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PROJECT SPECIFICATION 

 

Motivation 

The ability to learn and identify patterns especially when dealing with large datasets has always been 
difficult for humans to process,  with the aid of modern technology this has now been simplified. With 
the help of machine learning (ML), humans can now parse, identify patterns and deal with large 
datasets in a short span of time. The importance of machine learning has only grown since then – for 
instance, ML is used on a daily basis to prevent fraud when transacting over the internet, prevent 
malware, Natural Language Processing and at CERN we can see the use of ML in Particle Tracking. 
Over tens of petabytes of data is processed at CERN every year and in order to identify patterns and 
sift through such a large amount of data, ML comes in handy. 

At CERN we have access to tremendous computing power across the institution, however, it is not 
always obvious for users to find a service fulfilling their needs. In this case when a user would want 
to find a service to train or deploy their ML model they might be overwhelmed with a wide variety of 
choices. By centralising the entire process of training large datasets, building pipelines, deploy 
models and much more the user now has access to an entire ML infrastructure under one portal.This 
central shared pool also helps improve the overall usage and efficiency of scarce resources such as 
GPUS rather than having each group owning their own hardware. That way the user not only saves 
time sifting through multiple services and finding the one to meet their needs but they also save time 
building their own local infrastructure directly giving them more time to continue with their research. 

Solution 

The new ML Service designed and built by CERN is still in its early beta. This easy to use service 
caters the user an all in one ML platform where they can not only train and deploy their models but 
also make use of pipelines to automate their ML tasks, and with direct public cloud integration, users 
will be able to make use of the tremendous amounts of GPU, make use of specialized accelerators 
like TPUs and FPGAs, and computing power otherwise not possible on-premise. 

Technical  

Given that Kubeflow is directly built on top of Kubernetes; the service allows all applications to be 
containerised which on a large scale provides a tremendous advantage. Kubernetes allows easy 
deployment of all services in separate pods which can then directly make use of the computing and 
GPU power available at different nodes. The process of containerisation also allows easy building, 
termination and deployment of clusters, pods, services with ease. 

The advantage of having the entire framework being open-sourced also meant that the tool can be 
deployed on an on-premise in this case the CERN Private Cloud. CERN Private Cloud hosts 
Openstack – this cloud computing platform makes it, even more, easier to gain access to bare metal 
hardware and deploy VMs upon which the Kubernetes service can be run. 

The summer internship role was to work on the ML service built on top of Kubernetes and Kubeflow, 
test all the examples and docs and provide feedback. At the same time provide assistance to users 
accessing the service. The role also involved implementing additional features and functionalities to 
the service such as serving multiple models for inference on a single GPU, working on additional 
libraries and features and integrating them into the system to help aid users.  
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ABSTRACT 

 

Deploying a new open-source based service is an extensive and challenging process, from both 
technical and user-support perspective. The work includes understanding the service architecture 
and features, deploying the service on local servers, debugging errors and customizing the open-
source code to fit the specific requirements of the users' ecosystem.   

Integration of the new machine learning service based on Kubeflow is an ongoing process to offer a 
better user experience for machine learning developers across CERN. Providing on-demand access 
to Python environments and hardware resources such as GPUs, the new service reduces users' 
need to set up local infrastructures and allows more time for scientific research. Additionally, the 
service offers features such as pipelines, automated hyperparameter search, inference services, that 
can be utilized for developing complex machine learning use cases which go beyond model training.  
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1. OBJECTIVE 

With petabytes of data flowing through daily at CERN, understanding, filtering, and performing machine 
learning analysis on this data is vital. As currently there is no centralized place at CERN for providing ML 
infrastructure and services, and following CERN's commitment to using open-source solutions, the objective 
of the project is to deploy an open-source based machine learning service. The service is hosted on CERN 
on-premise servers, making use of the available computing power.  

  

Providing underlying technologies such as Openstack, Kubernetes, CSI, and others, CERN private cloud 
lays the groundwork for deploying Kubeflow, an open-source machine learning framework. The integration 
of Kubeflow is an ongoing process done by the CERN IT-CM-RPS group. 

  

The objective of the summer internship was to cooperate in the service integration by testing and 
incorporating additional features, providing user support, and working on the service upgrade. During the 
internship, multiple features were explored and tested, such as multiple models serving on a single GPU, 
Nvidia multi-instance GPU partitioning, Feast feature store, and the Goofys filesystem. Additional 
implemented feature was exposing virtual GPUs to the users. The result of the work during the internship is 
the enhanced service, with more options for users' machine learning workloads. 

2. PROJECT PLANNING 

An agile approach was followed throughout the process of the Openlab internship. Jira boards were used 
to plan, delegate, report, and keep an entire record of all the portions and processes during the project. 
Biweekly sprint meetings were utilised efficiently to monitor and keep track of the open tickets in Jira. These 
calls were also used to keep the team updated on the progress as well as ask questions. 

- Week 1 – Onboarding and testing the instance 
- Week 2 – Providing feedback on examples and testing all the instances and pipelines 
- Week  3 – Exploring multi instance GPUs (MIG) 
- Week 4 – Exploring FEAST library and building an example set 
- Week 5 – Integrating and exposing virtual GPUs to frontend 
- Week 5-6 – Integrating and providing examples for Goofys S3 filesystem 
- Week 6-7 – Creating Merge requests with all updates, comments and bug fixes where needed 
- Week 7-8 – Providing user support and testing the production instance for improvements. 
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3. TOOLS 

• Reverse SSH Proxy (for connecting to CERN Internal Network) 

• Kubernetes 

• Git (for collaboration, MR, pipelines) 

• Kubeflow + Kale, Katib (on Kubeflow for pipelines) 

• Jupyter Notebooks 

• Docker 

• Angular.js 

• Typescript, Python 

• GKE (Google Kubernetes Engine) 

4. METHODOLOGIES 

a. Remote Access 

While developing for this project, multiple different tools were utilised to achieve success. With the era of 
work from home, more focus was laid on connecting to the resources remotely. CERN allows users to 
remote tunnel into its servers via an SSH proxy via lxplus. This connection was utilised throughout especially 
when interacting and deploying projects on the internal network.  

b. Kubernetes 

For the majority of the project major focus was laid on working with the Kubernetes cluster – both on-prem 
and on GKE (Google Kubernetes Engine). In Kubernetes, more focus was laid on configuring the system to 
handle MIGs, Kubeflow Pipelines, Multi-Model Serving and a complete end to end pipeline to rebuild the 
architecture. 

c. Kubeflow 

Kubeflow was the framework that was worked on for almost the entire course of the project. The process 
involved upgrading the existing instance, Rebuilding the frontend to show any requirements in the JIRA 
tickets assigned. Testing and debugging pipelines. Providing user support. 

d. DevOps 

Most portions involved refactoring or adding additional code to the repository. This was key, especially when 
collaborating with the team on the same project. Ensuring Merge Requests were submitted with well-
detailed documentation, clean commits and examples to help aid and ease the development process. 
Pipelines to merge new commits to either the dev environment or production environment. For instance, 
creating and pushing an entire docker image to a registry. 
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5. FRAMEWORK AND PROCESSES 

a. Exploring and Providing Feedback for Kubeflow Examples 

During the initial phase of the project, most of the time was 
invested to learn and test the Kubeflow framework. Kubeflow is 
an open-sourced machine learning framework built on top of 
Kubernetes to allow users to easily build, deploy and scale ML 
frameworks. Kubeflow offers a plethora of features such as 
allowing users to run their own notebook servers, run ML 
pipelines to build, train and publish their models as well as 
make use of Kubernetes to scale their ML application.  

The goal at this stage was to test all the examples and provide 
feedback as well as potential fixes to the examples available. 
The goal of these examples is to allow any user new to this 
framework to familiarize themselves with the platform quickly. 
These examples included steps for CERN EOS integration, 
Argo workflows, making use of Kubeflow fairing to build and 
deploy ML models, learn how to create Kubeflow pipelines 
(KALE) directly from notebook servers, making use of S3 or 
EOS for storing models. These are simply some of the many 
examples provided to users to get them on board with the 
platform. 

While investigating and testing the examples there were a few bugs that were encountered. Changes were 
then made to the examples to mitigate these bugs. Appropriate merge requests were made upon fixing 
these bugs as well as adding more examples where needed.  

 
This phase allowed easy adaption to the platform and find portions for potential improvement. 

b. Multi Instance GPUs 

JIRA TICKET 

 
Figure 2 - MIG Architecture 

Figure 1 - Example of an ML Pipeline 

https://gitlab.cern.ch/ai-ml/examples
https://its.cern.ch/jira/browse/OS-14278
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One of the disadvantages of the Kubernetes setup was allocating an entire GPU to a single user. This 
process not only made inefficient use of the available resources, but it also meant that at any given point an 
entire GPU will be allocated to a user without allowing anyone else to utilise it. The user may or may not 
use the GPU, regardless, the GPU would remain fixed leaving potential users who may want the resource 
helpless.  

Therefore, the goal of this phase of the project was to explore the possibilities to allow Multi Instance GPUs 
(MIG). This allows a single GPU to be repartitioned and to be used by multiple services (notebooks, 
pipelines, distributed training jobs), rather than allocating a single full GPU to a user. This also means that 
a GPU would be returned to the pool of resources, after the user’s task completes. 

With this goal in mind, the next steps were to identify the process involved in allowing MIG. Nvidia provides 
support for MIG on Kubernetes, however only the A100 series supports this feature at the moment. The on-
prem Kubernetes cluster hosted V100s and T4s GPUs, which meant that this phase of the project had to 
be hosted on a cloud environment for development and testing. 

To serve multiple instances, the Kubernetes layer had to be separated from the production Kubeflow 
instance, virtually creating more nodes to allow the users to connect and use.  

Nvidia allows this feature on top of Kubernetes with the help of their k8s-device-plugin and the GPU-

feature-discovery. This feature allows multiple users to run GPU workloads concurrently with 

isolation on a hardware level rather than doing it over software. 

The user would now be able to specify the slice and memory requirements of a single A100 GPU instead 
of taking over an entire GPU.  

For example – a single A100-SXM4-40GB GPU can be configured into one of the following configurations  

 2 x 3g.20gb (20gb x 2 for 2 instances on 1gpu) (3 compute instances, 20gb each) 

 3 x 2g.10gb (10gb x 3 for 3 instances on 1gpu) (2 compute instances, 10gb each) 

 7 x 1g.5gb (5gb x 7 for 7 instances on 1gpu) (1 compute instance, 5gb each) 

 

Figure 3 - Configuration/Split 

With the legacy method a user would request for GPU in the Kubernetes script as – nvidia.com/gpu: 1 

With MIG, a user can specify the compute requirement and memory allocation and get a fragment of a 
single GPU instance. This new system would now have the following limit to request GPU resources –  

nvidia.com/mig-3g.20gb: 1 

The hurdle at this phase of the project was to have the latest version of Kubernetes along with the latest 
version of nvidia-docker2. 
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c. Multiple Model Serving Using a Single GPU 

JIRA TICKET 

 
Figure 4 - Multi-Model Serving Diagram 

The option to split a single GPU and allow it the sections to be used by multiple services is beneficial for 
using GPUs to run intensive tasks such as model training via notebooks, pipelines, or Katib. When a GPU 
is used to serve a trained model, there are additional steps to ensure the efficiency. As in the previous 
sections, it is important to reduce the idle time of GPUs. 

Model serving represents making a trained model available to the users and other software components. 
Kubeflow enables model serving via REST API. When a model serving pod receives a request, it generates 
predictions by querying a stored model, using a GPU. 

Kubeflow additionally facilitates hosting multiple models on a single GPU. With this, a user can make use 
of a single triton inference server to dynamically serve multiple models. This also means that users don’t 
need to manually split the GPUs and keep track of the memory.  

The process is fully dynamic. With KFServing v0.6+ this process is inbuilt and can be enabled by just 
changing the multimodelserver flag to true in the inferenceservice.yaml file. The final flag is the 

number of dependencies that need to be met to enable and install KFServing v0.6+. 

Dependencies included and were not limited to:  

Upgrade Kubernetes to v1.16+ 

Upgrade Istio to v1.9.0+ 

Upgrade kNative-Serving to v0.17.4+ 

The production instance currently runs on an older version of Kubeflow and Kubernetes and thereby does 
not allow enabling the multimodelserving feature. 

d. Exploring and Integrating the Feast Feature Store Library 

JIRA TICKET 

Feast (Feature Store) is an operational data system for managing and serving machine learning features to 
models in production. Feast is able to serve feature data to models from a low-latency online store (for real-
time prediction) or from an offline store (for scale-out batch scoring or model training). The legacy process 
of developing features is slow when multiple users/services access datasets at the same time. Furthermore, 
the features need to be redeveloped multiple times before training and serving. This poses challenges for 
teams with large number of developers. During this process, inconsistencies arrive especially when data 

https://its.cern.ch/jira/browse/OS-14140
https://its.cern.ch/jira/browse/OS-13846
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scientists and engineers need to work together to provide one output. This structure also doesn’t allow easy 
addition of new features and feature reuse. 

With Feast the entire process is streamlined. Feast creates and breaks down features that allow teams to 
work independently and combine the data in a real-time production environment. This process now allows 
reuse of artifacts between teams and provides a central registry where the teams can collaborate and make 
use of the catalogue of features available. 

 

Figure 5 - FEAST Architecture 

Given the fact that Kubeflow runs on Kubernetes, this makes the entire process even easier as Feast has 
native support on top of Kubernetes via helm. This, however, wasn’t made use of during the course of this 
project, rather the modules were installed standalone on the notebook server and a central registry was 
used to store the data.  

The main goal of this phase of the project was to provide the users with an example and a guide for using 
Feast library. Appropriate merge requests were submitted post-completion. 

e. Exposing Virtual GPUs 

JIRA TICKET 

Virtual GPUs are created by partitioning a single GPU in such a way that a single GPU makes use of time-
sharing to cater resources to multiple users. Virtual GPUs provide significant acceleration when compared 
to CPUs, and increase the quantity of resources in the cluster. The work on this task included 
implementation of exposing the vGPUs to the users during the notebook server creation. 

To implement this functionality there had to be some refactoring done to both the backend and frontend. On 
the frontend, an additional option for selecting vGPUs was added to a notebook server creation form. This 
option is used to propagate information to the backend, which allocates the specified resource.  

The backend codebase is written in Python while the frontend is written in Angular based on 

Typescript.  

With the help of this refactor the user would now be able to request for vGPUS and the server would then 
dynamically allocate based on the profile field. Appropriate merge requests consisting of the examples were 
submitted post-completion. 

https://its.cern.ch/jira/browse/OS-13922
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Figure 6 - vGPU Selector Frontend 

Request payload from frontend to server: 

 

Figure 7 - vGPU Sample Backend Request 

f. Mounting S3 Buckets to Notebooks Using Goofys File System 

JIRA TICKET 

Goofy’s is a high-performance Amazon S3 file system library that allows mounting an S3 bucket as a file 
system. Goofys mounts an S3 bucket as a local filesystem with file structure enabling any user to navigate 
through with ease. 

This is a huge benefit when integrated with the ML service as now any user can mount S3 buckets directly 
to the notebook just as a local file system. The performance benefit obtained makes the entire experience 
seamless. 

The goal was to test the library and create examples to enable any user to swiftly learn and start using 
his/her S3 bucket with the notebook environment. 

The documentation provided with the library made the entire process swift and easy to adapt and integrate. 
Appropriate merge requests consisting of the examples were submitted post-completion. 

 

 

 

https://its.cern.ch/jira/browse/OS-14354
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Performance Benefit 

 

Figure 8 - Performance Benefit Chart of Goofys 

g. User Support 

During the early beta of this project, there were multiple engineers and users from CERN utilising the 
service. Users were provided with consistent support on an everyday basis where most of their technical 
hurdles encountered on the course of using the service were addressed. 

Alongside, there were instances where support was provided to debug and fix the problems. Problems such 
as GPU unavailability, trouble connecting to EOS buckets and version compatibility were addressed. Docker 
images were then created in line with the users' requirements, documented instructions were sent to the 
users to help fix the problem faced. 

6. CONCLUSION 

a. Future Work and Improvements 

Given the improvements and the impact the project has, it would bring in a tremendous number of users 
onboard in a short period of time. We have identified a few areas where improvements can be made in order 
to provide a better experience for the machine learning developers across CERN. 

The continuation of the work during the internship will include the automation of GPUs allocation. This 
dynamic allocation will provide a better utilization of GPUs, allocating them only for the actual tasks.  

Additionally, there is a work in progress to upgrade from Kubeflow v1.1 to Kubeflow v1.3. This upgrade 

brings in new features such as multi model serving, enriched UI and VSCode notebook servers.  
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