/Off
  - d. Responsive stimulation parameters
- 6. Daily and summative machine-estimated outcome metrics:
  - a. Number of response stimulations
- 7. Summary from the last VNS check

# **DBS variables**

- 1. Indication for DBS
- 2. DBS Model
- 3. Year of implantation
- 4. Location of the leads
- 5. Pattern of leads' stimulation
- 6. Dates of battery/Device replacement
- 7. Current and previous parameters per period of use
  - a. Intensity
  - b. Frequency of stimulation
  - c. Cycle
  - d. Pulse width

# PAP / NIV variables

- 1. Indication
- 2. Machine and Interface Model
- 3. Period of use parameters
  - a. Pressure
  - b. Humidity
  - c. Temperature Parameters
- 4. Daily and summative machine-estimated outcome metrics:
  - a. Use (hours and times)
  - b. Apnea Hypopnea Index
  - c. Leak





# ANNEX VIII: Wearable Cloud-based data extraction

The following is an example based on FitbitTM, given it has the largest market share and an established protocol for data sharing.

- > Data is uploaded to Fitbit cloud services from the device.
- > Users approve access to their data which may be accessed and shared to the MES-CoBraD Platform via API (see figures below)





D3.2

Project Manual – CoBraD RWD, Updated MES-CoBraD Protocols and Quality and Quantity (Q&Q Evaluation – v2





Figure 7: Fitbit User Access

After sharing is achieved, raw data (.json files) need to be converted, cleaned, and processed as part of the Advanced Analytics modules of the MES-CoBraD (these steps can be performed using Microsoft Power BI, or algorithms from open-source programming languages like R and Python).

