

Performance Visualization of

ROOT/IO on HPC Storage Systems

SEPTEMBER 2021

AUTHOR(S):

Rui Pedro Neto Reis

EP-SFT

SUPERVISOR(S):

Javier Lopez Gomez
Jakob Blomer

CERN openlab Report // 2021

2

 Performance Visualization of ROOT/IO on HPC Storage Systems

PROJECT SPECIFICATION

HPC systems are becoming ever more important as a data processing resource for the LHC
experiments. HPC sites typically use storage systems different from the well-understood HEP storage
systems. Current HPC sites deploy high-performance cluster file systems (Lustre, Ceph-FS, GPFS),
sometimes amended by burst buffers. Next-generation exascale systems are expected to gradually
move from file systems to object stores (e.g., Intel DAOS) to address storage scalability challenges.
On the application side, the ROOT I/O library provides the predominant I/O base layer for LHC data
handling. To optimally use so-far untapped storage systems, applications built on top of the ROOT I/O
need to be tuned for the target storage system at hand (e.g., in terms of I/O block sizes, level of I/O
parallelism, networking link parameters, etc).

This project aims at providing visualizations of key performance indicators of the RNTuple I/O sub-
system. The existing framework for collecting performance metrics should be extended to not only
keep metric aggregates but also metric histograms. Metric aggregates and histograms should be
presented as several performance overview plots, e.g., request size distribution, distribution of the I/O
queue depth, access pattern of the data. As a first application, the new visualizations can be used to
better understand and improve the RNTuple storage backend for Intel DAOS.

CERN openlab Report // 2021

3

 Performance Visualization of ROOT/IO on HPC Storage Systems

ABSTRACT

Traditionally, the TTree columnar format has been used for HEP data storage. RNTuple, the new,
experimental ROOT I/O subsystem, is a backwards-incompatible redesign that addresses several
TTree shortcomings.

RNTuple currently provides a framework to collect performance metrics that help understanding where
performance bottlenecks are. However, metrics are collected in the form of aggregates, e.g., number
of bytes read, time spent in reading/decompressing, etc.

To have a more accurate figure, the metrics framework could be improved by adding histograms, which
would allow to gain insight into the distribution of the collected data. By tapping into the use of such
histograms, allied with metric aggregates, RNTuple can now directly build, in a compact format, the
data distribution associated with the metric being studied. This data can be later analysed by external
tools as it’s exported in the CSV format.

CERN openlab Report // 2021

4

 Performance Visualization of ROOT/IO on HPC Storage Systems

TABLE OF CONTENTS

INTRODUCTION 05

IMPLEMENTATION DETAILS 05

USER-PROVIDED SET OF INTERVALS

LOG SCALE

ACTIVE LEARNING PHASE

FIXED WIDTH BINS

OUTPUT FORMAT 08

EXPERIMENTAL EVALUATION 08

RNTUPLE TUTORIAL Nº5

CONVERT LHCB RUN 1 OPEN DATA FROM TTREE TO RNTUPLE FORMAT

CONCLUSIONS 09

BIBLIOGRAPHY 10

CERN openlab Report // 2021

5

 Performance Visualization of ROOT/IO on HPC Storage Systems

1. INTRODUCTION

As an addition to the ROOT I/O system, RNTuple provides a more efficient data-storage format in order to
replace the previous TTree format. Besides its storage capabilities, RNTuple also provides a range of
metrics regarding its I/O operations. However, it only stores an aggregate value for each performance
counter, which limits the ability to further analyze collected data. In this project, we propose several
histogram building techniques for the extraction of more useful information, such as the distribution of a
performance counter.

The visual construction of a histogram could be done having access to the full history of all performance
counters. However, when dealing with an HPC Storage System, this is not always possible. This is mainly
because it would cause a severe performance impact on the system, as it would be necessary to be
constantly dumping data onto a file. Besides that, it’s also very dubious to assume one has the capacity to
store any amount of information, and thus the system would eventually fail due to memory-shortage.

Thus, the problem becomes more complex, and techniques to build such histograms must be optimized.
That means any data passed onto the metric histogram must be immediatly placed in a compact manner
such that, after the job is finished, it is possible to directly extract the histogram data without further
processing. However, for this approach to work, the histogram buiding technique must be as simple and
efficient as possible, in order to imply minimal overhead in the overall project.

In this report, we introduce four histogram building techniques, which differ from each other in complexity
and properties. The last of those techniques has been assigned to be the most complete and useful as it’s
the most intuitive. Nevertheless, the other techniques are presented as to demonstrante the action
possibiliies brought into play by these techniques.

Initially we present the description and details of the inner-workings of each of the techniques, followed by
the steps took to automatically test such techniques and how the collected data can be later ingested by
external plotting utilities.

2. IMPLEMENTATION DETAILS

In order to develop a technique which minimizes the computational overhead, several models were
developed. Each of the histogram building techniques require different arguments, and thus their
functionality is limited accordingly. As such, different types of histograms provide a distinct number of bins
and interval ranges. The following techniques have been established, which were designed by us, with the
exception of the fixed width bin technique, that gains inspiration from external sources mentioned in the
appopriate subsection.

• User-Provided Set of Intervals – Explicitly count values in specified intervals.

• Log Scale – Count values in the log-2 scale of the corresponding value.

• Active Learning Phase – Adaptative building technique which adjusts itself to the first N samples
in order to create an equality separated number of bins.

• Fixed Width Bins – Take advantage of the binary representation of unsigned integer types, in order
to determine the histogram bin for a given value with minimal overhead.

The above techniques are further portrayed in detail in the following subsections. The full implementation
can be found on ROOT pull request #88801.

1 https://github.com/root-project/root/pull/8880

https://github.com/root-project/root/pull/8880
https://github.com/root-project/root/pull/8880

CERN openlab Report // 2021

6

 Performance Visualization of ROOT/IO on HPC Storage Systems

a. User-Provided Set of Intervals

The utility for user-provided set of intervals is notorious. One may seek to only analyse a specific set of
intervals to get more specific insights. In the current version, this technique is encapsulated by the class
RNTupleHistoInterval and relies on binary search for the identification of the correct bin.

For each user-specified interval, an ordered vector by each interval’s lower limit is created, using each of
the intervals provided. For example, for the following intervals: (40,50), (10,20) and (70,80), a structure

resembling Figure 1 is internally created.

Figure 1 Internal structure for histogram intervals

Thus, when a new value is added, a binary search on the closest lower limit is performed. When a possible
match is found, the corresponding counter is increased if the provided value is lower than the interval’s
upper limit. However, this approach suffers greatly from its lack of generalization.

This building technique also suffers from its inability to detect outliers, because the user has the
responsibility to supply the intervals. Since the interval of occurrence of specific outliers is unlikely to be
passed by the user, the building technique often can’t detect them.

b. Log Scale

Due to the need for a type of building technique which doesn’t require the need to explicitly define intervals,
we’ve created the RNTupleHistoCounterLog, which implicitly counts the values by their corresponding
log-2 scale exponent. For example, the value 9 would be accounted for in the exponent 3, as would all the
values from 8 to 15.

Figure 2 Internal structure for log scale histogram

Figure 2 represents the internal structure implicitly created by this histogram building technique. This kind
of structure is very efficient, since the only complexity is calculating the log-2 of an integer, which can be
easily performed via the use of the technique described in [1]. Despite its efficiency, the log-2 scale doesn’t
correctly account for values on a large scale, mainly because the interval amplitude of subsequent intervals,
in this building technique, is exponentially large.

In one of our experiments, accounting for the size of read requests when loading a RNTuple page, we found
the log scale building technique inappropriate and providing no useful information. This happened because,
when accounting the number of bytes, a large scale is expected. So, in our case, only exponent 16 would
be accounted for, as Figure 3 portrays, exponent 16 has a too great amplitude, and thus does not provide
any useful information. A new technique, independent of scale, is necessary.

CERN openlab Report // 2021

7

 Performance Visualization of ROOT/IO on HPC Storage Systems

Figure 3 Interval for exponent 16

Regarding the ability to detect outliers, this technique is more robust since, depending on the scale, outliers
are easily caught up on a drastically lower or greater exponent bin.

c. Active Learning Phase

As seen above, user-specified intervals and the assumption of a numeric scale are not typically desired.
One solution is to first employ a learning phase, in which we sample a specific number of the numeric values
from the incoming distribution, and, after having an a-priori measurement of the minimum and maximum
bounds, we can create an arbitrary amount of equally separated bins to accommodate for the observed
data amplitude, values viewed in the learning phase are then placed on the newly built bins. Figure 4
illustrates how this technique works internally.

Figure 4 Simplification of the learning phase technique

However, this technique also exhibits some drawbacks, mainly due to the assumption that the data
distribution of the sampled values in the learning phase remains constant through the remaining entries.
This is not always the case, since in many situations, later entries, outside of the learning phase, more
strongly portray the full amplitude of the distribution.

This technique also suffers by the occurrence of outliers in the learning phase, since the bounds are adjusted
to the extremes of the values, the bins generated will not be representative of the original distribution, since
they are unaware of the outlier’s existence.

d. Fixed Width Bins

The lack of outlier-detection capabilities is the biggest downside of the methods above. Neither provide a
robust and reliable way to precisely indicate if a value is a true outlier or not. Besides that, the above
methods also make a large amount of assumptions about the underlying data distribution, i.e., log scale,
that the first sample are representative of the real distribution, etc. Having too many assumptions hardens
the generalization capabilities of our building technique, and thus are not adequate for a diverse range of
scenarios.

There is a need for an unbiased building technique, which can easily generalize to whatever it is fed by an
external source. Since we are analysing a constrained set of types, mainly unsigned long integers, we can
take advantage of the numbers’ binary representation.

Based upon an aggregation technique from [2] we derive an efficient solution for the matching of a value to
its bin. This solution assumes the user has provided a width and offset; these values are then used to create
a histogram with a fixed width starting from the offset. In the following paragraphs, we refer to β as being
the number of bins which can fit below the provided offset. Figure 5 represents the fixed width bins
technique, using width = 100, offset = 170 and β = 2.

CERN openlab Report // 2021

8

 Performance Visualization of ROOT/IO on HPC Storage Systems

Figure 5 Representation of the fixed width bins technique

The technique to assign each value to a corresponding bin can be described as:

• If a new value, N, is greater or equal to the offset, then:

o Key ←
(𝑁− offset)

width
+ 𝛽 + 1

• Else:

o Key ← 𝛽 −
(offset−𝑁)

width

The need for branching is to make sure the unsigned integer does not underflow when working with
subtractions. With the above key-bin attribution technique, we can easily assign a value to its corresponding
bin. A std::unordered_map is used to store all the created keys and corresponding atomic counters.
This building technique is easily the most simple and complete of the solutions provided, besides not
suffering from the tremendous downsides associated in the remaining techniques.

3. OUTPUT FORMAT

After the analysis, regardless of the chosen technique, the bin intervals and their associated value can be
dumped into a CSV file for later analysis by external utilities. In the current format, each histogram, is
dumped into a separate CSV file. Thus, a performance evaluation running with multiple histograms will
generate various text files. This is something which can be improved in the future, namely finding a more
efficient output format. The current format is presented as follows, the header line being the variable names,
followed by each interval, in order, and their specific count.

Figure 6 Current output CSV format

CERN openlab Report // 2021

9

 Performance Visualization of ROOT/IO on HPC Storage Systems

4. EXPERIMENTAL EVALUATION

The experimental evaluation was conducted on data readily available on the ROOT project repository,
mainly referring to examples using the RNTuple and format conversion between the old format, TTree. More
information on the data used can be found here2.

a. RNTuple Tutorial Nº5

When analysing the RNTuple tutorial nº5 [3], we can use the fixed-width building technique to get a sense
of the sparsity of the size of read requests when loading data pages. By enabling the default metrics, which
now include a histogram of the size of read requests, we can obtain the following contents dumped in a
CSV format.

Figure 7 Example of content dumped by histogram

In the example of Figure 7, we employed a fixed-width histogram with a width of 10000. This type of output
can be easily fed onto external plotting utilities for a visual analysis of the data. Figure 8 presents the visual
representation of the intervals portrayed above.

Figure 8 Visual representation of the 1st example

Using such a plot, we can understand that the size of read requests in this tutorial is unevenly distributed.
With this kind of information, we could deploy new patches to further optimize access to data, e.g., adapt
buffer sizes to distribution, batching techniques, etc.

b. Convert LHCb run 1 open data from TTree to RNTuple format

Following the same logic as the previous experiment, we now try to get a sense for the size of read requests
when loading a page, this time analysing the conversion between LHCb run 1 open data in the TTree format

2 https://github.com/root-project/root/tree/master/tutorials/v7/ntuple

https://github.com/root-project/root/tree/master/tutorials/v7/ntuple
https://github.com/root-project/root/tree/master/tutorials/v7/ntuple

CERN openlab Report // 2021

10

 Performance Visualization of ROOT/IO on HPC Storage Systems

to RNTuple [4]. Figure 9 is the output we get, here we can easily detect the existence of an outlier, most
likely corresponding to the size of the last read request, using this knowledge we gain new insights into
understanding the conversion impact on the RNTuple performance metrics, in this case we can understand
that the size of read requests, when converting formats, is mostly constant.

Figure 9 Histogram generated by LHCb run 1 open data conversion

5. CONCLUSIONS

As initially proposed, we can verify that the addition of more complex types of metrics into RNTuple, allows
for a more concrete analysis of performance. With such metrics more in-depth analysis of RNTuple
performance can be easily constructed, with minimal computational overhead. The fixed width bins building
technique, chosen as the most complete and viable, provides a computational advantage over the remaining
techniques, as it makes use of the underlying binary data representation.

Nonetheless, the remaining techniques can still allow for analysis of performance on other scenarios, when
a more specialized approach is preferred over the general solution. Some of the building techniques
portrayed could be also extended as to include non-integer interval bounds, e.g., float, which was not the
aim of this research. This data can also be easily exported into CSV format, such that it can be easily
digested by external plotting utilities to visually observe the data.

As a future work it would be interesting to study more complex output format types, which can store various
histogram representations into a single file. A deeper dive into visualization tools and ingestion pipelines for
the histogram output file would also be an interesting path to follow.

6. BIBLIOGRAPHY

[1] S. E. Anderson, "Bit Twiddling Hacks," 5 May 2005. [Online]. Available:
https://graphics.stanford.edu/~seander/bithacks.html#IntegerLogObvious. [Accessed 17 September
2021].

https://graphics.stanford.edu/~seander/bithacks.html#IntegerLogObvious

CERN openlab Report // 2021

11

 Performance Visualization of ROOT/IO on HPC Storage Systems

[2] Elasticsearch, "Histogram Aggregation," [Online]. Available:
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-bucket-
histogram-aggregation.html. [Accessed 17 September 2021].

[3] The ROOT Team, "Write and read an RNTuple from a user-defined class," [Online]. Available:
https://github.com/root-project/root/blob/master/tutorials/v7/ntuple/ntpl005_introspection.C. [Accessed
25 September 2021].

[4] The ROOT Team, "Convert LHCb run 1 open data from a TTree to RNTuple," [Online]. Available:
https://github.com/root-project/root/blob/master/tutorials/v7/ntuple/ntpl003_lhcbOpenData.C.
[Accessed 25 September 2021].

https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-bucket-histogram-aggregation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-bucket-histogram-aggregation.html
https://github.com/root-project/root/blob/master/tutorials/v7/ntuple/ntpl005_introspection.C
https://github.com/root-project/root/blob/master/tutorials/v7/ntuple/ntpl003_lhcbOpenData.C

