Improving the prediction of fertilizer phosphorus availability to plants with simple, but non-standardized extraction techniques

(Supplementary Material)

Olivier Duboc^{1,2*}, Alicia Hernandez-Mora^{2,3}, Walter W. Wenzel¹, Jakob Santner^{2*}

- ¹ University of Natural Resources and Life Sciences, Institute of Soil Research, Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria.
- ² University of Natural Resources and Life Sciences, Institute of Agronomy, Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria.
- ³ Agrana Research & Innovation Center GmbH (ARIC), Josef-Reither-Strasse 21-23, 3430 Tulln, Austria

* Corresponding authors: olivier.duboc@boku.ac.at, jakob.santner@boku.ac.at

Number of Tables: 5

Number of Figures: 5

MATERIALS AND METHODS

List of the fertilizers

Table S1: Description of the fertilizers used in this study (n=79). HTC= Hydrothermal Carbonization

Sample ID	Description	Sourced from / Processed by	P total (<i>aqua</i> <i>regia</i> ; g P 100g dry	Used in pot experi- ment	Used in Duboc et al. (2017) (ID given if
	Biogas slurny	Biogas Bruck/Leitha	matter)*	X	BGSI
	from food and	GmbH & Co KG (Bruck		~	DOOL
	agricultural	/Leitha, Austria)			
	wastes. The				
	slurry was freeze-				
BGSL-1	dried before use.		1.73		
	BGSL-1	Austrian Institute of			BGSL-BC
	pyrolyzed at	Technology (ATT) (Tulin,			
	400 C III all experimental lab	Austria)			
	reactor with				
BGSL-1-	nitrogen as flush				
BC 400-1	gas		3.37		
BGSL-1-	Same as above	AIT (Tulln, Austria)		Х	
BC 400-2			2.79		
BGSL-1-	Same as above,	AIT (Tulln, Austria)	0.05		
BC 500	I = 500 °C		2.85		
	Biogas siurry,	Grand Control (Bruck			
	BGSI -1 but	/Leitha Austria)			
	material was not				
	freeze-dried				
BGSL-2	before treatment		1.37		
	BGSL-2 treated	Institute for Chemical			
BGSL-2-	by HTC, 225 min	and Energy Engineering			
HC	at 200°C	(IVET), BOKU, Vienna	1.89		
	Same as BGSL-2	See BGSL-2			
	(subsample of the				
BGSI-3	date)		2 10		
DOOLO	BGSL-3 treated	See BGSL-2-HC1	2.10		
BGSL-3-	by HTC, 225 min				
HC	at 200°C		2.16		
	Same as BGSL-2	See BGSL-2			
	and -3				
	(subsample of the				
BCSL 4	same sampling		1 00		
DG9L-4	BGSL-4 treated	See BGSL-2-HC1	1.02		
	by HTC				
BGSL-4-	t = 390 min:				
HC	T = 175°C		1.77		
CatM-1	Cattle Manure	Beckmann & Brehm	0.82		

		GmbH (Beckeln,			
		Germany)			
	CatM-1 pyrolyzed at 500°C for 20 min in a PYREKA (Pyreg	AIT (Tulln, Austria)		Х	
CatM-1- BC 500	GmbH, Dörth/Germany)		2.91		
	CatM-1 pyrolyzed	AIT (Tulln, Austria)			
CatM-1- BC 700	at 700°C as above		1.86		
	CatM-1 treated by HTC: 60 min ramp + 60 min at 200°C + cooling. Lab reactor model 4740, Parr Instrument GmbH (Frankfurt/Main,	IVET, BOKU, Vienna			
CatM-1-	Germany). 24 g+		0.95		
110	Chicken manure	Egg producing farm	0.35	Х	СМ
ChM-1	(ChM)	-99 producentig tann	1.97		•
ChM 1	ChM-1 pyrolyzed	AIT (Tulln, Austria)			CM-BC
BC 400-1	BGSL-1)		4.14		
ChM-1-	Same as above	AIT (Tulln, Austria)			
BC 400-2			3.30		
BC 400- So	Same as above but with addition of Na ₂ CO ₃ .	ATT (Tulin, Austria)	4.02		
ChM-1-	ChM-1 pyrolyzed at 500 °C (see	AIT (Tulln, Austria)	2.02	Х	
ChM-1-	Same as above	AIT (Tulln, Austria)	3.62		
BC 500- So	but with addition		3.62		
ChM-1-	ChM-1 treated by HTC, 225 min at	IVET, BOKU, Vienna	0.02	Х	
HC	180°C	E e e e e e du cie e ferre	2.52		
ChM-2	Chicken manure	Egg producing farm	1.53		
ChM-2- HC-1	HTC, 120 min at 180°C	IVET, BOKU, Vienna	2.03		
ChM-2- HC-2	ChM-2 treated in 2 steps by HTC. <u>Step 1</u> : 120 min at 220°C; S <u>tep 2</u> : 120 min at 220°C	IVET, BOKU, Vienna	3.05		
ChM-3	Chicken manure	Egg producing farm	1.25		
ChM-4	Chicken manure	Egg producing farm	1.19		
CbM-5	Chicken manure	Italpollina Deutschland (Aschau im Chiemgau, Germany)	1 41	Х	
ChM-5-	ChM-5 pyrolyzed	AIT (Tulln, Austria)	1.41	Х	
BC 500	CatM-1-BC 500)		4.02		

	ChM-5 pyrolyzed	AIT (Tulln, Austria)			
ChM-5-	at 700°C as				
BC 700	above		4.29		
0.145	ChM-5 treated by	IVET, BOKU, Vienna			
Cnivi-5-	HIC (see CatM-		1 70		
пс	I-IIC-I)	Stoirischo	1.72	v	
	meal (MBM)	Tierkörperverwertungs		^	
	mour (mbm)	GmbH & Co KG			
MBM-1		(Gabersdorf, Austria	4.72		
	MBM-1 pyrolyzed	AIT (Tulln, Austria)			MBM-BC
MBM-1-	at 400°C (see				
BC 400-1	BGSL-1)		10.69		
MBM-1-	Same as above	AIT (Tulln, Austria)	10.04		
BC 400-2	O ann a an ab ann		10.24	V	
	Same as above	AIT (Tulin, Austria)	10.95	X	
BC 500	MBM-1 treated by	IVET BOKIL Vienna	10.05		
MRM-1-	HTC 225 min at				
HC	180°C		8.84		
	Meat and bone	Steirische		Х	
	meal	Tierkörperverwertungs			
		GmbH & Co KG			
MBM-2		(Gabersdorf, Austria)	4.84		
	MBM-2 pyrolyzed	AIT (Tulln, Austria)		Х	
MBM-2-	at 500°C (see		10.70		
BC 200	MPM 2 pyrolyzod	AIT (Tullo Austria)	10.76		
MRM-2-	at 700°C (see	AIT (Tuill, Austria)			
BC 700	above)		12.52		
	MSS pyrolyzed at	AIT (Tulln, Austria)			MSS-BC-1
MSS-1-	400°C (see				
BC	BGSL-1)		9.26		
	Pyrolyzed MSS	WPA beratende		Х	MSS-BC-2
MSS-2-		Ingenieure (Vienna,			
BC	Durah mad MOO	Austria)	6.85		
MSS-3-	Pyrolyzed MSS	AIT (Tulin, Austria)	0.14		M22-RC-3
ВС	Municipal sewage	Municipal wastewater	9.14	X	
	sludae	treatment plant (Tulln.		~	
MSS-4	0.0.0.90	Austria)	2.13		
	MSS-4 pyrolyzed	AIT (Tulln, Austria)		Х	
MSS-4-	at 500°C (see				
BC 500	CatM-1-BC 500)		6.59		
N00 4	MSS-4 pyrolyzed	AIT (Tulln, Austria)		Х	
MSS-4-	at 700°C (see		5 50		
BC 700	MSS-4 treated by	IVET BOKIL Vienna	5.50		
MSS-4-	HTC (see CatM-				
HC	1-HC-1)		2.31		
	Municipal sewage	Municipal wastewater		Х	
	sludge	treatment plant			
MSS-5		(Traismauer, Austria)	4.01		
	MSS-5 treated by	IVET, BOKU, Vienna		Х	
	HIC with addition				
MSS-5-	adjusted at nH				
HC-1	$10.5, T = 240^{\circ}C$		4.45		

	MSS-5 treated by	IVET, BOKU, Vienna		Х	
	HTC with addition				
	of K-citrate and				
MSS-5-	adjusted at pH				
HC-2	3.5, T = 240°C		4.83		
	MSS treated by	Activil corp. (Moscow.			MSS-G-1
MSS-6-	pyrolysis and	Russia) ^a			
AshDec-	dasification with				
Ma	addition of MaCl ₂		7 30		
ing	MSS treated by	Activil corp (Moscow	1.00	x	MSS-G-2
MSS-7-	nyrolysis and	Russia) a		~	1000 0 2
AchDoc	acification with	Russia)			
ASIDEC-			0.77		
ivig		Dundesenstelt für	9.77	v	
	MSS treated by	Bundesanstalt für		~	
	AshDec process	Materialforschung			
10122-8-	with addition of	(BAM) (Berlin,			
AshDec-	MgCl ₂	Germany) ^a	10.10		
Mg			10.18		
	MSS treated by	BAM (Berlin, Germany)			
	AshDec process	b			
MSS-	with addition of				
AshDec-	K ₂ SO₄ and				
K/Na-1	Na ₂ SO ₄		7.57		
	MSS treated by	BAM (Berlin, Germany)		Х	
	AshDec process	b			
MSS-	with addition of				
AshDec-	K ₂ SO ₄ and				
K/Na-2	Na ₂ SO ₄		7.65		
	MSS treated by	BAM (Berlin Germany)			
MSS-	AshDec process	b			
AshDec-	with addition of				
Na-1	Na ₂ SO ₄		7 65		
	MSS treated by	BAM (Berlin, Germany)	7.00	x	
MSS		b		~	
AshDec-	with addition of				
No 2			7.05		
INd-2	MCC tracted by		7.95	V	
	MSS treated by	BAM (Berlin, Germany)		~	
	AshDec process	5			
	with addition of				
MSS-	Na ₂ SO ₄ at				
AshDec-	suboptimal Na/P				
Na Low	molar ratio		7.44		
	Municipal sewage	Undisclosed origin ^c		Х	
MSSA-1	sludge ash		7.55		
	MSSA-1 (25 %)	Undisclosed origin ^c			
	fused with Linz-				
	Donawitz steel				
MSSA-1-	slag (75 %) for 30				
Slag-1a	min, quenched.		2.29		
MSSA-1-	As above, but not	Undisclosed origin ^c		Х	
Slag-1b	quenched		2.37		
	MSSA-1 (26 %)	Undisclosed origin ^c			
	fused with Linz-				
	Donawitz steel				
	slag (67 %) and				
MSSA-1-	CaO (7 %) for 30				
Slag-2a	min, quenched		2 31		
MSSA-1-	As above but not	Undisclosed origin °	2.01	Х	
Slag-2h	quenched		2 30		
	quononou		2.03	I	

	MSSA-1 (12.5 %)	Undisclosed origin ^c			
	fused with Linz-				
	slag (72 %) and				
	CaO (15.5 %) for				
MSSA-1- Slag-3a	30 min, guenched.		1.83		
MSSA-1-	As above, but not	Undisclosed origin ^c		Х	
Slag-3b	quenched		1.87	X	
	Fused municipal	FENS - Building		X	
	ash with Linz-	(Duisburg, Germany) °			
MSSA-2-	Donawitz steel				
Slag	slag		2.38	X	
	P-RoC process:	Karlsruhe Institute of		Х	
	phosphate from	(Karlsruhe Germany)			
Prec-P-	liquid fraction of				
RoC-1	centrifuged MSS		3.72		
	P-RoC process:	KIT (Karlsruhe,		Х	
	Precipitated Ca-	Germany)			
	percolation water				
Prec-P-	of a dry				
RoC-2	fermentation plant		1.59		
Duri	"Berliner Pflanze":	Berliner		Х	Struvite
Prec- Struvite-1	Struvite from	Wasserbetriebe (Berlin,	12 18		
Struvite-1	"CrvstalGreen"	Ostara Nutrient	12.10	Х	
	Struvite	Recovery Technologies			
Prec-		Inc. (Vancouver,			
Struvite-2		Canada)	12.72	V	
Calcium		7757-93-9		^	
P			22.16		
Ref-	Ca(H ₂ PO ₄) ₂	Alfa Aesar; CAS:		Х	
Mono		301524-28-7			
P			24 37		
Ref-Rock	Rock phosphate	Undisclosed origin	24.07	Х	RP
P-1			13.57		
Ref-Rock	Rock phosphate	Eppawala, Sri Lanka		Х	
P-2	Commoraial		14.86	V	<u> </u>
	Single	Düngemittelproduktions-		^	55P
	Superphosphate	und			
	("DC	HandelsgmbH,			
Ref-SSP	Superphosphate")	(Zwentendorf, Austria)	8.98	X	
	Thermophos:	Nelisfert (New Zealand)		Х	
	Phosphate, by				
	melting				
	phosphate rock				
Ref-	and serpentine		7.06		
THEITHOP	Thomas slag	FEhS - Building	08.1	X	
Ref-		Materials Institute			
ThomasP		(Duisburg, Germany)	3.98		

	Commercial	Raiffeisen-Lagerhaus		Х	
	Triple	(Austria)			
Ref-TSP	Superphosphate		21.57		

* Dry matter basis after drying at 50°C for 24 h, except the Ref- and Prec- products which were analyzed and used without additional drying.

^a Thermo-chemical treatment described in Adam et al.(2009)

^b Process described in Herzel et al. (2021)

^c process as in Bartsch et al. (2013) and Rex et al. (2014)

RESULTS AND DISCUSSION

Solubility of struvite in 0.5 mol L⁻¹ NaHCO₃ solution. Comparison of experimental data with calculations from Visual MINTEQ 3.1

Table S2: Input concentrations for calculation of struvite dissolution equilibrium in 0.5 mol L⁻¹ NaHCO₃ with Visual MINTEQ 3.1 (<u>https://vminteq.lwr.kth.se</u>). Comparison of 1 : 200 and 1 : 1000 fertilizer : solution ratio (w : v).

	lon	Concentration		
		(mg	g L⁻¹)	
		1:200	1:1000	
Input	Mg ²⁺	495	99.1	
	NH_4^+	367	73.4	
	PO4 ³⁻	1936	387.3	
	Na⁺	11500	11500	
	CO32-	30000	30000	

Table S3: Output of calculation of struvite dissolution equilibrium in 0.5 mol L⁻¹ NaHCO₃ with Visual MINTEQ 3.1 (<u>https://vminteq.lwr.kth.se</u>). Comparison of 1 : 200 and 1 : 1000 fertilizer : solution ratio (w : v) with MgCO₃ allowed to precipitate (X) or not (-). By default, struvite was allowed to precipitate in both scenarios. Starting concentrations as in Table S2. pH was set to 8.3 since it is buffered by the HCO₃⁻¹ ions of the extraction solution.

	% of total P dissolved			
MgCO₃	1 : 200	1 : 1000		
-	16.4	100		
Х	100	100		

Table S4 Results of an extraction experiment using 1 : 200 and 1 : 1000 fertilizer : solution ratio (w : v; 150 and 30 mg struvite in 30 mL extraction solution respectively) at 0.5, 4 and 21 h. Results expressed as mean \pm u where u (coverage factor = 1) encompasses the respective uncertainties of total P and extracted P. pH remained between 8.25 and 8.35 during the extraction.

	% of total P dissolved			
Time (h)	1 : 200	1:1000		
0.5	26.6 ± 2.3	93.8 ± 6.4		
4	24.6±1.8	98.9±6.5		
21	26.0 ± 2.4	101.4±7.6		

Plant biomass and P content

Figure S1: Shoot dry biomass harvested from each pot. In the histograms, the dotted line and the value above it is the median.

Figure S2: Shoot P content in each pot. In the histograms, the dotted line and the value above it is the median.

Shoot N/P ratio

Figure S3: Shoot N/P mass ratio. In the histograms, the dotted line and the value above it is the median.

Responsiveness of the Ac1 soil to P fertilizer

Among the three soils used in this study, the Ac1 soil showed the weakest regressions between fertilizer extraction methods and plant growth or P uptake. To some extent, it appears that the soil was not responsive to P addition. Here we show that despite this appearance, there was in fact a response to P addition.

Although we cannot directly compare fertilizers against each other (n = 1), it is possible to compare different fertilizer groups. In Table S5 we show the difference of shoot biomass between (1) the three unfertilized controls and the three water-soluble references ("Ref-SSP", "Ref-TSP" and "Ref-Mono Calcium P") and (2) the three unfertilized controls and the three pots with the largest biomass. The results confirm that there was a response to P addition in that soil.

Table S5: Difference of shoot biomass (g pot⁻¹) in the Ac1 soil between the three unfertilized controls and selected groups of fertilized treatments: either (1) the three soluble references or (2) the three pots with the largest biomass.

		Mean of the controls	Mean of the alternative	<i>p-value</i> (Welch's t-test)
		g g ± standard dev	oot ⁻¹ viation of means	-
(1)	Unfertilized controls vs H ₂ O-soluble fertiliz ers "Ref-TSP", "Ref-SSP", "Ref-Mono Calc ium P")	4.79 ± 0.13	6.67 ± 0.26	0.00841
(2)	Unfertilized controls vs pots with the largest biomass	4.79 ± 0.13	7.50 ± 0.07	0.00035

Comparison of regressions on the neutral soil between this study and our previous study

Figure S4: Comparison of the regressions of shoot biomass vs. extractable P in this study (dark color) and our previous study (Duboc et al., 2017) (light color) for the slightly acidic (Ac2) soil. In the previous study, soil was fertilized with 100 mg P kg⁻¹ while in this study we used 80 mg P kg⁻¹. To make the results comparable, the independent variable is the amount of extractable P *added to the soil* (mg P kg soil ⁻¹), and not the amount of extractable P in % of total P as in the main part of the publication.

Figure S5: Comparison of the regressions of shoot P content vs. extractable P in this study (dark color) and our previous study(Duboc et al., 2017) (light color) for the slightly acidic (Ac2) soil. In the previous study, soil was fertilized with 100 mg P kg⁻¹ while in this study 80 mg P kg⁻¹ was used. To make the results comparable, the independent variable is the amount of extractable P added to the soil (mg P kg soil⁻¹), and not the amount of extractable P in % of total P as in the main part of the publication.

References

- Adam, C., Peplinski, B., Michaelis, M., Kley, G., Simon, F.-G., 2009. Thermochemical treatment of sewage sludge ashes for phosphorus recovery. Waste Management 29, 1122–1128. https://doi.org/10.1016/j.wasman.2008.09.011
- Bartsch, S., Breuer, J., Drissen, P., Pischke, J., Rex, M., 2013. Optimierte Ressourceneffizienz in der Konverterstahlerzeugung; Phosphoranreicherung und Aufschluss phosphorhaltiger mineralischer Reststoffe in flüssigen LD-Schlacken. Schlussbericht FKZ 033R004A-E.
- Duboc, O., Santner, J., Golestani Fard, A., Tacconi, J., Zehetner, F., Wenzel, W.W., 2017. Predicting phosphorus availability from chemically diverse conventional and recycling fertilizers. Sci. Total Environ. 599–600, 1160–1170. https://doi.org/10.1016/j.scitotenv.2017.05.054
- Herzel, H., Aydin, Z., Adam, C., 2021. Crystalline phase analysis and phosphorus availability after thermochemical treatment of sewage sludge ash with sodium and potassium sulfates for fertilizer production. J. Mater. Cycles Waste Manag. https://doi.org/10.1007/s10163-021-01288-3
- Rex, M., Drissen, P., Bartsch, S., Breuer, J., Pischke, J., 2014. Aufschluss von Phosphor aus Klärschlamm- und Tiermehlaschen in flüssiger Konverterschlacke. Presentation at the workhop Abwasser-Phosphor-Dünger, 29 Jan 2014, Berlin, Germany.