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Abstract

Structural and microstructural analyses and phase equilibria modeling of migmatitic amphibolite-
facies metapelites from the late Carboniferous Caamita Schists, on the Island of Elba, Italy,
show how the interplay between partial melting and regiona (far-field) deformation assisted
deformation at very shallow (P < 0.2 GPa) crustal levels. Partia melting was caused by the heat
supplied by an underlying late Miocene intrusion (Porto Azzurro pluton) and occurred by biotite
continuous melting. The produced melt remained in situ in patches, likely experienced limited
migration in stromatic migmatites, and crystallized as a K-feldspar + plagioclase + quartz
assemblage. Deformation in the presence of melt occurred by melt-enhanced grain boundary
dliding, producing well-foliated high-strain zones with weak evidence of subsolidus deformation
a the microscale where the original melt was present. Melt crystalization caused strain
hardening and forced subsolidus deformation into localized mylonitic shear zones. The localized
character of retrograde deformation was likely determined by the heterogeneous
distribution/ingress of fluids in the aureole that locally assisted strain localization, enhancing

dislocation creep and reaction softening.
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Highlights:
» K-feldspar + plagioclase patches record in-situiplamelting in the upper crust;
» Melting was caused by granite emplacement and petum the andalusite field;
» Deformation is distributed in the partially moltestks;

* Melt crystallization causes strain localizatioroimhylonitic shear zones;
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Abstract

Structural and microstructural analyses and phgsdgileria modeling of migmatitic amphibolite-
facies metapelites from the late Carboniferous @aéa Schists, on the Island of Elba, Italy,
show how the interplay between partial melting aedional (far-field) deformation assisted
deformation at very shallow (0.2 GPa) crustal levels. Partial melting was cdusethe heat
supplied by an underlying late Miocene intrusioor(B Azzurro pluton) and occurred by biotite
continuous melting. The produced melt remaineditun is patches, likely experienced limited
migration in stromatic migmatites, and crystallizad a K-feldspar + plagioclase + quartz
assemblage. Deformation in the presence of melarced by melt-enhanced grain boundary
sliding, producing well-foliated high-strain zonegh weak evidence of subsolidus deformation
at the microscale where the original melt was pres#lelt crystallization caused strain
hardening and forced subsolidus deformation intalized mylonitic shear zones. The localized
character of retrograde deformation was likely deieed by the heterogeneous
distribution/ingress of fluids in the aureole thatally assisted strain localization, enhancing

dislocation creep and reaction softening.

1. Introduction

Partial melting is commonly regarded as an effectieakening mechanism controlling strain
localization in shear zones (Hollister and Crawfat@86; Karlstrom et al., 1993; Davidson et
al., 1994; Vanderhaeghe, 2009; Kruckenberg ef@l1). Experimental results have shown that
for very low melt fraction (between 1 and 4 vol%pgtdominant deformation mechanism in
rocks switches from dislocation creep to melt-ewledangrain boundary sliding, in which

interstitial melt allows grains to slide past eather (Cooper and Kohlstedt, 1984; Dell’Angelo
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et al., 1987; Dell’Angelo and Tullis, 1988; Walteat., 2005; Zavada et al., 2007; Schulmann et
al., 2008). At a higher melt fraction (~ 7-8 vol,%)elt becomes interconnected causing a further
decrease in rock strength (the so called ‘liquictpkation threshold’ of Vigneresse and Tikoff,
1999 or the ‘melt connectivity transition’ of Rosemg and Handy, 2005). Deformation in the
presence of a very low melt fraction (< 7%) notyomluses strain partitioning between
leucosomes and the residual rocks but also activatpositive feedback mechanism attracting
more melt into high-strain zones, due to the lasallements of grains (Rosenberg, 2001; Walte
et al., 2005; Stuart et al., 2018).

The weakening effect of partial melting and melgration in crustal and mantle rocks has been
widely investigated (Rutter and Neumann, 1995; ¥mgsse et al., 1996; Vigneresse and Tikoff,
1999; Rosenberg and Handy, 2005; Misra et al., R0d4 the effect of in-situ crystallization of
melt in migmatites has been broadly neglected. Thi®ecause the long-term rheology of
migmatite terranes appears controlled by the efficy of melt segregation and migration away
from the residuum, causing strain hardening ofdheresidual rocks (White and Powell, 2002;
Brown, 2002, 2010; Guernina and Sawyer, 2003; Yatwuok and Brown, 2014; Diener and
Fagereng, 2014). However, solidification of mels e significant impact on the rheology of
melt-bearing systems, as the liquid-filled porestare often pseudomorphed by rheologically
strong phases such as feldspars. For example,niiecdgnic plutons the transition from syn-
magmatic shearing to subsolidus deformation is nofeccompanied by extreme strain
localization (e.g. Gapais, 1989; Pawley and CqllZ@02; Zibra et al., 2018). A similar change
in deformation style should be expected in highistrzones in migmatites where melt
crystallized in situ, for example in a melt-bearstgear zone that cooled during exhumation, or

where the presence of melt was related to a tmansleange in thermal conditions (for example
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in upper crustal aureoles; e.g. Pattison and H&4&88; Marchildon and Brown, 2002; Johnson
et al., 2003; Droop and Brodie, 2012). Stuart et(2018) documented the preservation of
pseudomorphs after melt-filled pores in granulibcks that were not overprinted by subsolidus
deformation due to sudden increase in rock streagtised by melt crystallization. Localization
of deformation in the subsolidus regime requires dhtivation of softening mechanisms which
may cause strain partitioning between the leucosameé the residuum and drive strain
localization (e.g. Handy et al., 2001; Diener et 2016; Miranda and Klepeis, 2016; Stuart et
al., 2018). Structures formed in the subsolidugeamay be strikingly different in deformation
style with respect to those formed in the preseofcenelt, reflecting the abrupt change in
deformation mechanism and bulk rheology that folonelt solidification.

In this study, we investigated the structures medrduring transition from melt-present upper
amphibolite-facies deformation to greenschist-facmaylonitization in the metasedimentary
sequence of the Calamita Schists (northern Apesnitngland of Elba, Italy), within a
synkinematic contact aureole developed at shallowstal levels (P < 0.2 GPa). We show an
example where partial melting assisted large-sclfrmation in high-strain domains. At
decreasing temperature, melt crystallization caus#égin hardening, as melt-enhanced
deformation was deactivated. The localization dbdwation during retrograde deformation was
locally assisted by strain softening mechanismslitgato very heterogeneous distribution of

strain marked by narrow and anastomosing sheaszbaé overprint the high-grade foliation.

2. Geological Outline

2.1 Geology of the Island of Elba
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The Island of Elba is characterized by a stackast-®erging thrust nappes that was structured
between the early Miocene and the Pliocene duheglevelopment of the Northern Apennines
fold-and-thrust belt (Keller and Coward, 1996; Mass al., 2017). The nappe stack is divided
into an Upper Complex, which comprises non-metammorip lower greenschist-facies units and
a Lower Complex consisting of the medium- to higheg metamorphic Ortano and Calamita
Units (Fig. 1a). The contact between the Upper bomer Complexes is marked by the late
Miocene out-of-sequence Capo Norsi — Monte Arcou$h(Fig. 1a) that was active up to the
early Pliocene (Tab. 1; Viola et al., 2018). Th@pa stack is intruded by several late Miocene
intrusives, notably the Monte Capanne pluton ardGbntral Elba laccolith complex, emplaced
in the Upper Complex, and the Porto Azzurro pluiatruded in the Calamita Unit and buried
below the present-day sea level (Fig. la; Barlteal.e 1967; Dini et al., 2002; Musumeci and
Vaselli, 2012; Barboni et al., 2015).

The Calamita Unit was deeply affected by the latedéne low-pressure/high-temperature
(LP/HT) metamorphic imprint caused by the emplaceinaé the Porto Azzurro pluton, which
occurred at temperatures between 600 — 650 °C exbyres below 0.2 GPa (Duranti et al.,
1992; Musumeci and Vaselli, 2012; Caggianelli et 2018). Pluton emplacement and LP/HT
metamorphism were coeval with late Miocene conwaal tectonics, which determined the
development of ductile syn-magmatic shear zoneg;hwivere later overprinted by brittle, post-
magmatic thrust sheets at the end of the thermaéga.g. Capo-Norsi Monte Arco thrust in Fig.
la; Musumeci and Vaselli, 2012; Musumeci et al.1®0Viola et al.,, 2018). LP/HT
metamorphism and ductile deformation in the Calamitnit were constrained between
6.76+0.08 Ma TAr/**Ar phlogopite age) and 6.23+0.06 M&Ar/**Ar muscovite age) (Tab. 1).

A zircon rim yielded a 6.40+0.15 Ma U/Pb age (sagsMmneci et al., 2015). The brittle overprint
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was dated througfK/*°Ar on authigenic illite between 6.14+0.64 Ma an€l040.27 Ma (Tab.
1; Viola et al., 2018). As a consequence, duct@®mmnation in the Calamita Unit, triggered by

the thermal anomaly, very likely lasted less thavial

2.2 Strain and metamorphic gradients in the Calami Unit

The Calamita Unit (Fig.la, b) is a metamorphic claxpcharacterized by the early
Carboniferous Calamita Schists, which are tectdiyicaverlain by Triassic metaclastics
(Barabarca quartzite), marbles and dolomitic marid@alanchiole marble; Barberi et al., 1967;
Musumeci et al., 2011; Papeschi et al.,, 2017 aferaeces therein). The Calamita Schists
experienced LP/HT late Miocene amphibolite-faciestamorphism with peak temperatures
around 625 °C (Caggianelli et al., 2018) or eveneexling 650 °C (Musumeci and Vaselli,
2012) and were overprinted by greenschist-facig®geade metamorphism during cooling of
the Porto Azzurro pluton.

The metamorphic foliation in the Calamita Schigtgkes N-S to NW-SE and dips generally to
the W-SW. The Ripalte antiform (Fig. 1b) refolddte tmain metamorphic foliation, which
became E-NE dipping to (locally) subvertical in thastern part of the Calamita Unit. The
antiform is interpreted as a late thrust fault-@gation fold that affected the Calamita Unit after
the LP/HT metamorphic event (see Mazzarini et2l11 and Papeschi et al., 2017). Stretching
lineations trend E-W and dip to the W and the Eh@nopposite limbs of the antiform (Fig. 1b).
The Calamita Schists consists of interlayered daely to brownish micaschists, metapsammites,
and quartzites containing centimeter- to decim#étek deformed quartz layers: the

compositional variability is largely due to varyiggartz and mica content within the schists.
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Late Miocene contractional deformation is very hegeneously distributed in the Calamita
Schists, which are characterized by well-foliatadhkstrain domains (Fig. 2a) with local
mylonitic layers and top-to-the-E kinematic indmat localized in low-strain domains that
constitute the majority of the Calamita Schistse(sedetail Papeschi et al., 2017). High-strain
domains display a composite fabric that preserlie tgper amphibolite-facies deformation,
highlighted by grain boundary migration in quartayerprinted by lower amphibolite- to
greenschist-facies mylonitic deformation and ldmettle thrusting (Papeschi et al., 2018). In the
eastern part of the Calamita Unit, high-strain doare also affected by the Ripalte antiform,
becoming locally E-dipping (Fig. 1b), apparenthsembling normal shear zones. Low-strain
domains are characterized by poorly foliated ssh&std hornfelses interlayered with quartz
layers, that are locally affected by E-verging tifgiids (Fig. 2b).

The metamorphic LP/HT assemblage of the Calamitas&cis characterized by white mica +
biotite + cordierite + andalusite, overprinted leyrograde white mica and chlorite (see in detail
Papeschi et al., 2017). The highest grade rockhiefCalamita Schists are located along the
southeastern coast of the Calamita peninsula, enctire of the Ripalte antiform (Fig. 1b;
Mazzarini et al., 2011; Papeschi et al., 2017), rettbey display the typical peak assemblage
biotite + K-feldspar + plagioclase + andalusite ordierite (first recognized by Barberi et al.,

1967).

3. Methodology
In the present study we describe in detail twoceteareas in the highest metamorphic grade
portion of the Calamita Schists, showing the peakamorphic assemblage (biotite + K-feldspar

+ plagioclase + andalusite + cordierite) with evice of partial melting and its relationship with
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deformational structures: Punta Bianca and CapovdCalFig. 1b). Several samples,
representative of the different structures and amsitipnal domains identified in the field, were
selected and analyzed in oriented thin sectioasdut parallel to the lineation and perpendicular
to the foliation). Details of the samples are afa# in the supplementary material to this article

(Tab. S6) and on SESAR_(https://app.geosample¥.d8gimple nomenclature strictly follows

that of the SESAR database.

The petrographic microscope was used to identifpemdl phases in a suite of samples,
characterize microstructures, and select areasinfagstigations with a scanning electron
microscope (SEM) and an electron microprobe (EMM)e area % of the phases present in
selected samples (i.e. IESP3CS42A and IESP3SP&8edow) was estimated on thin section
scans using the Color Threshold tool of the Imagdtivare (Schneider et al., 2012),

Preliminary microstructural investigations and maleanalyses were carried out with a Hitachi
TM3030 Plus Tabletop Microscope SEM at the Depantnté Earth Sciences (University of
Pisa) and a ZEISS-EVO SEM equipped with an Oxfasifruments EDS detector at the National
Institute for Geophysics and Volcanology (Pisdy)ta

Rock-forming minerals were analyzed in a single @an(IESP3CS42A) with a CAMECA
SX100 EMP equipped with five spectrometers and @6 Bystem at the Institut fir Mineralogie
und Kristallchemie (Universitat Stuttgart). Anabdl conditions for spot analyses were 15 kV
accelerating voltage, 15 nA beam current, 20s éogrime on peak and background each, and 1
pm spot size. Standards were wollastonite (Si, 883 (Al), Fe,0s (Fe), MnTiGQ (Mn, Ti),
albite (Na), orthoclase (K), olivine (Mg) and barifBa). Structural formulae of minerals were
recalculated considering 14 oxygen equivalentsifdorite, 11 for white mica, 22 for biotite, 18

for pinitized cordierite, 8 for feldspar, 5 for aidsite, 3 for ilmenite, 5 for titanite, and 4 for
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rutile. Biotite was classified using the classifioa scheme based on the siderophyllite —
eastonite — phlogopite — annite end-members afesr @t al. (1992). Concentration maps for
major elements (Ca, Fe, Mn, Mg, Al and Na) wer®e @ioduced by stepwise movements of the
thin section under the electron beam; countinggiper step were 100 ms.

The bulk rock chemistry of sample IESP3CS42A waserdened by X-ray fluorescence
spectroscopy (XRF) using the Panalytical PW240Ctspmeter at the Institut fur Mineralogie
und Kristallchemie in Stuttgart. Whole-rock anakjsexpressed in wt%, were recalculated in
mol% for phase equilibria modeling using THERMOCAB@3 (Powell and Holland, 1998; see

details in section 5).

4. Structural and lithological features

4.1 Punta Bianca

The mesoscale structures exposed at Punta Biaecdeseloped in the biotite + K-feldspar +
plagioclase + andalusite + cordierite zone of tlaa@ita Schists, according to Barberi et al.
(1967). The foliation strikes N-S to NW-SE, gerdipping to the E (10 to 30°) and is defined by
the preferred orientation of biotite, andalusiterdeerite, as well as quartz and K-feldspar +
plagioclase layers (Fig. 2c, d). Upright, openigihtt folds with N-S trending axes locally refold

the main foliation (Fig. 2c). The Calamita SchistsPunta Bianca display a compositional
banding defined by light-colored quartz-feldspatirilayers interlayered with dark-colored

biotite-rich bands (Fig. 2c, d). Moreover, millireetto centimeter-thick quartzite layers, widely
diffused in the Calamita schist from high- to lometamorphic grade lithologies, are oriented
parallel to the compositional banding. The compasél banding generally follows mesoscale

structures such as folds (Fig. 2c¢) and foliatidfig.(2d). Light-colored domains are composed of

10



219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

K-feldspar, plagioclase, and quartz with variabtmtent of biotite, andalusite, and cordierite,
range in thickness from few millimeters to someticeeters, and are laterally continuous for
several tens of centimeters (Fig. 2d, e). Dark+smlalomains consist of biotite, andalusite and,
less commonly, cordierite and contain discrete rayand pockets (Fig. 2f) of K-feldspar,
plagioclase, and quartz. Intermediate-colored domaharacterized by a conspicuous content of
both light- and dark-colored phases, are also wigedsent.

The foliation is heterogeneously distributed atcoap scale and appears more penetrative in
domains characterized by a higher proportion oftgu&-feldspar, and plagioclase (e.g. Fig. 2e)
with respect to dark-colored domains, that typicathow randomly-distributed cm-sized

andalusite grains and lack a clearly defined farafFig. 2f).

4.2 Capo Calvo

Capo Calvo exposes amphibolite-facies schists aethpeammites containing biotite, quartz,
andalusite, cordierite, K-feldspar, and plagiocl@sg. 3a). The dominant fabric is a N-S to NW-
SE striking and E-dipping penetrative foliation @medip-direction/dip: N061°/31°; Fig. 3a),
defined by the preferred orientation of the amplhii&dacies assemblage, which is crosscut by
anastomosing E-verging shear-zones (mean dip-iréddip: N062°/53°; Fig. 3a) with a
greenschist-facies white mica + chlorite bearingeathlage (described in detail in Papeschi et
al., 2018). The eastern dip of structures at Cagledds due to their position on the eastern flank
of the late Ripalte antiform, which refolded origity W-dipping thrust shear zones (Fig. 1b;
Mazzarini et al., 2011; Papeschi et al., 2018)etShing lineations trend SW-NE dipping to the

ENE (Fig. 3a).
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As in Punta Bianca, the distribution of composiibnlomains and deformational features is
heterogeneous at outcrop scale (Fig. 3b, c). THan@@ Schists display (1) whitish, deformed
quartz-rich layers (Fig. 3b), (2) dark-colored damsa(Fig. 3b, c), consisting of very poorly
foliated and coarse-grained blackish nodules coimgi mostly biotite, cm-sized euhedral
andalusite or cordierite with pockets of K-feldspalagioclase, and quartz, and (3) light-colored
domains, consisting of foliated schists containibigtite, quartz, K-feldspar, plagioclase,
cordierite, and, less commonly, andalusite (Fig. Blmlike Punta Bianca, light-colored domains
display a conspicuous proportion of biotite, contieand andalusite. As shown in Fig. 3b, the
transition from light- to dark-colored domains isadgational and marked by a progressive
increase in quartz-feldspathic content from themfar to the latter, corresponding also to an
increase in foliation intensity (see also Fig. 3@reenschist-facies shear zones tend to be
concentrated in light-colored domains but affecikst dark-colored domains (Fig. 3c).
K-feldspar and plagioclase form more-or-less eloedjamnm- to cm-sized patches that are

heterogeneously distributed in the biotite-richugxdmass (highlighted in Fig. 3c).

5. Microstructures

5.1 Punta Bianca

Dark-colored domains

Dark-colored domains are composed of biotite, arsii@, cordierite, K-feldspar, plagioclase,
quartz, and ilmenite and contain accessory tourmealzircon, apatite and monazite. Some
domains display andalusite as part of the peakrdsdage, whereas others cordierite. Very few
domains contain both andalusite and cordierite.rQuayers are locally interlayered within

dark-colored domains. The foliation is generallyopp developed and the microstructure

12
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appears dominated by abundant coarse-grained (1®Q0—-4m) decussate biotite grains that
surround very large (> 1 mm) euhedral andalusitepppoblasts (Fig. 4a). K-feldspar,
plagioclase, and quartz are heterogeneously distibin fine-grained polycrystalline patches
with irregular shape (Fig. 4a). The intensity oliddon increases in layers characterized by a
higher proportion of K-feldspar, plagioclase, anthqz (Fig. 4b). The foliation is outlined by
both the preferred orientation of biotite grainsd atme compositional banding defined by
subparallel biotite-rich and quartz-feldspar-ricantls (Fig. 4b). Well-formed and relatively
coarse-grained porphyroblasts of K-feldspar andjiptdase are only sporadically present and
are surrounded by a rim of interstitial K-feldspguartz, and rare plagioclase (Fig. Sla in
supplementary material). In the vast majority o$esaK-feldspar, plagioclase and quartz form
polygonal, polycrystalline aggregates (grain siz8: — 200 um) containing iso-oriented to
decussate biotite inclusions (Fig. 4c).

Biotite grains included in quartz-feldspathic agges frequently display a strongly irregular,
resorbed outline (insert in Fig. 4c). On the othand, biotite in large biotite aggregates (Fig. 4a)
and included in K-feldspar and plagioclase porphiasts (Fig. S1la in supplementary material)
displays subhedral to euhedral shape. Quartz, d&palr, and plagioclase between biotite grains
frequently form a polygonal groundmass (Fig. 4d,ttgt contains grains with well-defined
crystal faces and triple-point junctions (as thartpgrain in Fig. 4d), coexisting with strongly
irregular, interstitial grains that surround smiaieains (e.g. K-feldspar in Fig. 4e). Fig. 4f slsow
an example of interstitial quartz (orange) chamdxge by cuspate lobes interfingered between
the neighboring grains, which display straight tay/faces or a rounded outline. Resorbed grains

may display abundant ilmenite inclusions, whichlass common in interstitial phases (Fig. 4f).

13



287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

Light-colored domains

Light-colored domains consist predominantly of quaK-feldspar, and plagioclase with minor
biotite, andalusite, and cordierite. Accessories arcon, apatite, tourmaline, and monazite.
Sericite is present as a retrograde phase, ovemggdivfeldspar and plagioclase.

As shown in Fig. 5a and 5b, the microstructureigtittcolored domains is well-foliated, owing
to stretched quartz grains, elongated K-feldspplagioclase aggregates that are often replaced
by sericite, and the preferred orientation of faatite grains. Quartz shows large grains (100 —
500 um) that are surrounded by small (~ 10 — 50 grains indicative of recrystallization by
bulging and subgrain rotation (Fig. 5a). The lagyains are characterized by amoeboid shape
and lobate grain boundaries, indicative of graiarimary migration recrystallization (see Stipp et
al., 2002).

K-feldspar and plagioclase are frequently organizedtretched layers that follow domains
where few biotite grains are still preserved altjitostrongly resorbed by cuspate lobes of K-
feldspar (Fig. 5c¢). In spite of the strong elongatof feldspar aggregates (e.g. Fig. 5b), K-
feldspar and plagioclase display a polygonal micoature made up of polycrystalline
aggregates with 50 — 200 um average grain sizeldbks extensive dynamic recrystallization
features (Fig. 5d). Larger porphyroblasts (up tmedwundreds of microns) are also present. In
feldspar aggregates, euhedral grains of K-feldgpalr plagioclase with well-developed crystal
faces coexist with rounded K-feldspar, plagioclas®] quartz grains, surrounded by interstitial
K-feldspar and/or quartz (Fig. 5d). Several cuspattes of K-feldspar with low dihedral angles

penetrate between adjacent quartz and K-feldsamgare shown in Fig. 5d as an example.

5.2 Capo Calvo

14



310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

Dark-colored domains

At Capo Calvo, dark-colored domains display simiatures with respect to Punta Bianca, but
they are overprinted by an intense retrograde nwfaimsm that produced fine-grained
aggregates of sericite and chlorite over biotiteladusite, cordierite, K-feldspar, and plagioclase
(Fig. 6a). Accessories are tourmaline, zircon, iggatnd monazite. Quartz is present as
deformed layers with amoeboid-shaped grains.

As shown in Fig. 6a, biotite is partially replacbg andalusite, cordierite, K-feldspar, and
plagioclase. K-feldspar + plagioclase + quartz eggtes with 50 — 200 um grain size and
polygonal texture occur scattered through the rsicugture, surrounded by retrograde sericite
(Fig. S1g in supplementary material). K-feldspacasnmonly characterized by strongly cuspate
and irregular lobes that penetrate between quamtiz baotite grain boundaries (Fig. 6b). We
observed small feldspar grains included in quartbptical continuity with larger grains (Fig.
6b). Biotite, with strongly irregular and resorbgltape, is commonly surrounded by interstitial
K-feldspar and /or quartz (Fig. 6¢). The internatnostructure of K-feldspar, plagioclase, and
guartz aggregates is generally characterized bglygpnal texture with euhedral grains and
rounded grains that are spatially associated withrstitial K-feldspar and quartz (Fig. 6d).
Interstitial grains with triangular outline, locadid close to triple junctions of euhedral graires ar

diffuse (Fig. 6d and S1h in supplementary material)

Light-colored domains
The description of light-colored domains is focusaa sample (IESP3CS42A on SESAR
database) that was also investigated in detail foneral chemistry and modeled with

pseudosections (see section 7).
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333 Sample IESP3CS42A is a schist consisting of quaittite, K-feldspar, plagioclase, cordierite
334 (pinitized), and ilmenite (in modal order; Fig. 7#&cally overprinted by retrograde sericite,
335 chlorite, and greenish biotite. The light color tbk schist is largely due to the relative high
336 abundance of quartz and feldspars. Andalusite rig ke and was found only as a fractured
337  porphyroclast strongly replaced by white mica (F8§.in supplementary material). Accessories
338 are apatite (grain size: 100-500 pm), tourmalir@ X80 pm), zircon, monazite (less than 50-80
339  um), and titanite (50-100 pm). As shown in Fig. tfee sample displays a foliated microfabric
340 defined by parallel quartz- (thickness: 1-5 mm) aiatite-rich domains (thickness: 100 um up
341 to 1-2 mm), together constituting 91 area% of tHeol sample. The remaining 9% of the
342 sample area is made up of K-feldspar and plagiedé®) and cordierite (~ 2.5%).

343  As shown in Fig. 7b, quartz is characterized bgdagrains (200 — 700 um grain size) with
344 amoeboid shape and strongly lobate grain boundastesving dissection microstructures and
345 ‘island grains’ (i.e. small grains in optical camntity with larger grains; see Urai et al., 1986).
346 Quartz grain boundaries are often pinned or draggedind subparallel biotite inclusions
347  (pinning microstructure; see Jessell, 1987), definihe foliation within quartz-rich domains
348 (Fig. 7c). Quartz microstructures are consistenthwiecrystallization by grain boundary
349  migration (see Stipp et al., 2002). Only locallyadtz grains show patchy to undulose extinction,
350 indicating a lower temperature overprint. Biotitelhr domains display a lepidoblastic
351  microstructure defined by coarse-grained (100 — $00) subparallel biotite grains with
352 subhedral habit and undulose extinction (Fig. #a) amall (~10-50 um) subparallel grains of
353 ilmenite. Fig. 7a highlights that cordierite, Kdspar, and plagioclase occur strictly associated

354  with biotite-rich layers. Cordierite forms euhedtalsubhedral porphyroblasts (grain size: 0.1 —
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355 1 mm) that are completely pseudomorphed by mixtuephyllosilicates (i.e. pinite) still
356  preserving equilibrium textures with the surroumgbiotite-rich matrix (Fig. 7d).

357  K-feldspar and plagioclase occur as polycrystalfiatches and augen-like aggregates that can be
358 as large as some millimeters and are generallyactenized by a grain size of ~ 100 — 500 um
359 (Fig. 7e). These aggregates are strictly localizetiotite-rich layers. K-feldspar is modally
360 more abundant than plagioclase. Locally, small drdiggrains of quartz are also part of the K-
361 feldspar + plagioclase aggregates.

362 As shown in Fig. 8a, K-feldspar + plagioclase aggtes are characterized by an irregular
363  outline with several cuspate lobes protruding i shirrounding quartz and biotite (red arrows).
364 Feldspar grains can display poikiloblastic textdoe to abundant biotite inclusions. Thin (<50
365 um in thickness), K-feldspar-rich layers are alscalized within quartz, in correspondence of
366  biotite-rich domains (green arrow in Fig. 8a). Bmtn contact with or included in K-feldspar
367 shows a very irregular outline indicating replacamef biotite by K-feldspar and plagioclase
368  (light blue arrow in Fig. 8a). A significant frach of the smaller biotite grains included in K-
369 feldspar and plagioclase (grain size: 5 — 100 pisplalys well-developed crystal faces, euhedral
370 habit, and appears clearly misoriented with resfetite main foliation (insert in Fig. 8a).

371  The contact between K-feldspar and plagioclaseeagges and the surrounding phases is often
372 characterized by cuspate lobes of feldspars (predortly K-feldspar) with a smooth outline
373 that extends for several tens of micrometers (8ig.c). Fig. 8b shows the contact of the K-
374 feldspar rich aggregate of Fig. 8a with the surdhog quartz. Several tiny protrusions of K-
375 feldspar into quartz and small K-feldspar grainsjuded in quartz, are in optical continuity with
376 larger grains. The smaller K-feldspar aggregate-igf 8c, localized at the contact between

377  biotite and quartz, displays a strongly irregulaame and is interfingered with the surrounding
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biotite and quartz grains. Biotite appears stronglsorbed displaying lobes of K-feldspar that
penetrate biotite grains mainly along their cleavatanes (Fig. 8c). Quartz grains with either
well-developed crystal faces or a rounded outlineuo at the contact between K-feldspar and
quartz (Fig. 8c). Lobes of K-feldspar with very l@apparent dihedral angle penetrate between
boundaries of quartz grains (Fig. 8c). Small filaid-feldspar (down to a thickness of 1-5 pum)
diffusely occur at the contact between quartz aiotite grains or between biotite grains (Fig.
8d). The shape of K-feldspar and plagioclase gnainges from euhedral to anhedral. As shown
in Fig. 8e, many K-feldspar and plagioclase graligplay sharp, planar contacts with well-
developed crystal faces. Interstitial K-feldspalagmoclase, and quartz surround euhedral to

partially rounded K-feldspar and plagioclase grgfig. 8f).

Transition to shear zones

The transition from the light-colored/dark-colorédmains to shear zones, corresponding to the
transition from the foliated schists to the toptte-E shear zones shown in Fig. 3c, is marked by
an increase in strain and a change in lithologyraethmorphic grade.

An example is shown in Fig. 9a, which highlightg ttontact between a quartz-biotite schist
(wall rock) and a cm-thick top-to-the-E shear zgeample IESP3SP196 on SESAR and in
supplementary material, analyzed via ImageJ). Tla#l wock consists of amphibolite-facies
subparallel quartz (~60 area %) and biotite + winiiea (~25%) layers, defining a foliation
obliquely oriented with respect to the shear zooenblary (dashed line in Fig. 9a), aggregates
and porphyroclasts of K-feldspar and plagioclasE3#), and cordierite porphyroclasts. White
mica (incl. sericite) is present as retrograde pHasally overprinting K-feldspar, plagioclase,

and cordierite. The shear zone largely (~85%) ct®msof very fine-grained (< 10 pm)
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phyllosilicates (mostly sericite) with minor veriné-grained (< 5 — 20 um grain size) quartz
ribbons (~15%) defining a penetrative myloniticidibn (subhorizontal in Fig. 9a), locally
interrupted by E-verging C’-shear bands. For a itbetadescription of the shear-zone
microfabric, the reader is referred to Papeschl.gP018).

The wall rock displays a foliated microstructuredcterized by subparallel quartz- and biotite-
rich layers (Fig. 9b). Biotite grains (grain siZ0 — 300 um) feature undulose extinction and
numerous kink bands (Fig. 9b). Large quartz gr@ipsto 1 mm) with lobate boundaries and
amoeboid shape, indicative of grain boundary mignatecrystallization (see Stipp et al., 2002),
are overprinted by undulose extinction and surrednioly small (10-15 pm) bulges with serrated
grain boundaries and subgrains (e.g. Fig. 9c), hvimdicate low- to medium-metamorphic grade
recrystallization (bulging and subgrain rotatioorgstallization according to Stipp et al., 2002).
Quartz and biotite surround porphyroclastic aggesgaof K-feldspar + plagioclase,
compositionally dominated by K-feldspar and rangimgize from some hundreds of microns to
several millimeters (as in Fig. 9d). Locally, théeklspars form layers or lenses parallel to the
foliation (Fig. 9a) and display a poikiloblastic arostructure due to abundant biotite and quartz
inclusions (Fig. 9d). K-feldspar and plagioclasgragates display strain caps, where quartz and
biotite are dynamically recrystallized down to 1806-um, and strain shadows containing quartz,
biotite, and white mica grains or even small s&ieggregates (Fig. 9e). Bookshelf sliding of K-
feldspar and plagioclase, synthetic with the seishear, is diffuse.

The internal structure of K-feldspar and plagioelaggregates is characterized by euhedral to
subhedral grains (grain size: 50 to 1Qd8@) with well-developed crystal faces (Fig. 10a, b).
Interstitial grains, usually elongated films of Bldspar and/or quartz, are interposed between

grains that in places show a linear or a roundetlineu (Fig. 10a). ‘String of beads’
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microstructures (Holness et al., 2011) locally @cassociated with interstitial grains. Phase
boundaries within the aggregates vary from stratigtdbate or serrated (Fig. 10b).

K-feldspar and plagioclase are extensively rectyata by subgrain rotation and bulging (grain
size: 10 — 50 um; Fig. 10c) in proximity with thieear zone boundary and occur as stretched
ribbons displaying relatively large (100 - 200ungrghyroclasts surrounded by very fine-
grained grains. Quartz layers interlayered withrystallized feldspars generally display coarser
grain size (100 — 500 pm). Feldspar ribbons argdrt dynamically retrogressed to white
mica/sericite, forming mixed feldspar/sericite lesy@s in the upper right corner of Fig. 10c, or
extensively replaced by sericite-dominated ribbaite a grain size of 5-20 pum, in which only

few feldspar relics are recognizable (Fig. 10d).

6. Evidence of partial melting in the Calamita Schsts

The Calamita Schists in Punta Bianca and Capo Cdisplay the peak assemblage biotite +
quartz + K-feldspar + plagioclase + ilmenite, watidalusite or cordierite (or both) depending on
the protolith. Meso- and microstructural evident@ld¢wing Sawyer, 1999, 2008) suggests that
the investigated rocks underwent partial meltirsgwa show in the following text.

We interpret the strongly replaced biotite andKkieldspar, quartz, and plagioclase grains with
rounded outline as residual phases (Fig. 4c, 6b,tlgat were partially dissolved/consumed
through melting reactions. The melt crystallizedafeldspar + quartz + plagioclase, which are
found as interstitial phases (e.g. Fig. 4f, 8d,) Hyal form cuspate lobes with a strongly irregular
outline against the residual phases (e.g. Fig.86b,8c). In particular, interstitial films of K-
feldspar with very low apparent dihedral angle (&art et al., 2018) that occur between biotite

and quartz grains indicate crystallization withiormher melt-filled pores (Fig. 8d; see also
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Holness and Sawyer, 2008 for similar examples).eldl K-feldspar and plagioclase that have
crystal faces against interstitial K-feldspar, phatase, and quartz are interpreted as early
crystallization products of melt. These feldspaesy/rhave also in part grown from residual cores
(e.g. Fig. 8c, 8e). Therefore, the K-feldspar tgmalase + quartz aggregates can be interpreted
as pools and patches of former melt that contasidueal grains of previously-formed
metamorphic feldspars and quartz (Fig. 7e). Simmtégrostructural criteria to identify former
melt and reactant minerals are reported by Plqtt882), Pattison and Harte (1988), Holness
and Clemens (1999), Sawyer (2008), and Holnessl.et(2@11). We exclude that the
aforementioned microstructures indicating formeasgnce of melt might be ascribed to injection
of magma, as they are invariably found throughdwt investigated rocks (i.e. they do not
represent a local feature) and are organized sodisuous, diffuse interstitial films and patches
rather than in discrete bodies in sharp contadt tie host rocks (e.g. Fig. 2f). The occurrence
of injected melts is only testified by leucocrasiglitic or pegmatitic tourmaline-bearing dykes
that crosscut the metamorphic foliation/banding.(Eig. 2d).

There is a strict correlation between the presesfcéormer patches of leucosome and the
availability of reactant biotite because K-feldspaplagioclase + quartz aggregates are often
found localized in biotite-rich layers (e.g. Fica)7 where biotite is strongly resorbed (e.g. Fig.
4c, 5¢). Even in light-colored domains in Puntari8@ where only few biotite layers are present,
K-feldspar + plagioclase + quartz aggregates apjefmlow reactant biotite-rich domains (e.qg.
Fig. 5¢). These observations suggest that the atedgfeldspar aggregates represent domains
where all biotite reacted away, i.e. biotite layars ‘fertile’ layers (Fig. 5b). Strongly resorbed
biotite grains, consumed by partial melting, coewigh smaller and euhedral biotite grains that

are in equilibrium with K-feldspar (e.g. Fig 8a)uch grains may be interpreted either as

21



470  crystallized from the melt (i.e. liquidus phase)asrin equilibrium with the melt phase (see e.g.
471  Platten, 1982 and Sawyer, 2008). We exclude thesethgrains might have been passively
472  included, because of the strong corrosion of l@otit rocks at both investigated localities.
473  Cordierite and andalusite, which form euhedral pgrpblasts (e.g. Fig. 4a, 8d), are interpreted
474  to be in equilibrium with the melt-bearing peak erial assemblage, as also suggested by the
475  strongly resorbed shape of biotite in contact \aitldalusite and cordierite (e.g. Fig. 6a).

476  The distribution of leucosomes at the micro- andsorgcale, largely organized in discrete
477  patches (e.g. Fig. 5¢) and interstitial films oo| led us to classify the studied rocks as patch
478  migmatites (according to Sawyer, 2008). Only in tBuBianca, melt appears to have been
479  organized in discrete layers (e.g. Fig. 2e) becamseinterpret the compositional layering
480  between light-colored and dark-colored domainshit focality to be the result of the original
481 abundance of melt in the different domains. In ipalar, the high K-feldspar + plagioclase
482  content of light-colored domains together with thelative low content of biotite suggests that
483  they were originally rich in melt as a result eitloé fertility or melt migration. Therefore, the
484  banded rocks of Punta Bianca can be interpretedfrasiatic migmatites (according to Sawyer,
485  2008).

486

487 7. Metamorphic Petrology

488  Whole-rock and mineral chemistry was carried outsample IESP3CS42A (Fig. 7, 8). This
489  patch migmatite sample was chosen based on (Ilehe relationships between partial melting
490 microstructures and the peak mineral assemblagat@u biotite + cordierite + K-feldspar +

491 plagioclase) and (2) the lack of structures indiigatmigration and partitioning of melt into
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492  discrete leucosomes. Thus, no significant melt &s=r partial melting was inferred for sample
493 |[ESP3CSA42A.

494

495 7.1 Mineral Chemistry

496 Representative mineral analyses of sample IESP3E34R listed in Tab. 2. All analyses are
497  provided in the supplementary material. K-feldsgeplays a Na-poor composition @foo

498  whereas plagioclase shows an oligoclase compogifiog.-17). llmenite is characterized by Mn
499  contents between 0.05 and 0.12 per formula urfiu(pand F&" contents < 0.01 p.f.u (Tab. 2).
500 Concentration maps were acquired on biotite grdis aligned along the foliation and
501  containing interstitial K-feldspar (Fig. 11a) an2) (ncluded in K-feldspar (Fig. 11b). Biotite
502 grains show in general a homogeneous distributiofep Mg, and Al (Fig. 11c, d, f, g) and a
503  zoning characterized by an increase in Ti towandgitms (Fig. 11e, h). The compositional maps
504 of Fig. 11c, d highlight the presence of thin laaerof K-feldspar, frequently altered to sericite,
505 localized between biotite grains. Small rutile adbrite grains occur as alteration phases (Fig.
506 11d, e).

507 Resorbed biotite grains included in K-feldspar eharacterized by lobes of K-feldspar that
508 clearly interrupt the Ti-zoning pattern (Fig. 11Ak shown in Fig. 11f, g euhedral biotite grains
509 included in K-feldspar are, on the other hand, cositpnally homogeneous and lack any Ti-
510 zoning pattern (Fig. 11h). Mineral analyses of ibdotvhere distinguished based on their habit
511 (resorbed vs euhedral). TheX{=Fe/[Fe + Mg]) values of biotite range betweeé and 0.7,
512  with euhedral biotite characterized by slightly EvwAl contents and p¢ between 0.60 and 0.65
513 (Fig. 12a). The Ti contents of euhedral biotiteiggaare between 0.2 and 0.3 p.f.u., comparable

514  to that of the cores of resorbed biotite graingghdr Ti contents, between 0.3 and 0.5 p.f.u.,
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were detected on the rim of resorbed biotite gréiig. 12b, Tab. 2). We noted an increased
scatter towards lower p{ values in resorbed biotite rims that we inter@etalteration along
grain boundaries (Fig. 12a, b). The investigatedma contains also greenish, retrograde biotite
(Fig. S10 in supplementary material), which is eletgrized by low X% values and Al contents
and Ti contents between 0.10 and 0.15 p.f.u. (E2g, b). Pinitized cordierite displays a large
variability in Mg, Fe, and Al contents, yet showinglatively constant ¥ between 0.48 and

0.58.

7.2 Geothermometry

Ti-in-biotite geothermometry was performed on sanplESP3CS42A applying the
geothermometer calibrated by Wu and Chen (2015% géothermometer was calibrated for the
pressure-temperature (P-T) range of 450 — 840 t0ah— 1.9 GPa and, contrarily to the biotite
geothermometer of Henry et al. (2005), is optimif@dilmenite- and/or rutile-bearing samples,
making it suitable for the selected sample. Newdetts, the geothermometer by Henry et al.
(2005) was also applied to confront the resultsnperature estimates resulting from the
application of both geothermometers are availablde supplementary material.

For the calculation, all iron was considered toddealent, based on the lack of *eearing
phases such as magnetite. The input pressure wa® $€£2 GPa (maximum metamorphic
pressure for the Calamita Schists according to Mhezii and Vaselli, 2012). Temperature
estimates on resorbed biotite grains range betw&8rand 730 °C (average: 629 + 57 °C; Fig.
12c) in biotite cores and 600 and 730 °C (aver&§d:+ 36 °C; Fig. 12c) in biotite rims, based

on the geothermometer by Wu and Chen (2015). Tipdication of the geothermometer by
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Henry et al. (2005) yielded similar results yet\pding systematically ~10 — 30 °C higher

temperatures compared to those obtained with tbhgemometer by Wu and Chen (2015).

7.3 Phase equilibria modeling

The bulk composition of sample IESP3CS42A, expikssewt% is: 72.52 Sig) 0.67 TiQ,
14.44 AbOs, 4.07 FgOs, 0.05 MnO, 1.51 MgO, 0.50 CaO, 1.53,8a3.47 KO, and 0.15 §s.
The bulk composition was recalculated as mol%ttmfo the MnO — NgO — CaO — KO — FeO

- MgO - ALO; — SIO; — HLO — TiO, — O, (MNNCKFMASHTO) system, used for phase
equilibria modeling (Fig. 13). For this purposeOP was fractionated as apatite, together with
the corresponding amount of CaO. All Fe was comsitlas divalent, owing to the lack of’Fe
rich oxides and the negligible amount of*Fén the analyzed minerals. However, it was
necessary to use the MNNCKFMASHTO system to mohietnite as a Fa-free phase in
THERMOCALC. Pseudosections were calculated usingeERMOCALC 3.33 (Powell and
Holland, 1988) and the internally consistent thestymamic dataset ds55 by Holland and Powell
(1998; updated November 2003). The following saadution models were used: amphibole
(Diener et al., 2007), silicate melt (White et aPQ07), cordierite, staurolite, chlorite
(combination of Mahar et al., 1997 and Holland &uwlvell, 1998), garnet, biotite, ilmenite,
(White et al., 2005), orthopyroxene (White et 2002), chloritoid (combination of Mahar et al.,
1997 and White et al., 2000), muscovite, paragof@m=ggon and Holland, 2002), plagioclase,
and K-feldspar (Holland and Powell, 2003). Thedluias considered to be pureg@H(Xu20 = 1).
The pseudosection shown in Fig. 13 was calculassdraing water-saturated conditions, as it
commonly occurs in prograde metapelites in congaotoles (e.g. Buick et al., 2004). The

suprasolidus part of the pseudosection was caknlilasing a fixed FD content of 1.66 mol%,
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calculated using the rbi script of THERMOCALC assugn0.5 vol.% of water at the solidus at
0.2 GPa.

Sample IESP3CS42A shows a muscovite-free assemliagsisting of quartz + biotite + K-
feldspar + plagioclase + cordierite indicating diQuation at temperatures above the muscovite-
out reaction. The observed assemblage (biotitparticular) is partially resorbed by aggregates
of K-feldspar + plagioclase + quartz, which areeipteted as products of crystallization of
melts, and that contain euhedral biotite grainsictvlwere likely in equilibrium with the melt
phase (see Fig. 7, 8 and par 5.2).

Phase equilibria modeling shows that the assembtagdierite + biotite + K-feldspar +
plagioclase + ilmenite + quartz is stable in anvagant field in the subsolidus between 0.05 -
0.32 GPa and 530 — 710 °C (Fig. 13). The calculatedisopleths for cordierite and biotite
match the X. observed on resorbed biotite (Fig. 12b) and, irt, gainitized cordierite. The
composition of biotite within the cordierite + biet + K-feldspar + plagioclase + ilmenite +
guartz field becomes progressively poorer in i@nards higher temperatures, starting fropa X
~0.72 at ~ 550 °C to X ~ 0.66 at ~ 650 °C (Fig. 13). The same trend seoled in resorbed
biotite grains which show a decrease iR ¥om core to rim (Fig. 12b), corresponding to a
temperature range from 570 to 730 °C, based om-biatite geothermometry (Fig. 12c). The
biotite model of White et al. (2005), used for phaguilibria modeling, estimates a Ti-content of
biotite for the 570 — 730 °C temperature intervahich is significantly smaller (~0.01 to 0.1
p.f.u. on a 22 oxygen basis).

The wet solidus intersects the cordierite + biotit&-feldspar + plagioclase + ilmenite + quartz
field between 0.12 and 0.31 GPa at T between 6848 °C (Fig. 13). At P < 0.12 GPa, patrtial

melting occurs in the presence of orthopyroxene, atdP > 0.31 GPa, in the presence of
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sillimanite (Fig. 13). The composition of biotitest is stable in the presence of melt (cordierite +
biotite + melt + plagioclase + ilmenite + quartzldi) is characterized by=X< 0.66 down to 0.62

(Fig. 13) matching the observedo6f euhedral biotite (¥ = 0.60 — 0.65; Fig. 12a, b).

8. Discussion

8.1 P-T conditions of partial melting in the Calamia Schists

This study provides field and microstructural evide (see sect. 5) of late Miocene partial
melting in metapsammites from the high-strain domsaif the Calamita Schists, in the southeast
of the Island of Elba. We have demonstrated theguree of both stromatic migmatites (Punta
Bianca), in which melt was concentrated in bandd, @atch migmatites (Capo Calvo), in which
leucosomes remained unsegregated. These anatediti formed in association with shallow
intrusives in the Northern Tyrrhenian magmatic are, the unique example of crustal anatexis in
the Northern Apennines. Phase equilibria modelffig.(13) constrains in-situ partial melting in
the patch migmatite sample (IESP3CS42A) betweer2 @id 0.31 GPa for temperatures
between 660 and 710 °C. Furthermore, Ti-in-biojgmthermometry provides an independent
constraint indicating a prograde evolution with lpe@etamorphic temperatures reached between
660 and 730 °C. Interestingly, our Ti-in-biotitetissmtes overlap with the 600 — 700 °C
estimates obtained by Caggianelli et al. (2018)samples distributed on the whole Calamita
peninsula, although these authors discarded thetsmates, based on the interpretation that
retrograde muscovite was in equilibrium with thealpenineral assemblage. Though andalusite
was not present in the sample investigated for leggiilibria modeling, it occurs in the rocks
nearby. The equilibrium textures of andalusiteha presence of melt (e.g. Fig. 3a), observed

both in Punta Bianca and Capo Calvo, are indicaifweery low-pressures of partial melting, in
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a fairly restricted P-T field between 0.1 and 0@Pa (Cesare et al., 2003). Therefore, the
maximum pressure for partial melting can be sé.2t— 0.25 GPa. Pressures < 0.2 GPa have
already been proposed for the metamorphism of tteedes (Duranti et al., 1992; Musumeci and
Vaselli, 2012; Caggianelli et al., 2018), althougfmatexis was not considered. Moreover, the
coexistence of melt and andalusite is an indicatbrfluid-present melting, because the dry
granitic solidus do not intersect the andalusigitity field (see Le Breton and Thompson, 1988
and Cesare et al., 2003). Continuous melting in ghesence of biotite without generating
orthopyroxene as a peritectic phase indicatespédial melting occurred well below the biotite
dehydration melting reaction (Le Breton and Thonmpsi®88; Vielzeuf and Holloway, 1988),
consuming the water available in the sample atttow the ‘wet’ granite solidus (e.g. Brown,
2002; White and Powell, 2002; Guernina and Sawy@®03; Vernon and Clarke, 2008).
Retention of water is expected during rapid heabhlpw-grade metapelites in contact aureoles,
in contrast to regional metamorphism which rendeesapelitic rocks more dehydrated (Buick et
al., 2004).

Phase equilibria modeling suggests melt produgtivitthe investigated sample (IESP3CS42A)
between 1 and 4% in the cordierite + biotite + Ki$par + plagioclase + ilmenite + melt field,
assuming a water-saturated solidus (Fig. 13). Alependent estimate, based on image analysis
of the investigated sample, places the maximum amomelt that was present at ~ 6% (area
occupied by K-feldspar and plagioclase aggreg&igs;7a). This, however, represents an excess
estimate, since feldspar aggregates preserve rtriecogal evidence of the presence of residual

grains. Therefore, it is largely unlikely that thegre completely molten.

8.2 Deformation in the presence of melt: effect ostructures and microstructures
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The Calamita Schists are characterized by a hetasmys pattern of deformation which has
been detailed by Papeschi et al. (2017, 2018). Mewyehe processes that allowed shear-zone
initiation in the Calamita Unit remained unclear, particular regarding the transition from a
relatively distributed upper amphibolite-facies atefiation with respect to narrow and localized
greenschist-facies shear zones (Papeschi et &lZ, 2018).

In the investigated Capo Calvo and Punta Biancaéioses; the mesoscale foliation is more
penetrative and the average grain size is fineligim-colored domains, in which significant
amounts of K-feldspar, plagioclase and quartz aesent (Fig. 2d, 2e, 3b). Quartz shows
deformational features like lobate grain boundarg@soeboid shape, pinning microstructures,
and island grains (e.g. Fig. 7b, c) that suggedoro®tion by grain boundary migration
recrystallization, typical of rocks deformed at ddions of high metamorphic grade (e.g. Stipp
et al., 2002; documented in detail for the Calar8ithists by Papeschi et al., 2017). On the other
hand, K-feldspar + plagioclase + quartz aggregageg rarely show recrystallized grains and/or
undulose extinction. In fact, they are dominatedelfedral and polygonal grains with triple
junctions and straight grain boundaries, relatiugljfform grain size of 100 — 400 um, spatially
associated with interstitial grains (Fig. 5d amatbers), suggesting crystallization from melt
(see sect. 6). The undeformed appearance of Kgatds plagioclase + quartz aggregates,
largely displaying an igneous texture that did netperience significant subsolidus
recrystallization, is in striking contrast with (ihe well foliated structure of light-colored
domains at the mesoscale (Fig. 2e), (2) the extertgrnamic recrystallization of the associated
quartz (Fig. 5a), and (3) the strong elongatiofetifspar aggregates (Fig. 5b). A key observation
is that ephemeral structures, which are easilyeerdy dynamic recrystallization, such as (1)

interstitial phases, (2) pseudomorphs after filhfoomer melt with very-low apparent dihedral
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angle and (3) lobes of K-feldspar and quartz ark pveserved and appear largely unaffected by
dynamic recrystallization and/or annealing in hgjrain zones. Furthermore, there are neither
strain caps nor strain shadows surrounding feldsg@regates, suggesting that melt-related
structures were preserved at the grain scale amdobiierated by subsequent subsolidus
deformation (i.e. they represented low-strain domaiuring development of amphibolite- to
greenschist-facies shear zones). Similar microstres, reported from granulite-facies high-
strain zones, have been interpreted by Stuart.gf2@l8) as evidence of deformation in the
presence of melt, which can be achieved by gramn@ary sliding, accommodated by the
movement of interstitial melt along grain boundsréd porosity (Rosenberg and Handy, 2000;
Rosenberg, 2001; Walte et al., 2005). Intergraniillas of melt are indeed very common in the
investigated high-strain rocks (e.g. Fig. 8d) akdly assisted the relative sliding of solid grains
past each other during deformation. Deformation idated by melt-assisted grain boundary
sliding, rather than dislocation creep, is supmbrbg the general lack of crystallographic
preferred orientation in K-feldspar + quartz + ptetpse aggregates (e.g. Zavada et al., 2007;
Viegas et al., 2016). Furthermore, during melt-awecwmdated grain boundary sliding, the solid
grains did not experience solid-state deformatiommration of grain boundaries (Stuart et al.,
2018). According to Dell’Angelo et al. (1987), Délhgelo and Tullis (1988), and Walte et al.
(2005), at low melt fractions (likely between 1 a#%h) melt-assisted grain boundary sliding
becomes ineffective and deformation switches tdodaion creep. The general lack of a
subsolidus overprint on igneous features in feldspggregates and, in particular, the
preservation of pseudomorphs after melt-filled pomedicates that the deactivation of melt-
assisted grain boundary sliding determined a hattearease of deformation intensity following

melt crystallization.

30



675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

8.3 Strain localization during and after partial mdting

The coexistence of localized igneous features wlghamic recrystallization in high-strain
domains suggests that partial melting and defoonaticcurred together at peak metamorphic
conditions in the Calamita Schists. The developnoeétie foliation, which is more pervasive in
light-colored and originally melt-rich domains witbspect to dark-colored and originally melt-
poor domains, clearly indicates a correlation betwamelt availability and intensity of
deformation.

As quoted above, the presence of melt is an efficgeftening mechanism even at very low melt
fraction (e.g. Holyoke and Tullis, 2006; Zavadaakt 2007). On the other hand, crystallization
of melt causes the deactivation of grain bounddiding, leading to strain hardening of the
system (Handy et al., 2001; Diener & Fagereng, ROIHerefore, while the presence of melt
allows strain to be pervasively distributed, theitslivto subsolidus deformation necessarily
causes deformation to become more localized. Skoaadization in narrow high-strain zones at
subsolidus conditions allows the extensive presmmeof fragile melt pseudomorphs formed
close to peak metamorphic conditions.

The Calamita Schists record the transition fronatretly distributed upper amphibolite-facies
deformation in the presence of melt, preserved latilCapo Calvo and Punta Bianca, to
localized, mylonitic deformation, well documentedGapo Calvo, and even brittle shear zones
(see e.g. Papeschi et al., 2018). The Porto Azzpluwton intruded the Calamita Schists at
shallow depth (P < 0.2 GPa; Duranti et al., 1992simeci and Vaselli, 2012; Papeschi et al.,
2017; Caggianelli et al., 2018). Therefore, the latvon from peak metamorphic to

subgreenschist-facies conditions was likely thelted cooling to ambient temperatures around
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698 ~ 200-250 °C rather than exhumation. As shown kyeBehi et al. (2018), even assuming 1-2
699 mml/years of exhumation in 800 Ka, the resultinge&fbn pressure decrease (or increase, in case
700  of thickening) would be minimal. In the nearby Mer@apanne intrusion, fission track ages on
701  apatite indicate a very rapid uplift at 2-3 Ma arduL.25 mm/year of Western Elba (Bouillin et
702 al., 1994). Considering the structural and lithadagcontinuity of Eastern and Western Elba, the
703  exhumation/uplift of the Calamita Unit was likelyoynger than the late Miocene syn-
704  metamorphic deformation event recorded by the G#daBchists.

705  Although the evolution from upper amphibolite- idbgreenschist-facies deformation was very
706 fast (< 1 Ma; Musumeci et al., 2015; Papeschi gt20118) and greenschist-facies mylonitic
707  shear zones pervasively overprinted previous strast(e.g. Papeschi and Musumeci, 2019),
708 evidence of earlier deformation in the presencenetft is locally preserved in the shear zone
709  walls (Fig. 9). Structures indicating former preserf melt, like interstitial grains (Fig. 10a),
710  occur in aggregates wrapped by the metamorphiatfoh and surrounded by strain caps. Quartz
711 layers and K-feldspar + quartz + plagioclase aggpesgare strongly affected by sub-solidus
712  deformation, marked by (1) undulose extinction (Fp), (2) extensive recrystallization of
713  quartz and feldspar to mylonitic ribbons (Fig. 1Gmd (3) development of a bimodal grain-size
714  distribution due to coexisting relic and recrysgg@t grains (Fig. 9c, 10c). Dynamic
715  recrystallization of subparallel quartz and feldepalayers is indicative of medium- to high-
716  metamorphic grade deformation (see e.g. VernonFéoatl, 1987; Tullis et al., 2000; Hippertt et
717 al., 2001). K-feldspar and plagioclase in particidae affected by extensive retrograde and
718  synkinematic overgrowth of phyllosilicates that leet the activity of reaction softening
719  mechanisms (Mitra, 1978; White et al., 1980; Hippand Hongn, 1998; Mariani et al., 2006),

720  which are commonly documented in mylonitic quagld$pathic rocks (e.g. Stunitz and Tullis,
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2001). The retrograde growth of hydrous phyllosiés demonstrates that water was available
during deformation. The presence of fluids duringfodmation in high-strain zones of the
Calamita Schists is also supported by a recentBle®ack Scatter Diffraction-based study that
provided evidence of dissolution-precipitation grem quartz during the development of
mylonites (Papeschi and Musumeci, 2019).

Hydrous fluids might have acted as an efficient keséng component for the development of
retrograde shear zones. Indeed, dynamic recrystdin of quartz and feldspar is favored under
‘wet’ conditions (hydrolytic weakening; Luan andt&son, 1992; Post and Tullis, 1998; see also
Vernon and Clarke, 2008). Localization of strairtha subsolidus region might hence be favored
by the addition of external water. Circulation bfids originated from the underlying plutonic
system is well documented for the Calamita SchiBisi et al., 2008). Moreover, the fluid
released after crystallization of the melt mightvénanfiltrated the Calamita Schists in a
heterogeneous fashion, favoring strain partitioningthe fluid-rich portions of the aureole.
Considering the investigated sections, we sugpestRunta Bianca was characterized by limited
ingress of fluids after melt crystallization, whaseCapo Calvo was affected by fluid ingress
assisting strain localization during retrogradeasimg). The latter scenario is supported by the

strong sericitization of the peak metamorphic asdage at Capo Calvo.

9. Conclusions

This study provides the first evidence of late Mine migmatite formation in a very shallow
aureole in the Northern Apennines and shows an pbeaof retrograde strain partitioning and
localization in patch migmatites in an upper crus#ting. The key results of this work can be

summarized as follows:
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(1) Phase equilibria modeling and Ti-in-biotite thernetng constrain partial melting via
continuous biotite melting between 0.1 — 0.25 GRé 860 — 710 °C in the andalusite
field.

(2) Deformation concentrated in light-colored domainkatt represent leucosomes.
Metamorphic quartz only displays extensive evidewerecrystallization by grain
boundary migration and K-feldspar + quartz + platfiee pseudomorphs after melt,
which filled porosities, lack significant evidenoé subsolidus deformation. Therefore,
we suggest that deformation was assisted by mbkrered grain boundary sliding and
ceased after crystallization of the melt.

(3) Melt crystallization determines strain hardening tbé rocks, forcing a change in
deformation style from distributed to localized igh-strain mylonitic shear zones.
Mylonites preserve the transition from amphibofdetes deformation in the presence of
melt to dynamic recrystallization with the develggmh of mylonitic ribbons.
Heterogeneous fluid ingress is envisaged as beasponsible for localized strain

softening in high-strain zones during retrogradedtions.
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Figure Captions

Figure 1 —(a) Simplified structural-geological map of IslandElba (modified after Papeschi et
al., 2017). The rectangle marks the insert of Elg. (b) Geological sketch map of the eastern
coast of the Calamita peninsula, showing the positf the study areas, also with respect to the
Ripalte antiform. Mineral abbreviations: And: andate; Bi: biotite; Cd: cordierite; Di:
diopside; Ksp: K-feldspar; Phl: phlogopite; PI: gileclase; Tr: tremolite; Wm: white mica; Wo:

wollastonite.
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Figure 2 — (a-b) Mesoscale features of the Calamita Schists inthe + Bi + Cd + And zone.
(a) Foliated micaschists with deformed quartz layés) Folded quartz layers surrounded by
biotite-rich schists. The yellow dashed line hights the fold pattern(c-d-e-f) The Calamita
Schists at Punta Bianca (location in Fig. 1b), shgwsubparallel quartz layers, light-colored
guartz-feldspar-rich domains and dark-colored AmdACBi domains that followc) folds and
(d) the main mesoscopic foliatiofe) Detail of the relationships between dark-colored bBght-
colored domains, highlighting the increase in fadia intensity in light-colored domaingf)
Andalusite-rich unfoliated dark-colored domain @ning irregular Ksp + Pl + Q pockets.
Mineral abbreviations: And: andalusite; Bi: biofit€d: cordierite; Ksp: K-feldspar; PI:

plagioclase; Q: quartz; Tur: tourmaline; Wm: whteca.

Figure 3 - (a) Sketch geological map of Capo Calvo with sample fagure locations. Poles to
the foliation and shear zones and stretching lioeatare shown in the insert stereographic
projection (equal angle, lower hemisphere). Thp®d marks the trace of the 95% confidence
cone of the mean lineation vector (yellow stfb-c) Mesoscale features at Capo Calvio)
Transition from dark-colored, weakly foliated domsito light-colored, well-foliated domains.
Note the presence of deformed quartz laysDetail of light-colored domains showing well-
developed amphibolite-facies foliation crosscut Byerging shear zones. The red arrows
highlight patches of K-feldspar + plagioclase + npia And: andalusite. Bi: biotite. Cd:

cordierite. Ksp: K-feldspar. PI: plagioclase. Qadu.

Figure 4 — Microstructures in dark-colored domains at PuBitanca observe@a-b-c-d) under

crossed polarized light (CPL) ar{d-f-g-h) with the retardation plate inserted (CPL+RE)
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General texture characterized by intergrowing deatgsbiotite grains, euhedral andalusite, and
aggregates of K-feldspar, plagioclase, and quatte.yellow rectangle highlights the location of
Fig. 4d. (b) Foliated microstructure displaying subparallel igot+ ilmenite-, K-feldspar +
plagioclase-, and quartz-rich layeréc) K-feldspar + plagioclase + quartz-rich domain
surrounding resorbed biotite grainfd) Polygonal K-feldspar and quartz aggregate (whiteva)
associated with misoriented biotite graiie) K-feldspar polycrystalline aggregate in contact
with deformed quartz and biotite. The white arrowlicates an interstitial K-feldspar graf(f)
Orange-colored interstitial quartz with cuspatee®lfwhite arrows) surrounding rounded grains
(yellow arrow) and euhedral grains (green arrowjnéval abbreviations: And: andalusite; Bi:
biotite; Cd: cordierite; lIm: ilmenite; Ksp: K-fefghar; Pl: plagioclase; Q: quartz; Wm: white

mica.

Figure 5 — Microstructures in light-colored domains at RuBianca.(a) Recrystallized quartz
associated with elongated pseudomorphs of seooite K-feldspar and plagioclase (CPKD)
Recrystallized quartz-feldspar microstructure. Ntte strongly elongated K-feldspar grains
(CPL+RP).(c) Elongated K-feldspar + plagioclase aggregate {éimre contoured by the red
dashed line) which follows a biotite-rich layer Wit quartz with amoeboid shape. The insert
shows the resorbed outline of biotite (CPIJ) Local polygonal texture with euhedral K-
feldspar and quartz grain boundaries (red arrowjosaded by interstitial K-feldspar with
cuspate lobes (white arrows) (CPL+RP). Bi: biotiten: ilmenite; Ksp: K-feldspar; PI:

plagioclase; Q: quartz; Ser: sericite.
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Figure 6 — Microstructures in dark-colored domains at C&mivo: (a) General microfabric
showing biotite — andalusite — cordierite and Kdggar and Note the strongly lobate shape of
biotite in the insert (yellow box) ofa). (b) Interstitial K-feldspar lobes against metamorphic
qguartz. The small K-feldspar grains (white arroas) all in optical continuity (CPL + RP(c)
Interstitial K-feldspar surrounding strongly resedbbiotite grains (CPL)d) Detail of the K-
feldspar + plagioclase + quartz aggregates shoumiegstitial quartz or K-feldspar grains (white
arrows) and crystal faces (red arrows) (CPL + FRPHd: andalusiteBi: biotite; Cd: cordierite;

llm: ilmenite; Ksp: K-feldspar; Pl: plagioclase; Quartz; Ser: sericite.

Figure 7 — Microstructures in sample IESPCS42A, which is tepresentative of light-colored
domains at Capo Calv@a) Thin section scan showing the relative area (ino¥%dhe different
mineral phases. See text for detafls) Quartz grains with lobate boundaries, amoeboigeha
and dissection microstructures (yellow arrow) (CHRE) Strongly lobate quartz grains showing
pinning and window microstructures (white arrovBiotite grains define the metamorphic
foliation (CPL).(d) Pseudomorphed cordierite porphyroblasts surroubgedliated quartz and
biotite grains. SEM back scattered electron imdégeK-feldspar-rich aggregate surrounded by
guartz and biotite and characterized by a poik#detit microstructure due to biotite inclusions
(CPL). Note the small K-feldspar lobes protrudimgguartz (yellow arrows). Bi: biotite. Cd:

cordierite. Ksp: K-feldspar. Pl: plagioclase. Qadu.

Figure 8 — Microstructures in sample IESPCS42A (continués). BSE image of Fig. 7e
showing the poikiloblastic microstructure of K-fefghr, related to resorbed (light blue arrow)

and euhedral biotite inclusions (see insert). Nmmtth the cuspate K-feldspar lobes (red arrows)
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and the thin layer of K-feldspar following a bietitich layer in quartz (green arrow) (BSH))
Detail of the interstitial K-feldspar lobes (whitrows) occurring at the contact between
feldspar aggregates and quartz (location in Fig. Béldspar is bluish whereas quartz is reddish
(CPL + RP).(c) Interstitial K-feldspar showing lobate contactshwguartz and biotite. The red
arrows mark feldspar lobes with very low appareittedral angle against quartz. Note the
presence of crystal faces in quartz at the contaitt K-feldspar (BSE).(d) Interstitial K-
feldspar interposed between quartz and biotitevaittin biotite grains (BSE)(e) Crystal faces
(white arrows) at the contact between euhedraubhedral K-feldspar, quartz, and plagioclase
grains (CPL + RP)(f) Feldspar grains showing rounded outline (lighteblsurrounded by
interstitial K-feldspar and plagioclase (orangeeddish) (CPL + RP). Bi: biotite; Ksp: K-

feldspar; PI: plagioclase; Q: quartz.

Figure 9 — Microstructures in schists associated to sheaes(a) Photo stitching of a thin
section of sample IESPSP196 (CPL). The differeldrscshow the relative area % occupied by
the phases present for shear zone (top) and well @lmottom) subdomaingb) Quartz and
biotite layers defining the foliation. Note the emsive recrystallization along quartz rims and
undulose extinction in biotite (CPL)c) Serrated quartz aggregates developed along grain
boundaries of larger grains (CPIQl) Sheared, poikiloblastic K-feldspar aggregates peapby
biotite and quartz (CPL)(e) Detail of the strain caps surrounding feldspar eggtes (red
arrow), characterized by recrystallized quartz fane-grained white mica and biotite (CPBi:

biotite. Chl: chlorite Ksp: K-feldspar. PI: plagilase. Q: quartz. Wm: white mica.
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Figure 10— Microstructures in schists associated to sheaegz¢continues)g) Interstitial quartz
surrounding subhedral K-feldspar grains locallyvging resorbed grain boundaries (CP{))
Crystal faces (red arrow) associated with moretkobaundaries between K-feldspar and quartz.
Note the small K-feldspar inclusion (orange colawih serrated grain boundaries (CPL + RP).
(c) Recrystallized fine-grained K-feldspar ribbons lgeiparallel to quartz layers. Note the
mixing between K-feldspar and white mica in the erppght corner (CPL)(d) Sericite-rich
layers containing minor biotite and retrogressedlienite, stretched parallel to the foliation.
Scattered K-feldspar relics are present (CPL). Watite. Chl: chlorite. Ksp: K-feldspar. PlI:

plagioclase. Q: quartz. Ser: sericite. Wm: whiteami

Figure 11 — Compositional maps of sample IESPCS4Zab) BSE-Images showing the
location of compositional maps da) resorbed biotite aligned on the foliation (X-Ray M&)
and(b) resorbed and euhedral biotite included in poikéstic K-feldspar (X-Ray Map 2fc-d-
e-f-g-h) Compositional maps showing the distribution(of) Fe,(d-g) Al, (e-h) and Ti in(c-d-
e) X-Ray Map 1 andf-g-h) X-Ray Map 2. See text for a detailed comment. lBatite. Chl:

chlorite. llm: ilmenite; Ksp: K-feldspar. PI: plagilase. Ser: sericite. Ru: rutile.

Figure 12 - (a) Xre — total AlY p.f.u. diagram showing the classification of thalsmed biotite,
following Deer et al. (1992)b) Compositional variability of biotite in theX— Ti p.f.u. space.
(c) Results of Ti-in-biotite geothermometry based ba geothermometer by Wu and Chen

(2015).
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Figure 13 — P-T pseudosections of sample IESP3CS42A (mitrstires in Fig. 7 and 8)
modeled in the MNNCKFMASHT system. The subsolidag vas calculated assuming excess
H,O while the suprasolidus region was calculated wifixed 1.66 mol% KD content (0.5 vol%
of water at 0.2 GPa at the solidus). Quartz isearem all fields. X. isopleths for biotite (yellow
dashed lines) and cordierite (blue dashed lines)stwown. Black dashed lines are the melt
isomodes. The red line marks the solidus. And: lusita Bi: biotite. Cd: cordierite. Chl:
chlorite. G: garnet. llm: ilmenite. Liq: melt. Mmuscovite. Opx: orthopyroxene. PI: plagioclase.

Q: quartz. Sill: sillimanite. Ru: rutile.

Table captions

Table 1 — Radiometric ages in samples of metamorphic gnddus rocks from the Calamita
peninsula, after a: Musumeci et al. (2011); b: Musai et al. (2015) and c: Viola et al. (2018).

And = andalusite; Bi = biotite; Cd = cordierite; Bidiopside; Phl = phlogopite.

Table 2 — Representative analyses of biotite, pinitizeddiesite, K-feldspar, plagioclase,
ilmenite, and white mica in sample IESP3CS42A. thestemperature estimated using the Ti-in-
biotite geothermometer by Wu and Chen (2015). K¢pfeldspar. IIm = ilmenite. Wm = white

mica.
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Table 1 — Radiometric ages in samples of metamorphic gneldus rocks from the Calamita peninsula, after a:
Musumeci et al. (2011); b: Musumeci et al. (2014 a: Viola et al. (2018). And = andalusite; Bi motite; Cd =
cordierite; Di = diopside; Phl = phlogopite.

Rock type Phase dated Method Age (Ma)
And-Cd-Bi schist biotite A Ar 6.23+0.06 M&
And-Cd-Bi schist zircon U/Pb 6.40+0.15 Ma

Di-Phl marble phlogopite “CAr/*°Ar 6.76+0.08 M&
Leucogranite white mica “CAr/*Ar 6.33+0.07 M&
Mylonite authigenic illite K/Ar 6.14+0.64 Ma

Fault gouge (CN-MAT) authigenic illite K/Ar 4.90407 Md




Table 2 — Representative analyses of biotite, pinitizedlieite, K-feldspar, plagioclase, iimenite and tghinica in sample
IESP3CS42A. T is the temperature estimated usiegTikin-biotite geothermometer by Wu & Chen (2018fkp = K-
feldspar. llm = ilmenite. Wm = white mica.

Biotite

Cordierite K-feldspar Plagioclase IIm| Wm
Resorbed Euhedral, in | Retro (pinitized) Retro
core rim Ksp grade grade
Analysis 2 5 8 54 23 25 85¢ le 16¢ 22 48 46 102 83¢ 100¢
SiO; 33.62 3329 3356 3410 33.83 3443 3583 44.21 2545 60.88 63.42 6545 66.14 0.04 46.90
TiO, 2.02 2.10 3.19 2.90 1.84 1.85 0.83 0.04 0.00 0.000.00 0.04 0.00 50.79 0.14
Al,03 1850 18.16 1751 1829 1835 18.70 16.87 29.57 989 17.42 1830 21.14 2255 0.00 31.54
FeOtot 23.34 2340 2223 23.01 2213 20.83 1898 476. 7.77 161 0.24 0.41 0.04 40.31 1.82
MnO 0.07 0.13 0.04 0.05 0.06 0.05 0.06 0.00 0.00 000. 0.00 0.00 0.01 3.89 0.02
MgO 6.80 6.79 6.92 6.78 7.02 7.38 10.81 3.44 354 .141 0.14 0.00 0.00 0.03 1.23
CaO 0.02 0.02 0.00 0.05 0.01 0.08 0.00 0.09 0.00 04 0. 0.05 2.50 3.31 0.06 0.04
BaO 0.11 0.04 0.09 0.12 0.06 0.10 0.00 0.13 0.02 71 0. 0.87 0.00 0.00 0.00 0.11
Na,O 0.22 0.22 0.17 0.17 0.15 0.13 0.05 0.20 0.20 0.510.64 9.99 8.58 0.00 0.21
K,0 8.91 9.02 9.47 9.19 9.06 9.16 9.85 10.82 10.84 .7914 14.86 0.26 0.22 0.01 10.46
Total 93.61 93.17 93.17 94-66 9250 92.72 93.27 9M4. 9759 97.09 9852 99.78 100.8 96.99 92.48
Si 5.33 5.32 5.35 5.34 5.40 5.44 5.59 5.02 5.02 429 2.98 2.89 2.87 0.00 3.22
Al 3.4¢ 3.4z 3.2¢ 3.3¢ 3.4t 3.52 3.1C 3.9¢ 3.92 0.9¢ 1.01 1.1C 1.1¢ 0.0C 2.5€
Ti 0.24 0.25 0.38 0.34 0.22 0.22 0.10 0.00 0.00 00.0 0.00 0.00 0.00 1.01 0.01
Fe*ror 3.10 3.13 2.96 3.01 2.95 2.75 2.48 0.61 0.72 0.060.01 0.02 0.00 0.89 0.10
Mn 0.01 0.0z 0.0C 0.01 0.01 0.01 0.01 0.0C 0.0C 0.0C 0.0C 0.0C 0.0C 0.0¢ 0.0C
Mg 161 1.62 1.64 1.58 1.67 1.74 251 0.58 0.58 80.0 0.01 0.00 0.00 0.00 0.13
Ca 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0 0.00.00 0.12 0.15 0.00 0.00
Ba 0.01 0.0C 0.01 0.01 0.0C 0.01 0.0C 0.01 0.0C 0.01 0.0z 0.0C 0.0C 0.0C 0.0C
Na 0.07 0.07 0.05 0.05 0.05 0.04 0.02 0.04 0.04 50.00.06 0.85 0.72 0.00 0.03
K 1.8C 1.84 1.92 1.84 1.88 1.8¢ 1.9¢ 1.57 1.52 0.91 0.8¢ 0.01 0.01 0.0C 0.92
T(°C) 591 594 650 644 575 573 423 - - - - - - - -
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Highlights:
» K-feldspar + plagioclase patches record in-situ partial melting in the upper crust;
* Maéting was caused by granite emplacement and occurred in the andalusite field;
» Deformation is distributed in the partially molten rocks;

* Meélt crystallization causes strain localization into mylonitic shear zones,



