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in our case, the allowed target inertia is large, inducing
high momentum and therefore a low value of D may yield
overshoots and oscillations during the interaction, which in
turn will deteriorate the human’s feeling of control over the
task and may jeopardize her/his safety. On the other hand, a
relatively large value of D will make the interaction more
controllable for the human, at the cost however of increased
effort.

In this work, we aim at both reducing the human’s physical
effort, quantified by the energy transmitted from the human
to the robot, and enhancing the human’s feeling of control
over the task, as reflected and quantified by the energy
transmitted on the opposite direction, i.e. from the robot to
the human. Notice that the two objectives are contradictory
w.r.t. to the selection of D, as explained above, and therefore
one cannot select a constant damping parameter in order to
fulfill them simultaneously. This necessitates the utilization
of a variable damping parameter. Our contribution is the
implementation of a variable admittance control scheme
for manipulating large objects with high inertia, where the
damping is adjusted based on the power transmitted from the
human to the robot, with the aim of minimizing the energy
injected by the human while also allowing her/him to have
control over the task. The proposed approach is compared
with other admittance control schemes in human-in-the-loop
simulations involving the manipulation of a large object with
high inertia.

II. RELATED LITERATURE

In the literature, physical human robot interaction is
achieved by designing a desired relation between external
force and position, the so called impedance model. This
can be done either via an impedance controller [4], i.e. by
sending torque commands to the robot based on its kinematic
state, or by an admittance control [5], [6], i.e. by sending
kinematic commands to the robot based on the external force
measurements. Impedance control is considered to be more
appropriate for robots with low inertia and friction, since
the user will inevitably feel these forces, while admittance
control is utilized mostly in cases of kinematically controlled
robots, accepting motion commands, e.g. common industrial
robots.

In the past decades, several studies have proposed different
methods to determine the parameters of the impedance model
in order to improve the physical human-robot interaction and
make the cooperation transparent. A survey of the methods
that involve adaptation of the impedance parameters can be
found in [7]. R. Ikeura together with his team proposed
methods for designing the robot’s admittance model based on
the human impedance characteristics, which were identified
through a collaborative task between two humans [8]. They
deduced that the human damping coefficient varies in time
and depends on the velocity of the interaction. In [9] the
desired damping was switched between two discrete preset
values, depending on the velocity of the end-effector. Some
years later the same research team designed a variable
damping coefficient based on a cost function [10], whose

type however may differ depending on the duration of the
task and distance traveled, making the method task-specific.
In [11] a variable admittance control is proposed as a means
of coordination between a human and a robot to share a
load, which is adjusted according to the force exerted on
the robotic arm. When the force changes, the compliance
will increase or decrease accordingly. Duchaine et al. [12]
used the time derivative of the force to adjust the damping
factor, in order to ensure the smooth tracking of the human
movement by the robot in a pick-and-place and a drawing
task.

Ficuciello et al. [13] proposed a method for varying the
impedance parameters based on the velocity of the end-
effector in a generic pHRI task with a cobot. In particular,
the damping is selected to be a decreasing function of
the velocity, implying a relatively high damping for small
velocities and a relatively small damping for high velocities.
However, the collaborative manipulation of a object with
large inertia could induce high momentum, which means
that a variable damping depending on the velocity of the
interaction will not necessarily decrease overshoots and/or
oscillations. Dimeas et al. [14] proposed a fuzzy inference
system that relies on the measured velocity and the force
applied by the operator to on-line adjust the damping of
the admittance controller in a pick-and-place task, with the
aim to yield a minimum jerk interaction. However, the latter
method requires prior knowledge of the task motion for the
training, which is quite restrictive and task-specific. Grafakos
et al. [15] proposed a variable admittance model, in which the
damping is adjusted based on the operator’s muscle activation
measured by EMG, utilizing a switch function between two
discrete damping values.

In all the aforementioned works, the problem of handling
an object with high inertia is not explicitly addressed; a
case which is commonly found in industrial applications.
In [3], [16], which are not covered by [7], an admittance
controller is utilized for the cooperative manipulation of a
heavy object, which adjusts the target inertia and damping
matrices depending on the acceleration. However, the paper
tackles only one of the objectives of the current paper, as
only the problem of enhancing the user’s feeling of control
over the task is addressed, i.e. the so called ”intuitiveness of
interaction”, without taking into account the physical effort
of the user.

III. PROPOSED APPROACH

Consider a n-dof industrial robotic manipulator, which
grasps and holds a large rigid object with high inertia, and
let q ∈ Rn be the vector of its joint variables. Due to the
size of the object, we consider the case in which the human
interacts with it using both hands, via two handles equipped
with 6-D force/torque sensors (Fig.1). Let the frame {o} be
placed at the center of mass (CoM) of the object and frames
{1}, {2} be placed at the force/torque sensors of the left and
right handle respectively. Due to the rigidity of the object and
the grasping, the poses of these frames with respect to the
world frame {w}, which is located at the robot’s base, are



functions of the joint variables of the robot and their relative
poses are constant. Let xo(q),x1(q),x2(q) ∈ SE(3) be
the generalized poses of the object and the sensors (1 and
2) respectively, with respect to {w}, which involve their
position pi(q) ∈ R3 and their orientation Ri(q) ∈ SO(3),
where i = {o, 1, 2}.

Let Vi = [vᵀi ω
ᵀ
i ]

ᵀ ∈ R6 be the generalized body
velocity of frame {i}, i = {o, 1, 2}, with vi,ωi ∈ R3

being the translational and angular body velocities of the
frame respectively. The mapping between the generalized
body velocities of the frames and the robot’s joint velocities
is given by:

Vi =
iJi(q)q̇, i = {o, 1, 2}, (1)

where iJi(q) ∈ R6,×n is the Jacobian for frame {i}.
Let, F1(t) = [f1(t)

ᵀ τ1(t)
ᵀ]

ᵀ and F2(t) =
[f2(t)

ᵀ τ2(t)
ᵀ]

ᵀ ∈ R6 be the generalized forces measured
by the 6-D F/T sensors of the first and second handle
respectively, expressed in the respective sensor frames,
i.e. {1} and {2}. Considering a kinematically controlled
robot, we utilize a Cartesian admittance control scheme
for providing the robot with compliance properties, by
rendering a target impedance model, which is based on the
measured external forces F1 and F2. The target impedance
model is defined for the object, w.r.t. to {o}, and it is given
by:

MV̇o +DVo = Fo, (2)

where

Fo = R
ᵀ
o [G(p1 − po)R1F1 +G(p2 − po)R2F2] , (3)

with
G(p) =

[
I3 03

S(p) I3

]
∈ R6×6, (4)

and S(.) : R3 → R3×3 denoting the skew symmetric matrix
mapping. In order to apply the aforementioned admittance
control, one has to online integrate (2) to obtain Vo and then
map it to the joint space utilizing the inverse of (1).

Assuming an ideally kinematically controlled robot, the
closed loop system is completely described by (2) and is
passive with respect to Vo for any constant positive definite
matrices M ,D, under the exertion of the external force
Fo. However, considering a realistic non-perfect trajectory
tracking, the minimum allowed value of M , for retaining
passivity, depends on the inertia of the physical plant. In our
case, the plant involves the object with high inertia, which
imposes a relatively high lower limit on the selection of M .
In the light of this limitation, we utilize a constant portion of
the known real inertia of the object and therefore we select:

M = α

[
moI3 03

03 Mo

]
, (5)

where α ∈ (0, 1) is the constant portion of the inertia of
the real plant, mo ∈ R>0 is the mass of the object and
Mo ∈ R3 its constant diagonal inertia tensor expressed in
its own frame {o}. Drawing our inspiration from [13], we
propose the following law for the variation of the damping

parameter, which depends on the power transmitted from the
human to the robot during the interaction:

D(P+) =D + (D −D)e−λP
+

, (6)

where
P+ , max (0, V ᵀ

o Fo) ∈ R≥0 (7)

is the power transmitted from the human to the robot,
D,D ∈ R3×3 are constant diagonal matrices representing
the minimum and maximum damping values respectively
and λ ∈ R>0 is a constant tunable parameter affecting the
sensitivity of the damping to changes of the power.

The rationale behind the last term of (6) is based on the
idea that the human intention for motion is reflected by
the transmission of power from her/him to the system. In
particular, when the object held by the robot is physically
guided by the human, i.e. the direction of motion is towards
the force applied by the human, the user will experience low
damping, since this indicates her/his intention to move the
object. On the other hand, when the velocity of the object
is opposite to the force applied by the human, the motion
of the robot will be maximally damped based on (6), due to
the fact that P+ will be zero. The aforementioned properties
are able to fulfill our objectives, namely the minimization
of the physical effort and the enhancement of the human’s
feeling of control over the task, as also demonstrated in the
following section.

Theorem 1: The closed loop system (2) is passive with
respect to the velocity of the object Vo, under the exertion
of the force applied to the object Fo.

Proof: For the system (2) consider the following storage
function:

L =
1

2
V ᵀ
o MVo. (8)

The time derivative of (8), after substituting MV̇o from (2),
D from (6), is given by:

L̇ = −V ᵀ
o

[
D + (D −D)e−λP

+
]
Vo + V

ᵀ
o Fo. (9)

Given (D − D)e−λP
+

> 0, ∀P+ ∈ R≥0, the following
inequality is derived from (9):

L̇ < −V ᵀ
o DVo + V

ᵀ
o Fo. (10)

Inequality (10) implies the system’s passivity with respect to
object velocity Vo, under the exertion of Fo.

IV. VALIDATION THROUGH HUMAN-IN-THE-LOOP
SIMULATIONS

The proposed approach is validated via human-in-the-loop
simulations. The simulation setup is presented in Fig. 2b.
The virtual environment is displayed through a computer
screen with the object and the robotic manipulator that holds
it, visualized with RViz, as shown in Fig. 2a. An ideally
kinematically controlled KUKA LWR4+ robot is used in the
virtual environment holding an object of 160kg, with inertia
tensor equal to Mo = diag(8.56, 1.66, 10.16)Nms2/rad.
The portion of the real inertia utilized for the target inertia of



the admittance controller is α = 0.5. The distance between
the two handles is 0.44m. For simulating the physical inter-
action of the human with the object, two UR5e robots are
utilized, with handles fixed at their end-effectos, emulating
the handles of the virtual object. The generalized forces
applied by the human are measured by the F/T sensors of
each UR5e and used for integrating on-line (2), based on
the calculated force (3), to yield the desired trajectory of
the object Vo. The object’s velocity Vo is then mapped to
the KUKA robot’s joint space utilizing the inverse of (1).
To provide haptic feedback to the user, the velocity of each
virtual handle is calculated based on Vo, and then sent as
command to the corresponding velocity controlled UR5e
manipulator. Thus, the relative pose of the UR5e robots’
end-effectors remains constant, while the pose of each UR5e
handle faithfully reflects the pose of the corresponding object
handle fixed on the virtual visualized object, giving to the
user the sense of manipulating a real heavy object.

(a) Virtual environment (b) Initial pose

(c) First target pose (d) Second target pose

Fig. 2: human-in-the-loop simulation setup.

The task is to move the object and bring it approximately
to the pose shown in Fig. 2c, halt momentarily (e.g. to inspect
the object) and then move it to the pose depicted in Fig. 2d.
Notice that the task involves relatively small displacement
in translation and larger ones for orientation, as the object
has to be rotated principally around the axis normal to the
computer screen. The proposed approach is implemented
by applying the admittance controller (2) with (5) and (6)
for two different values of λ, namely λ = {2, 10}, to
assess the performance variability with different values of
this parameter. We also compared our method with the
variable damping based on the velocity norm, proposed in
[13], with λ = 15. In both cases, the minimum damping
was set to D = diag(20I3, 0.2I3) and the maximum to
D = diag(350I3, 10I3). For further comparison, we also
examine the case of having a constant damping. Specifically,
we conducted experiments with the minimum, maximum and
mean value of the aforementioned min/max damping values.

We conducted simulations with ten different participants.
Each participant executed the task six times, once for each of
the aforementioned damping cases. The order of execution
for these six methods was randomly generated for each

participant based on a uniform distribution. The employed
evaluation metrics are: a) the energy transferred by the hu-
man to the robot, calculated by the integral of the power from
(7), i.e. E+ ,

∫ T
0
P+dt, with T denoting the interaction

duration, which reflects the effort of the human; b) the
energy transferred from the robot to the human, calculated
by the integral of the negative power accordingly, i.e. E− ,
|
∫ T
0
P−dt|, where P− , min (0, V ᵀ

o Fo), which quantifies
the robot’s opposition to the human’s forces.

Typical results from one participant are presented in Table
I and Fig. 3-5. In Table I, the energy values E+ and
E− from each simulation are given, for each one of the
six damping cases. Normalized values, w.r.t the maximum
energy (6.843J) of the participant, are given in parentheses.
It is clearly visible that the physical effort, quantified by E+,
when utilizing a constant mean (Dmean) or high damping
(Dmax) is significantly larger than the rest of the cases. It is
also worth noticing that the velocity-based variable damping
(Dvel) yields similar physical effort to the proposed one
(with λ = 10). However, regarding the robot’s opposition
to human forces, reflected by E−, it is evident that the
proposed approach (Dpow) significantly outperforms both
the utilization of a low constant damping (Dmin) and the
velocity-based variable damping (Dvel). In particular, E− is
more than 4 times less than in the other two cases. Lastly,
notice that the effort is less when utilizing λ = 10 compared
to λ = 2, which is reasonable due to the fact that, for
larger values of λ, the damping reduction is more sensitive
to changes of the transmitted power.

Fig. 3 and 4 show the results for comparing the proposed
method with the velocity-based one. In particular, Fig. 3
depicts the power for the proposed approach (Dpow), for
the two values of λ, compared to the velocity-based damping
approach (Dvel). Notice the relatively similar power transfer
from the human to the robot between the proposed approach
(P+: cyan line), for λ = 10, and the velocity-based approach
(P+: red line). However, the power transferred from the
robot to the human with the proposed approach (P−: blue
line) is significantly lower than the one with the velocity-
based adaptation (P−: dark red line), which means that
the human perceived greater opposition with the velocity-
based approach. This is due to the fact that the velocity-
based approach significantly reduces the damping when the
object has a relatively large velocity, and consequently a
motion can occur even if the human does not apply any
forces given the high momentum. It is also interesting to
note that oscillations occur in the power transmission during
the reaching and stabilization of the object at each pose, with
the velocity-based approach. This fact implies that the human
faced difficulty to stabilize the object. Fig. 4 depicts the
power transferred between the human and the robot and the
damping co-efficient variation with the proposed approach
(λ = 10), compared to the velocity-based approach. It is
evident that, with the velocity-based damping, there are time
periods, e.g. at t ≈ 1.6−2.5 and t ≈ 5.9−6.8 (right column
of Fig. 4), during which the robot opposes the human’s



intention, signified by the magnitude of the negative power,
while the damping remains at its lowest values. On the other
hand, the magnitude of this opposition is negligible with the
proposed approach , since the damping is instantly increased
when any opposition of the robot to the human’s intention
occurs, e.g. at t ≈ 1.6− 2.2 and t ≈ 4− 5.2 (left column of
Fig. 4).

Fig. 5 depicts the power with the proposed approach
(Dpow), for the two values of λ, compared to the case
of utilizing a constant damping equal to the mean value
of D and D (Dmean). In the bottom row of Fig. 5, for
λ = 10, a small oscillation occurs in both cases in the power
transmission when reaching each pose. This similarity is also
reflected by the values of E− between Dpow and Dmean of
Table I. Nevertheless, the power transmission from human
to robot is significantly reduced with the proposed approach,
compared to the utilization of the constant mean damping;
the effort is approximately half for λ = 2 and approximately
1/3 for λ = 10. This observation becomes even more clear
by examining the energy transmission E+ in Table I.

TABLE I: Energy transferred between the participant and the robot
with different damping selections. The values within the parenthesis
correspond to the normalized values, i.e. divided by 6.843.

Damping E+ E−

Dpow(λ = 2) 3.149 (0.46) 0.015 (0.00)
Dpow(λ = 10) 2.226 (0.33) 0.217 (0.03)

Dvel 2.176 (0.32) 2.321 (0.34)
Dmean 4.781 (0.70) 0.318 (0.05)
Dmin 2.076 (0.30) 2.081 (0.30)
Dmax 6.843 (1.00) 0.028 (0.00)
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Fig. 3: Power transmission between the participant and the robot
for adapting the damping based on the power (cyan and blue lines)
and on the velocity (red and dark red lines), for λ = 2 (first row)
and λ = 10 (second row).

The statistical results obtained from the entire sample of
the 10 subjects are in line with the conclusions drawn from
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Fig. 4: Damping adaptation for the orientation with the power based
case (λ = 10) on the first column, compared to the velocity based
case on the right column.
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Fig. 5: Power transmission between the participant and the robot
for adapting the damping based on the power (cyan and blue lines)
and with the (constant) mean damping, for for λ = 2 (first row)
and λ = 10 (second row).

these typical results. A paired t-test between the proposed
method and each one of the other methods is performed.
Specifically, in Fig.6, the boxplots of E+ and E− are
depicted for all subjects. Blue areas in Fig. 6 correspond to
methods which are outperformed by the proposed method,
i.e. significant reduction of the mean value with p < 0.05
(t-test). Furthermore, in Table II, the difference of the mean
values are presented, where red color represents a significant
increase of the mean value, while blue color represents a
significant reduction of the mean value when employing
the proposed method; the non-colored cells corresponds to
a statistically insignificant difference, based on the t-test.
From the statistical evaluation, it is evident that the proposed
method outperforms the Dmean and Dmax regarding E+



as also found in the aforementioned typical results. Further-
more, Dvel and Dmin perform worse regarding E−, which
is in accordance with the results from a single participant.

Fig. 6: Boxplots of E+ and E− for 10 participants. Blue color
denotes a significant improvement (based on the t-test) achieved by
the proposed method compared to the corresponding one.

TABLE II: Difference of mean values of E+ and E− for 10 par-
ticipants (value = row - column). Colored cells denote a difference
with statistical significance, i.e. p < 0.05 in t-test.

E+ Dvel Dmean Dmin Dmax

Dpow

λ = 2
0.7329 -1.0504 0.7535 -3.5223

Dpow

λ = 10
0.0517 -1.7317 0.0723 -4.2035

E− Dvel Dmean Dmin Dmax

Dpow

λ = 2
-1.5938 -0.1871 -1.5385 0.0554

Dpow

λ = 10
-1.4881 -0.0814 -1.4328 0.1611

These results unveil the merit of the proposed approach,
which lies in its automatic adjustment property depending on
the behaviour of the human. Consequently, there is no need
to explicitly tune the damping to find its ideal value for the
specific human and/or use-case. It is clear that an adaptation
of the damping based on the power results in a significantly
better efficiency, as compared to a velocity-based adaptation,
particularly for the cooperative manipulation of high inertia
objects.

V. CONCLUSIONS

In this work a variable admittance control scheme is
proposed for providing assistance to a human during the
manipulation of a large object with high inertia. The pro-
posed approach is compared to a generic purpose state-of-
the-art variable damping approach, via a human-in-the-loop
simulation setup. The simulations demonstrate the efficacy
of the proposed approach in terms of the reduction of the
effort and the enhancement of the user’s feeling of control
over the task.
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