amsqr at MLSEC-2021: Thwarting Adversarial Malware Evasion with a
Defense-in-Depth

Alejandro Mosquera

Abstract

This paper describes the author’s participa-
tion in the 3rd edition of the Machine Learn-
ing Security Evasion Competition (MLSEC-
2021) sponsored by CUJO Al, VM-Ray, MRG-
Effitas, Nvidia and Microsoft. As in the pre-
vious year the goal was not only developing
measures against adversarial attacks on a pre-
defined set of malware samples but also finding
ways of bypassing other teams’ defenses in a
simulated cloud environment. The submitted
solutions were ranked second in both defender
and attacker tracks.

1 Disclaimer

The task of bypassing malware classifiers and de-
fending against adversarially modified samples was
taken as a personal challenge during my free time
for learning purposes. Therefore I have not used
any resources, tools, infrastructure, know-how or
manpower from my employer, being all the the
code and datasets referenced in this paper either
open source or public domain. Attacks were only
performed against the models provided by the con-
testants with an academic purpose and no commer-
cial security software was used nor evaluated as
part of this challenge.

2 Introduction

The adoption of artificial intelligence in cyberse-
curity is not without risks. Researches have many
times demonstrated that adversarial attacks can suc-
cessfully evade machine learning (ML) defenses.
The Machine Learning Security Evasion Competi-
tion addresses countermeasures to adversarial be-
havior by raising awareness about the variety of
ways ML systems may be evaded by malware and
better defend against these techniques. There have
been 3 editions so far in the last three years, includ-
ing a similar event held at DEF CON 27, which
shows that this is still a relevant and active research

topic far from being considered solved. The chal-
lenge consisted of two different tracks focused on
malware detection: On the one hand, contestants
had the possibility of submitting a Docker image
able of detecting malicious binaries while at the
same time passing certain size, runtime, FN and
FP requirements. On the other hand, contestants
were encouraged to modify a set of 50 Portable
Executable (PE) malware files in order to bypass
the models submitted in the previous track with the
following restrictions: Files had to be smaller than
2MB and droppers and self-extracting files were
disallowed. Likewise, all the modifications had
to be functionality-preserving which means that
the malware should have exactly the same execu-
tion traces after modifications as evaluated by the
organizer’s execution sandbox. One important as-
pect is that while queries against defender models
were not limited, there was one hour waiting time
between sandbox submissions.

3 Defender track

Cyber-security researchers proved in previous edi-
tions of this challenge that all the ML defenses
can be eventually bypassed (Ceschin et al., 2020),
therefore a diverse defensive approach focused on
slowing down certain attack paths by forcing at-
tackers to produce extra model queries and sand-
box submissions looked a-priori promising. This
shares some similarities with the military concept
of defense in-depth, that seeks to delay rather to
prevent the advance of an attacker by placing dif-
ferent layers of defense instead of concentrating
them in just one place. The submitted defender
evaluated sequentially the following components:

3.1 Stateful defense

Most successful adversarial perturbations target PE
file regions that usually do not affect functionality
such as appending bytes to the overlay or adding
new imports or sections (Demetrio et al., 2021a).



3.6 Non-deterministic SOREL-based model

The use of non-deterministic models has been
proven a sucessful strategy against a variety of
white-box and black-box attacks (Khan et al.,
2019). For this reason, the last layer of defense
consisted on a randomized ensemble of neural net-
works trained on SOREL (Harang and Rudd, 2020)
dataset.

The stateful defense layer detects such attempts by
calculating TSLH (Oliver et al., 2013) fingerprints
of malware previously detected by the ML layers
and comparing these against incoming samples.
Rather than considering the whole executable, the
fingerprint is only calculated on bytes of the PE
file which are a priori harder to modify without
breaking its functionality, such as the content of
the first section.

4 Attacker track
3.2 EMBER baseline model
There were 6 defender systems unknown to the par-

ticipants, however considering the fact that there
are not many publicly available large-scale mal-
ware datasets besides EMBER and SOREL, at-
tacks that would successful evade baseline mod-
els trained on these should have in principle better
chances of evasion, or the very least least a better
starting point than targeting the defenders directly.
Therefore the chosen strategy was performing a
mix of white-box and black-box attacks against
EMBER and SOREL baselines while also extract-

A gradient boosting classifier trained on EMBER
(Anderson and Roth, 2018) dataset.

3.3 Rule-based anomaly detection

This layer considers as anomalies certain character-
istics that malicious and adversarial PE files have
in common but that differentiates them from most
of clean files. The anomalies targeted here are as
follows:

* Non-standard DOS stub.
* Duplicate PE sections (Quiring et al., 2020).

» Extra bytes between sections (Quiring et al.,
2020).

 Extra bytes in overlay (Quiring et al., 2020).
* Wrong optional header CRC.

» PE EIP points to last section.

* PE with too many sections (> 20).

* PE is packed '

2

¢ PE contains obfuscated function names

e PE contains base64 or hex-encoded exe-
cutable.

3.4 EMBER-based EIP models

ing knowledge from the evaded defender systems in
order to fine-tune the process. For most attacks uni-
versal adversarial perturbations (UAPs) (Labaca-
Castro et al., 2021) were prioritized over sample-
specific perturbations. The list of performed attacks
are listed below:

4.1 Counterfit-based

Counterfit > was leveraged in order to perform
optimized black-box adversarial attacks through
Bayesian optimization (Shukla et al., 2019). The
list of functionality-preserving PE modifications
are as follows:

* Adding a new section with content from clean
executables.

* Adding random imports.

* Appending strings from clean executables to
overlay.

* Setting random PE header timestamp.

Two separate gradient boosting models trained on
EMBER 2017 and 2018 datasets respectively with .
features extracted from the EIP section.

Packing the executable with UPX.

* Unpacking an UPX-packed executable.

3.5 SOREL-based model
) ) ] * Removing signature from certificate table.
A gradient boosting classifier trained on SOREL

(Harang and Rudd, 2020) dataset. * Signing the executable with a custom certifi-

cate.
! https://github.com/Yara_Rules/rules/blob/master/packers/packer.yar

2hllps://gilhub,corn/JusliceRage/l\/larmlyze/blob/masler/bin/yeu‘a_rules/suspivcious_strings.yara 3hllps://gilhub.com/Azure/countel'ﬁl



* Removing Rich header.
* Removing debugging information.
* Setting random optional header checksum.

* Adding a new section containing a code tram-
poline that redirects to the original entry point.

4.2 Greedy byte-based

Black-box attacks were performed by either ap-
pending random bytes to the overlay or to the DOS
stub (Demetrio et al., 2021b), increasing the file
size.

4.3 Packer-based

Custom PE packers for both .NET and x86 executa-
bles were used in order to execute the original code
by applying either reflective loading or process hol-
lowing techniques. While in-memory execution
was allowed by the organizers, any approach that
drops and executes the unmodified malware would
have been disqualified.

4.4 Fuzzing-based

By fuzzing the PE header it was possible to dis-
cover that the modification of several header fields
ignored by the Windows loader # would substan-
tially impact SOREL and EMBER baseline classi-
fiers. One of the most relevant was SizeOfCode,
that while not being conclusive on its own, in
combination with other perturbations would highly
increase evasion chances. The inclusion of fea-
tures derived from ignored/unused PE header fields
makes the EMBER feature set (shared by both EM-
BER and SOREL datasets) particularly vulnerable
to this type of attacks.

4.5 Explanation-based

Finally, in order to evade EMBER-based defenders
and the submitted defender model described be-
fore, explanation-guided (Amich and Eshete, 2021)
white-box attacks using both SHAP (Lundberg and
Lee, 2017) and feature importance were used.

5 Results

The results at the end of the challenge were as fol-
lows: For the defender track, the proposed defense
in-depth "A1" obtained the second best lowest num-
ber of conceded evasions (193), just 31 more than
the winning system "secret" and 38 less than the

4hllps:/lweb4archive.org/web/ZO1 10705011227/http://www.phreedom.org/solar/code/tinype/

third ranked team "kipple". In the attacker track,
despite leading the classification for most of the
competition, "amsqr" ended up dropping to the
second place in the last week with 167 achieved
evasions, 29 less than the best performing team
"secret" and 52 more than the third best competi-
tor "rwchsfde". When considering the number of
model queries, there were substantial differences
between the winning approach and the rest, "se-
cret" only needed 600 queries while it took 3004
and 55701 to "amsqr" and "rwchsfde" respectively.
The main limitation of the described attack work-
flow was the lack of a local execution sandbox,
which caused that many unnecessary model queries
had to be spent when uploading files to the sand-
box provided by the challenge organizers, with the
subsequent delay between submissions and results.

Acknowledgments

The author thanks the 2021 Machine Learning Se-
curity Evasion Competition (MLSEC-2021) orga-
nizers, with special mention of Zoltan Balazs and
Hyrum Anderson, and their sponsors (CUJO Al,
VM-Ray, MRG-Effitas, Nvidia and Microsoft) for
the opportunity to participate and raising aware-
ness about adversarial attacks against ML-based
malware detectors.

References

Abderrahmen Amich and Birhanu Eshete. 2021.
Explanation-guided diagnosis of machine learning
evasion attacks.

Hyrum S. Anderson and Phil Roth. 2018. Ember: An
open dataset for training static pe malware machine
learning models.

Fabricio Ceschin, Marcus Botacin, Gabriel Liiders,
Heitor Murilo Gomes, Luiz Oliveira, and Andre
Gregio. 2020. No need to teach new tricks to
old malware: Winning an evasion challenge with
xor-based adversarial samples. In Reversing and
Offensive-Oriented Trends Symposium, ROOTS’20,
page 13-22, New York, NY, USA. Association for
Computing Machinery.

Luca Demetrio, Battista Biggio, Giovanni Lago-
rio, Fabio Roli, and Alessandro Armando. 2021a.
Functionality-preserving black-box optimization of
adversarial windows malware. IEEE Transactions on
Information Forensics and Security, 16:3469-3478.

Luca Demetrio, Scott E. Coull, Battista Biggio, Gio-
vanni Lagorio, Alessandro Armando, and Fabio Roli.
2021b. Adversarial exemples. ACM Transactions on
Privacy and Security, 24(4):1-31.


http://arxiv.org/abs/2106.15820
http://arxiv.org/abs/2106.15820
http://arxiv.org/abs/1804.04637
http://arxiv.org/abs/1804.04637
http://arxiv.org/abs/1804.04637
https://doi.org/10.1145/3433667.3433669
https://doi.org/10.1145/3433667.3433669
https://doi.org/10.1145/3433667.3433669
https://doi.org/10.1109/TIFS.2021.3082330
https://doi.org/10.1109/TIFS.2021.3082330
https://doi.org/10.1145/3473039

Richard Harang and Ethan M. Rudd. 2020. Sorel-20m:
A large scale benchmark dataset for malicious pe
detection.

Daanish Ali Khan, Linhong Li, Ninghao Sha, Zhuoran
Liu, Abelino Jimenez, Bhiksha Raj, and Rita Singh.
2019. Non-determinism in neural networks for ad-
versarial robustness.

Raphael Labaca-Castro, Luis Mufoz-Gonzalez, Fear-
gus Pendlebury, Gabi Dreo Rodosek, Fabio Pierazzi,
and Lorenzo Cavallaro. 2021. Universal adversarial
perturbations for malware.

Scott M. Lundberg and Su-In Lee. 2017. A unified
approach to interpreting model predictions. In Pro-
ceedings of the 31st International Conference on Neu-
ral Information Processing Systems, NIPS 17, page
4768-4777, Red Hook, NY, USA. Curran Associates
Inc.

Jonathan Oliver, Chun Cheng, and Yanggui Chen. 2013.
Tlsh — a locality sensitive hash. In 2013 Fourth
Cybercrime and Trustworthy Computing Workshop,
pages 7-13.

Erwin Quiring, Lukas Pirch, Michael Reimsbach,
Daniel Arp, and Konrad Rieck. 2020. Against all
odds: Winning the defense challenge in an evasion
competition with diversification.

Satya Narayan Shukla, Anit Kumar Sahu, Devin Will-
mott, and J. Zico Kolter. 2019. Black-box adversarial
attacks with bayesian optimization.


http://arxiv.org/abs/2012.07634
http://arxiv.org/abs/2012.07634
http://arxiv.org/abs/2012.07634
http://arxiv.org/abs/1905.10906
http://arxiv.org/abs/1905.10906
http://arxiv.org/abs/2102.06747
http://arxiv.org/abs/2102.06747
https://doi.org/10.1109/CTC.2013.9
http://arxiv.org/abs/2010.09569
http://arxiv.org/abs/2010.09569
http://arxiv.org/abs/2010.09569
http://arxiv.org/abs/1909.13857
http://arxiv.org/abs/1909.13857

