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Bioelectronic medicine is driving the need for neuromorphic microcircuits that integrate raw

nervous stimuli and respond identically to biological neurons. However, designing such cir-

cuits remains a challenge. Here we estimate the parameters of highly nonlinear conductance

models and derive the ab initio equations of intracellular currents and membrane voltages

embodied in analog solid-state electronics. By configuring individual ion channels of solid-

state neurons with parameters estimated from large-scale assimilation of electrophysiological

recordings, we successfully transfer the complete dynamics of hippocampal and respiratory

neurons in silico. The solid-state neurons are found to respond nearly identically to biological

neurons under stimulation by a wide range of current injection protocols. The optimization of

nonlinear models demonstrates a powerful method for programming analog electronic cir-

cuits. This approach offers a route for repairing diseased biocircuits and emulating their

function with biomedical implants that can adapt to biofeedback.
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The electrical properties of biological cells have long been
studied to understand the intracellular dynamics under-
pinning membrane voltage oscillations1. The difficulty of

measuring microscopic parameters that control the dynamics of
ionic currents2 and the nonlinearity of ionic conductances3 has
hampered so far theoretical efforts to build quantitative compu-
tational models and subsequently neuromorphic devices repli-
cating the exact response of a biological neuron. Although silicon
neurons4–8, synapses9 and brain inspired networks10–16 have
been proposed, these designs were not meant to reiterate the
behaviour of biological cells in complete detail, but to search for
the organizing principles of biology that can be applied to prac-
tical devices. The increasing focus on implantable bioelectronics
to treat chronic disease is however changing this paradigm and is
instilling new urgency in the need for low-power analogue solid-
state devices that accurately mimic biocircuits. Analogue asyn-
chronous electronics is the most promising way to integrate raw
nervous stimuli17 instantaneously, independently of system size
and complexity. Recent efforts at building quantitative compu-
tational models of neurons have focussed on generalizing the
Hodgkin–Huxley (HH) model to multi-channel models18,19.
Approaches ranging from hand-tuning20 to trial-and-error fit-
ting21–24, multi-objective functions25–28, genetic algorithms29,
Bayesian inference30 and statistical interpolation31–34 have been
implemented to estimate maximal ionic conductances. Con-
strained nonlinear optimization has further allowed nonlinear
parameters, such as voltage thresholds and recovery times to be
inferred, which was key to predicting the dynamic state of a
biological neuron35–38. Transferring dynamic information from a
biological cell to a biomimetic circuit is met with additional dif-
ficulties arising from hardware constraints39–42. For example,
conventional silicon technology4,43 assigns a constant thermal
voltage to the width of the transition region from the open to the
closed state of an ionic gate. In biology, this width varies from one
type of neuron to another. A biologically accurate neuromorphic
design is therefore needed, whose mathematical model is com-
patible with nonlinear optimization, and that responds identically
to a biological neuron under any current injection.

Here, we propose an analogue circuit modelling generic ion
channels designed for this purpose. Ab initio analysis of a solid-
state neuron (SSN) implementing these ion channels gives the
equations that describe the rate of change of the membrane
voltage and gate variables. The SSN equations have a form similar
to the HH model, yet derive from an analogue circuit with
transistors operated in the weak inversion (or sub-threshold)
domain44, which are most relevant to making low-power
bioimplants. The specific activation curves and gate kinetics of
individual ion channels are synthesized in silico through analogue
interpolation45,46. We demonstrate the high fidelity of the ana-
lytical model to the electronics by observing nearly identical
membrane voltage oscillations in response to the same current
injection protocols. This gave a high degree of confidence that
bias parameters extracted from model optimization could be
automatically dialled in the electronic device to predict biological
behaviour. The equivalence between the SSN model and SSN
hardware was further confirmed by twin experiments, which
recovered the parameter configuration of the hardware by
assimilating its membrane voltage with the SSN model. A three-
ion channel SSN model incorporating the transient sodium, non-
inactivating potassium and leakage channels (NaKLs) was con-
structed and found to predict the spike timings of the HH model
with 96.4% accuracy. Finally, we built six-channel silicon devices
that faithfully model CA1 hippocampal and respiratory neurons.
The completed models predict the membrane voltage of biolo-
gical neurons in excellent agreement (94–97%) with the mem-
brane voltage oscillations observed in response to 60 different

current protocols. We also discuss the dynamics of gate variables
and ionic currents predicted by the SSN model. These results
demonstrate the possibility of making bionic chips that can
reproduce the response of biological cells in terms of electrical
activity.

Results
Twin experiment with an SSN. The SSN model is first validated
by its ability to predict the membrane voltage oscillations of the
SSN hardware implemented in VLSI (Fig. 1) when both are
configured with the same parameters and stimulated with the
same current protocol. The comparison between the NaKL very-
large-scale integration (VLSI) hardware and the SSN model
biassed with the “VLSI” parameters of Table 1 is shown in Sup-
plementary Fig. 1. The quantitative agreement between model
and experiment is remarkable and validates the SSN model to
within experimental error. This excellent agreement calls for one
further test consisting in estimating the parameter configuration
of the silicon chip by assimilating the membrane voltage oscil-
lations of the silicon chip with the SSN model. In this way, one
seeks to perform a “twin experiment” to recover the chip para-
meters, the assumption being that if the model is inaccurate, the
extracted parameters will necessarily differ from those set in the
chip. We used a 600-ms-long assimilation window to synchronize
the SSN model to the observed membrane voltage (Fig. 2a, black
line). The optimum fit of the model to the data is shown as the
green line (Fig. 2a) and the extracted parameters are shown in the
column “VLSI! SSN” in Table 1. These parameters are in good
agreement with the original parameters (“VLSI” column). Well-
constrained parameters such as ~Iτm or α are estimated to be
within 0–4% of the value set in VLSI. Parameters that are less well
constrained exhibit greater uncertainty on their estimates. This
uncertainty is due to the assimilation of experimental error
embedded in measurements of the VLSI membrane voltage.
Residual error in the data introduces uncertainty in the parameter
field, which is absent from twin experiments assimilating clean
model data36. Within experimental error, the good agreement
between initial and estimated parameters suggests that Eq. (10) is
a highly accurate model of the VLSI hardware.

The same SSN model configured with the “VLSI→ SSN”
parameters gave excellent predictions of the VLSI membrane
voltage. The completed model was forward integrated from the
end of the assimilation window (Fig. 2a, red trace) and from the
start of another epoch stimulated with a different current
protocol (Fig. 2b). Details of the observed and predicted action
potentials show that the model correctly replicates the shape of
spikes. Small phase slips occur in the predicted oscillations
(Fig. 2c), which self-correct over the epoch duration. The time
dependences of gate variables Vm, Vh and Vn in the SSN model
are compared to the membrane voltage V (Fig. 2d). One notes the
large delay of K activation (Vn) relative to Na inactivation (Vh),
which is itself slower that Na activation (Vm). Vm is quasi-
synchronous with membrane depolarization (V). This activation/
inactivation sequence is consistent with the sequence observed in
most biological neurons46. Phase portraits of action potentials
(Fig. 2e) show good agreement between SSN model and
experiment, except at the onset of depolarization.

Assimilation of HH model data. Next, we demonstrate the
equivalence of the NaKL SSN model (Eq. (10)) and the HH model
(Eq. (11)) by predicting the state of the HH neuron with the
NaKL SSN model. This approach has two merits: first to validate
the dynamics of gate variables (Vγ), which are not accessible to
observation in biological cells, but are given by the HH model,
and second to assess the fidelity of information transfer from one
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NaKL model to another. An HH model was initially used to
compute the membrane voltage time series (Fig. 3a, black lines)
by forward integrating a complex current protocol (blue traces).
This model used the parameters of a thalamic relay neuron listed
in Supplementary Table 1. The SSN model was then synchronized
to the HH membrane voltage over a 1000-ms-long assimilation
window (green trace) and gave the parameter estimates listed in
Table 1 (“HH→ SSN” column). These parameters are used to
configure the complete SSN model. The complete model was then
forward integrated from the end of the assimilation window
onwards (Fig. 3a, red trace), and in two novel current protocols

(Fig. 3b, c). The state of the neuron calculated at the end of the
assimilation window provided the initial conditions of forward
integration. In Fig. 3b, c the initial state of the neuron was the rest
state: V ¼ Vm ¼ Vh ¼ Vn ¼ 0:466 V. The spike coincidence
factor47 between HH and SSN models was Γ= 97% in Fig. 3a and
91% in Fig. 3b. The metric used to quantify the match between
HH and SSN voltage time series was R2 ¼ 1� NRMSD, where
NRMSD is root mean square deviation between data and pre-
dictions normalized by the amplitude of membrane voltage
oscillations (1.8 V). We found R2 ¼ 96:4%. Discrepancies
between SSN predictions and HH data are mainly observed

Table 1 Parameters estimates for the NaKL SSN model.

Ion Parameter VLSI Lower bound Upper bound VLSI→ SSN HH→ SSN

NaT ~Igm (nA pF−1) 5 0 200 9.70 162.75
Vtm (V) 0.9 0.01 1.8 1.011 0.908
βm (V−1) 13 1 100 15.37 8.405
~Iτm (nA pF−1) 100 0.1 200 100 0.6854
~Igh (nA pF−1) 5 0 200 8.924 4.638
Vth (V) 0.9 0.01 1.8 1.004 1.143
βh (V−1) 13 1 100 16 3.581
~Iτh (nA pF−1) 0.33 0.1 200 1.1 0.1482

K ~Ign (nA pF−1) 2.5 0 200 3.303 164.18
Vtn (V) 1.1 0.01 1.8 1.20 0.911
βn (V−1) 13 1 100 14.50 8.372
~Iτn (nA pF−1) 0.4 0.1 200 0.54 0.6747

Leak ~IL (nA pF−1) 0.1 0 100 0.1195 0.23105
βL (V

−1) 13 1 100 11.132 1
EL (V) 0.7 0.001 1.8 0.6949 0.6194
α 1 10−4 1000 0.96 39.54
β (V−1) 13 10 16 16 14
~Idark (nA pF−1) −0.05 +0.05 +0.009 0

Column 3 lists the voltage thresholds, current biases and sigmoidal parameters, which are set in the VLSI micro-circuit implementing the SSN model in silico. Columns 4 and 5 specify the parameter
search intervals used in data assimilation. Column 6 lists the SSN parameters inferred by assimilating the membrane voltage of the VLSI neuron (twin experiment). These parameters ought to be the
same as the VLSI parameters (column 3). Column 7 gives the SSN parameters estimated by assimilating the membrane voltage synthesized by the Hodgkin–Huxley (HH) model (Supplementary Table 1).
Iinj had units of nA, and V, Vm , Vh and Vn units of V
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Fig. 1 Biomimetic solid-state ion channel. a The conductance of ion species α is modulated by an activation gate and an inactivation gate. The net ionic
current, Iα ¼ ðIm � IhÞθðIm � IhÞ, is the difference between the activation current (Im) and the inactivation current (Ih). The Heaviside function, θðÞ, specifies
that the current mirror outputs a positive current Iα when Im > Ih and 0 otherwise. b Electrical equivalent circuit of the neuron membrane. c–g Block
diagrams of sub-circuits for c the gate recovery time, d current mirror, e current multiplication ICγ ¼ I ´γ ´ Iτγ=IΣγ, where γ 2 m; hf g, f transconductance
amplification and g sigmoidal activation/inactivation.
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during extreme hyperpolarizing current steps (Fig. 3c). This
occurs because the relatively weak hyperpolarizing currents used
in the assimilation protocol fail to fully constrain sub-threshold
parameters.

The parameters estimated from the HH data (Table 1, “HH→
SSN” column) give high maximum ion currents Igγ, γ 2
m; h; nf g. These currents are about 40 times larger than currents
estimated from the VLSI chip, in spite of current injection being
of similar magnitude. Current injection is also re-scaled by
α ¼ 39:54. This re-scaling of currents is a consequence of re-
scaling the membrane voltage from the [−100, +45 mV] range of
the HH model to the [0, 1.8 V] range. Parameter α also accounts
for the actual neuron surface area—typically ISA ¼ 2:9 ´ 10�4

cm2 46—that absorbs the injected current J inj ¼ Iinj=ISA in the

HH model and biological neurons (Eq. (11)). These simple
considerations give α � ð12:414=ISAþ 1241:4Þ= 1000 � 44,
which agrees with the optimum value of α ¼ 39:54 (Table 1).
The estimated voltage thresholds Vtγ are consistent with the relative
positions of known biological thresholds (Supplementary Table 1).
The estimated ~Iτγ give recovery times: t0;m ¼ UT=~Iτm ¼ 0:026=
0:6854 ¼ 0:03 ms, t0;h ¼ 0:026=0:1482 ¼ 0:17 ms and t0;n ¼
0:026= 0:6747 ¼ 0:04 ms.

Figure 3d shows that the action potentials of the SSN model
(green line) and HH model (black line) are nearly identical. The
dynamics of HH gate variables m, h and n is shown in Fig. 3e
together with the same for SSN gate variables Vm, Vh and Vn
(Fig. 3f). These plots demonstrate the closeness of the HH and
SSN model. The gate variables Vm and Vn have greater
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correlation than m and n because the former are only delayed
relative to the membrane voltage, whereas latter include both
retardation and threshold.

We now have a systematic methodology for transferring
information from a biological neuron to an SSN neuron.
Because mammalian neurons are more complex than the NaKL
model (Table 2), one expands Eq. (10) to include these extra
ionic currents.

SSN model of a CA1 pyramidal cell from the rat hippocampus.
The model of the CA1 neuron included the ion channels present
in high density in the soma and proximal dendrites48: the tran-
sient Na+ current (NaT) that initiates action potentials, the
depolarization activated K+ current (K) and the A-type K+

current that repolarizes the membrane after a delay. Long-lived
persistent Na+ current (NaP) and muscarinic-sensitive K+ cur-
rent (M) were included for their known contribution to bursting
dynamics49,50. However, both the low threshold calcium current
(CaT)51,52 and the hyperpolarisation-activated cation current
(HCN)53 were omitted as these ion channels are mainly located in
apical dendrites. Their density is low in the soma compartment in
which current is injected. The after-hyperpolarization (AHP)
current may be observed in CA1 neurons under voltage clamp
conditions54; however, it gives a residual contribution to neuron
adaptation in current-clamp experiments54. Therefore, the AHP
current was also omitted from the model. This assumption is

supported by our observation that SSN models that include the
AHP channel are unable to predict membrane voltage oscilla-
tions, whereas those including the M-channel instead give good
predictions. The CA1 SSN model was thus expanded to include
the NaP, A and M currents alongside the NaT, K and Leak, giving
eight coupled differential equations in total.

Figure 4a shows the best fit of this model (green line) to the
CA1 neuron (black line) over a 940-ms-long assimilation
window. The estimated parameters are listed in Table 3 (CA1
! SSN). The membrane voltage was then predicted from the end
of the assimilation window over the next 1960ms by integrating
the current protocol (blue line) with the completed CA1 SSN
model (red line). The spike coincidence factor was Γ ¼ 29% and
the agreement between predicted and observed oscillations was
R2 ¼ 94%. A comparison of individual depolarization events and
sub-threshold oscillations is made in Fig. 4b. The predictive
power of the CA1 SSN model was tested on many other current
protocols such as the one in Fig. 4c (Γ ¼ 43%, R2 ¼ 95:5%).
Within this model an action potential (Fig. 4d) is initiated by the
fast activation of the NaT channel (Vm) followed by the slower
activation of the K current (Vn) (Fig. 4e). Data assimilation
assigns the slowest activation to the M-type current (Vr), A-type
current (Vo) and NaP current (Vq). These currents are known to
be long lived in CA1 cells where they support burst oscillations.
In contrast the NaT activation gate (Vm) has the shortest recovery
time and initiates depolarization, while the K current is delayed to
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drive repolarisation. Therefore, data assimilation assigns kinetic
parameters consistent with the known biological properties of ion
channels. The predicted amplitudes of the NaT and K currents
are in the ratio of 6.2:1 (Fig. 4f). This is also in excellent
agreement with the 5.8:1 ratio of conductances used by Golomb
et al.48 to model CA1 neurons. Hence, the CA1 SSN model had
very good predictive power for the membrane voltage and
inferred correctly most thresholds and kinetics parameters.

SSN model of a respiratory neuron from the rat brain stem. In
Fig. 5a, we assimilated and predicted the membrane voltage of a
respiratory neuron with the RN SSN model incorporating NaP,
NaT, K, A and leak channels55,56. The parameters extracted from
the best fit (green line) to the experimental membrane voltage (black
line) are listed in Table 3 (“RN! SSN”). The RN SSN model
completed with these parameters predicts the oscillations of the RN
neuron to a high degree of accuracy from the end of the assimilation
window (Fig. 5a). The spike coincidence factor was 71% and
R2 ¼ 95%. A detailed comparison of data and prediction over the
interval indicated by the horizontal bar is given in Fig. 5b. In Fig. 5c,
spikes have a coincidence factor of 56% whilst there is a R2 ¼ 94%
match between the predicted and observed times series voltages. The
greatest source of error arose from oscillations induced by hyper-
polarizing currents—which are larger in Fig. 5c than those in the
assimilation window (Fig. 5a). The accuracy of predictions to 60
different current stimuli demonstrated the successful transfer of
information from the respiratory neuron to the RN SSN model.
Focussing on a single action potential (Fig. 5d), we plotted the
dynamics of gate variables (Fig. 5e) and ionic currents (Fig. 5f)
predicted by the RN SSN model. The NaP current (Vq) initiates
depolarization with a small current that rapidly saturates at 0.5 nA.
The largest contribution to the depolarizing current arises from the
NaT channel. The maximum NaT current is 40 times greater than
the maximum NaP current. As in the HH and CA1 examples above,
the delayed K current repolarises the membrane with a residual
contribution from the A current. We found that the RN SSN model
accurately represented the dynamic range of the respiratory neuron
and the activation sequence of its ion channels.

Discussion
The present methodology paves the way towards making syn-
thetic neurons to repair biocircuits of the central nervous system

when their regulation of vital functions is lost to disease. For
example, the respiratory neurons which we have modelled in
Fig. 5 couple the respiratory and cardiac rhythms and are
responsible for respiratory sinus arrythmia. Loss of this coupling
through age or disease is a prognosis for sleep apnoea and heart
failure17,57. Therefore, a device that adapts to biofeedback in the
same way as respiratory neurons may offer a much needed
therapy for heart failure. Our accurate description of the neuro-
biology within a model derived from silicon physics answers this
need. Our approach combines several breakthroughs, which open
new horizons to neuromorphic engineering from programming
analogue computers to soft bioimplants. First, data assimilation
estimates all parameters in an automated manner, which elim-
inates subjective criteria. Earlier methods fitted subsets of data
defined by multi-objective functions26–28, such as the timings of
action potentials41, the rate of fire of neurons20, or the sequential
sampling of individual ion channels42. Data assimilation disen-
tangles all model parameters from a single observation of the
membrane voltage over one finite time window. In contrast, the
trial-and-error method of Grassia et al.42 adjusts the parameters
of each ion channel separately as these are individually addressed
by voltage clamp experiments. This approach requires several
pharmacological manipulations to probe individual ion channels
and only infers a subset of model parameters. Our assimilation of
large datasets presents the advantage of averaging noise and
stochastic fluctuations of the membrane voltage over wide time
windows. This minimizes uncertainty on extracted parameters
and the wider the assimilation windows, the lower this uncer-
tainty is. It follows that the membrane voltage predicted by such
models is sufficiently accurate to reveal the occurrence of a sto-
chastic excursion in the experimental membrane voltage through
deviations from model predictions. The second breakthrough
towards making quantitative predictions is our derivation of a
physical model of the hardware and the demonstration of its
ability to successfully assimilate biological neurons. The short-
coming of earlier approaches39,42 was their use of the HH model
as a proxy of the hardware dynamics in the hope that parameters
estimated with the HH model would give correct predictions
when inserted in the hardware. For predictions to be successful,
the same system of equations must be used when both assim-
ilating data and forward integrating completed models. In this
way, it is possible to also predict the time dependence of gate
variables (Figs. 4 and 5). The third benefit of our approach is the
versatility of the SSN model, which allows the inclusion of dif-
ferent types of ion channels, different activation slopes and dif-
ferent gate kinetics to describe complex mammalian neurons.
Neuromorphic engineering often uses simplified neuron models
such as the integrate-and-fire neuron20,41, which are inadequate
for modelling actual neurons. Our approach therefore provides a
robust method for faithfully transferring neuronal dynamics from
a biological cell to the SSN model and from the SSN model to a
chip. The respiratory neuron plays an important role for simu-
lating the respiratory central pattern generator in bioimplants
that aim to restore heart rate variability58,59. The SSN respiratory
neuron had an average power consumption of 139 nW at a firing
rate of 240 Hz and dissipated 579 pJ per spike (Supplementary
Note 1, Supplementary Fig. 2). Although it was not optimized for
low power consumption, our analogue neuron had a power
consumption 109 times smaller than the equivalent digital
implementation, which makes our approach highly suited for
bioimplants.

Although our SSN model was primarily developed for sub-
threshold low power silicon circuits, the sub-threshold model
would also be applicable to organic transistor circuits, which rely
on percolation transport and are extremely attractive for flexible
implantable biocircuits. The SSN model may easily be modified to

Table 2 Ionic currents of hippocampal (CA1) and RN.

ID Channel Current density CA1 RN

NaT Transient Na+ JNaT ¼ gNaTm
3hðENa � VÞ Yes Yes

NaP Persistent Na+ JNaP ¼ gNaPmðENa � VÞ Yes Yes
K Non-inactivating K+ JK ¼ gKm

4ðEK � VÞ Yes Yes
A Rapidly inactivating

K+
JKA

¼ gKA
m4hðEK � VÞ Yes Yes

AHP Calcium-activated
K+

JKAHP
¼ gKAHP

mðEK � VÞ d.d. Rare

CaL High threshold Ca2+ JCaL ¼ ρm2JCa d.d. Rare
CaT Low threshold Ca2+ JCaT ¼ m2hJCa d.d. Rare
HCN Hyperpolarisation-

activated cation
JHCN ¼ gHCNhðEHCN � VÞ d.d. d.d.

M Muscarinic-
sensitive K+

JM ¼ gMmðEK � VÞ Yes No

Leak Leak channels JL ¼ gLðEL � VÞ Yes Yes

RN respiratory neuron, d.d. distal dendrite
Ion current densities Jα of conductance models as a function of ionic conductances gα , reversal
potentials ENa � þ45mV, EK � �90mV, EHCN ¼ �43mV70 and maximum calcium current JCa
The ionic currents of the solid-state model Iα ¼ ðIm � IhÞθðIm � IhÞ are given by Eq. (10).
Prevalence of ion channels in CA1 neurons48 and respiratory neurons55,56 distinguishing soma
and distal dendrites (d.d.)
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describe above-threshold circuits, for example, to implement
devices with discrete electronic components. It would suffice to
replace Eq. S2 with the saturation characteristics of field effect
transistors in the derivation of the SSN model.

We now turn to the formal differences between Eqs. (10) and
(11) and the effect of these differences on the stability of the
variational optimization scheme. First, the sodium (NaT) current
is restricted to positive values (Im � Ih > 0) by the current mirror
in Fig. 1a. This current mirror introduces in Eq. (10) a Heaviside
function θðIm � IhÞ, which is not differentiable. For the compu-
tational model to fulfil the condition of double differentiability on
Fd½xðtÞ; p� functions, we had to approximate the Heaviside
function with a sigmoidal function. It is worth noting that
alternative neuromorphic designs can make extensive use of
current mirrors, hence producing models less compatible with
data assimilation. For example, Rasche and Douglas43 substitute
differential pairs with transconductance amplifiers to synthesize
(in)activation curves. Current mirrors need to be added in output
of these amplifiers to limit the bipolar swings of currents Im and
Ih to positive values, and this introduces two extra Heaviside

function per ion channel (Supplementary Note 2). This makes the
Rasche–Douglas model less stable than the SSN model within the
optimization scheme. The extra current mirrors also truncate
the (in)activation curves below the (in)activation threshold thus
giving less realistic ionic current dependence on membrane vol-
tage. Our SSN model is therefore superior since it avoids both
pitfalls. A second difference between SSN and HH models is in
the formal difference between the rate equations of gate variables.
The gate equations of the SSN model include two state variables
V and Vγ in argument of the tanhðÞ. As we have seen in Fig. 3f,
Vγ closely follows V so that one may approximate tanh βðV �
VγÞ � βðV � VγÞ in Eq. (10). This closeness increases the like-
lihood of positive Lyapunov exponents occurring during assim-
ilation. One way to stabilize the gate equation is to introduce a
regularization term of the form uðtÞ½Vγ � V � on the right-hand
side of the gate equations to prevent the occurrence of positive
Lyapunov exponents during optimization.

We calculated the Pearson’s correlation matrix of multiple
parameter sets estimated from different assimilation windows and
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Fig. 4 Assimilation and prediction of a CA1 pyramidal neuron. Membrane voltage oscillations of a pyramidal cell from the rat hippocampal cortex (black
line) induced by the injection of a current protocol (blue line). The current trace shows the actual injected current, as measured. The CA1 SSN model was
synchronized to the experimental membrane voltage over a T= 940-ms-long assimilation window (green trace). The optimum fit produced an estimate of
the model parameters shown in Table 3. Models completed by incorporating the optimal parameters were used to predict the membrane voltage from
t � T (red line). b Detail of the predicted membrane voltage over the time interval indicated by the horizontal bar. c Further predictions were made for a
wide range of current protocols one of which is shown here. Detailed dynamics of state variables of the SSN model during an action potential: d membrane
voltage, e gate variables and f ionic currents.
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by setting different initial conditions to the parameter search. The
smaller values of the Pearson’s correlation indicate parameters
that are well constrained, while the larger values indicate “sloppy”
parameters. We find that voltage thresholds and kinetic para-
meters are well constrained. Parameters exhibiting the greatest
correlations were the maximum ionic currents Igm, Igh and Ign.
One of these parameters was clearly a free parameter35,37, which
could be set by specifying a narrower search interval.

As well as constraining parameters relating to transient cur-
rents, our method successfully determines the parameters of slow
ionic currents, which are responsible for frequency adaptation
(Fig. 4f). We have verified that the completed CA1 model repli-
cates the adaptation and latency of the actual CA1 neuron to
current steps (Supplementary Note 3 and Supplementary Fig. 3).
When the slow M and NaP currents are removed from the model,
the neuron fires tonically with no adaptation (Fig. 3c). Under
constant current stimulation, fluctuations in the sub-threshold
membrane potential are known to randomly shift the timings of
biological action potentials (Supplementary Fig. 3). As a result,
the response of a biological neuron to current steps lacks repro-
ducibility. This is why the predictions of the model are best
validated against the complex current protocols of Figs. 2–5.

Our patch-clamp experiments have purposely injected a cur-
rent in the soma. Action potentials initiated in the soma back-
propagate from the soma to distal dendrites and eventually vanish
at branching points in the dendritic tree60. This experimental
design allows the neuron to be modelled as a single compartment
consisting of the excitable soma feeding into dendrites as passive

transmission lines. This approach dissociates the excitable
response of the dendrites from that of the soma since the former
is activated by synaptic afferents on dendrites. From a compu-
tational point of view, a single compartment model is useful to
keep the number of adjustable parameters to a minimum
necessary to predict the membrane voltage. For this reason, the
single compartment model is most effective at demonstrating the
optimization method. Our use of a single compartment model is
further justified by evidence that calcium channels, which are
mostly concentrated in dendrites, play no role in the depolar-
ization of the soma (Supplementary Fig. 4 and Note 4).

In vivo, however, dendrites are the predominant receiving sites
for synaptic signals. Synaptic afferents may activate calcium
channels in the dendrites and elicit dendritic spikes that forward
propagate to the soma. A second SSN compartment would
therefore have to be added to describe the active properties of
dendrites61. The circuitry of calcium AHP channels exists (Sup-
plementary Fig. 5) and may easily be combined43 with a dendritic
leak channel to form a second SSN compartment (Supplementary
Note 4). The size of the model to optimize would increase as a
result, thus setting tighter conditions on the observability and
identifiability of parameters. We have successfully assimilated a
model incorporating the AHP current (Supplementary Fig. 4),
showing that multi-compartment models may be similarly opti-
mized to predict the dynamics of neurons stimulated through
dendrites.

In summary, our methodology allows configuring a silicon
biocircuit with an optimum parameter set that transfers the
complete dynamics of a biological neuron onto a chip. This
approach provides a systematic way to programme an analogue
computer. It is most relevant to bioelectronic medicine where low
power bioimplants are needed that adapt to physiological feed-
back in real time and therapies for chronic disease that rely on the
repair of diseased circuits of the central nervous system.

Methods
Constrained nonlinear optimization. The state of a neuron at a given time is
specified by its membrane voltage and the state of its ionic gates. We represent this
state with a D-dimensional vector xðtÞ ¼ x1ðtÞ; ¼ ; xDðtÞ½ �, which evolves in time
according to the equations of motion:

dxdðtÞ
dt

¼ Fd ½xðtÞ; p�; d ¼ 1; ¼ ;D; ð1Þ

where p ¼ p1; ¼ ; pK
� �

are the system parameters and the Fd are given by the
conductance model. The parameters hold the voltage thresholds, gate recovery
times and maximum conductances of individual ion channels. Constrained non-
linear optimization is used to find the optimum set of parameters, which syn-
chronizes state variable, x1ðtÞ, to the membrane voltage VðtiÞ observed at discrete
times ti ¼ iT=N , i ¼ 0; ¼ ;N over an assimilation window of duration T . We
measure the mismatch between the observation VðtÞ and state variable x1ðtÞ using
a least-squares metric given by the following cost function:

Cðxðt0Þ; pÞ ¼
1
2N

XN
i¼0

VðtiÞ � x1ðtiÞ½ �2 þ uðtiÞ2; ð2Þ

where u is a positive control variable that nudges convergence towards the global
minimum of Cðxðt0Þ; pÞ by eliminating the occurrence of positive conditional
Lyapunov exponents62. A regularization term uðtÞ x1ðtÞ � VðtÞ½ � is added to Eq. (1)
(d ¼ 1) to smooth out the irregularities in F1 xðtÞ; p½ � at large values of u. Within
the optimization process, u is treated as an additional state variable, which vanishes
as the parameter search approaches the global minimum of the cost function.
When the F1; ¼ ; FD equations of the model are known—for example, when the
membrane voltage data are synthesized by a known model—u vanishes at every ti
over the assimilation window and the minimization problem has a single valued
solution36. The Fds of biological neurons are, however, generally unknown. The
model error makes the assimilation problem ill-defined. Heuristically, solutions fall
into two categories. Either the parameter search arrives near the global minimum
of the cost function and uðtÞ vanishes everywhere across the assimilation window
except at a few times ti , or the parameter search arrives at a local minimum where
the cost function is orders of magnitudes greater and uðtÞ remains finite. In the
former case, completed models incorporating the extracted parameters retain great
predictive accuracy35,37. In the latter case, predictions invariably fail.

Table 3 SSN parameters extracted from biological neurons.

Ion Parameter CA1→ SSN RN→ SSN

NaT ~Igm (nA pF−1) 20 20
Activation Vtm (V) 0.867 1.0311

βm (V−1) 3.307 10.498
~Iτm (nA pF−1) 20 0.3877

Inactivation ~Igh (nA pF−1) 19.95 0.665
Vth (V) 0.866 0.8033
βh (V−1) 3.329 13.74
~Iτh (nA pF−1) 1.999 0.1

NaP ~Igq (nA pF−1) 5 0.4640
Activation Vtq (V) 0.593 0.81714

βq (V−1) 21.711 31.443
~Iτq (nA pF−1) 0.01 20

K ~Ign (nA pF−1) 1.0 19.84
Activation Vtn (V) 1.087 1.0323

βn (V−1) 10.0 10.587
~Iτn (nA pF−1) 0.154 0.3749

A ~Igo (nA pF−1) 0.131 19.99
Activation Vto (V) 0.629 1.0801

βo (V−1) 75.89 4.905
~Iτo (nA pF−1) 0.01 0.1017

Inactivation ~Igp (nA pF−1) 0.333 19.98
Vtp (V) 0.885 1.0521
βp (V−1) 1.0 5.378
~Iτp (nA pF−1) 0.01 0.1

M ~Igr (nA pF−1) 5.0 0
Activation Vtr (V) 0.593

βr (V
−1) 21.765

~Iτr (nA pF−1) 0.01
Leak ~IL (nA pF−1) 0.66 0.1

βL (V
−1) 0.1 0.6059

EL (V) 0.2 0.6753
α 1.586 7.795
β (mV−1) 10.384 10

Parameters extracted from a pyramidal neuron (CA1! SSN) and from a respiratory neuron
(RN! SSN)
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The problem was optimized by constructing the Karush–Kuhn–Tucker (KKT)
Lagrangian63 incorporating the cost function (Eq. (2)) with equality and inequality
constraints. The equality constraints were given by linearizing the D equations of
the conductance model according to Boole’s interpolation rule over four
consecutive time steps of the assimilation window:

xdðtiþ4Þ ¼ xdðtiÞ þ 2h
7
45

Fd xðtiÞ; pð Þ þ 32
45

Fd xðtiþ1Þ; p
� �þ 12

45
Fd xðtiþ2; pÞ

� ��

þ 32
45

Fd xðtiþ3Þ; p
� �þ 7

45
Fd xðtiþ4Þ; p

� ��
;

ð3Þ
where h ¼ T=N (0.02 ms) is the step size. Discretization of the model equations
gave D ´N=4 constraints. To prevent convergence towards physically implausible
non-smooth solutions, the model equations were supplemented by D ´N=4
Hermite polynomial interpolation constraints64 and N=4 polynomial interpolation
constraints for the control term, giving a total of ð2Dþ 1ÞN=4 equality constraints.
Interpolation using Boole’s rule had the merit of halving the number of constraints
relative to, for example, Simpson’s rule while increasing the accuracy of parameter
estimation. There were 2K inequality constraints arising from bracketing the search
interval of each parameter between a lower bound and an upper bound. The
Hessian and Jacobian matrices of the cost function and constraints were calculated
using symbolic differentiation (SymPy65). The KKT system was solved iteratively
using Newton’s method until convergence was achieved66. Convergence was tested
for the uniqueness of parameter estimates by comparing parameters extracted from
different assimilation windows. Data assimilation was run on a 16-core (3.20 GHz)
Linux workstation with 62.8 GB of random access memory. The completed models
were forward integrated in Python 3.6 using the odeint() routine, which is well

suited for integrating stiff systems of nonlinear equations. We built a suite of C-
programs to validate forward integration against a fifth-order adaptive step-size
Runge–Kutta method, to perform statistical analysis on estimated parameters, and
to perform principal component analysis on the covariance matrix of extracted
parameters to evaluate parameter sloppiness37. Links to the open source MA97 and
IPOPT solvers are given in the Additional Information section.

Biomimetic solid-state ion channel. We have designed the solid-state ion channel
shown in Fig. 1a to compute the dynamics of a generic voltage-gated ion current,
Iα . The ion channel has an activation gate (m) and an inactivation gate (h). The
maximum ionic conductances and recovery time constants are, respectively, set by
source currents Igγ and Iτγ and ITγ . The gate voltage thresholds are Vtγ where
γ 2 m; hf g. The equations of motion of individual ionic gates are derived from
analysis of the circuit in Fig. 1a, whereas the equation of motion of the membrane
voltage is obtained from the electrical equivalent circuit of the neuron membrane in
Fig. 1b. The ion channel is then configured to mimic individual types of biological
ion channels (Table 2) using estimated parameters as we shall see below. As many
such channels as specified by the assimilation filter are then added to the neuron
membrane circuit.

Whole-cell current-clamp recordings of biological neurons show that the gate
recovery time depends on the membrane voltage45. This dependence,

τðVÞ ¼ t0 þ ϵ 1� tanh2 V �Vt
δVτ

h i
36, is a bell-shaped curve of width δVτ centred on

the (in)activation threshold Vt . The base latency time is t0 and peak latency time
t0 þ ϵ. The voltage dependence of τγðVÞ, γ 2 m; hf g, is modelled with current IΣγ
in Fig. 1a. The bell-shaped dependence is obtained by connecting in series n-type
and p-type differential pair circuits (Fig. 1c). The n-type differential pair outputs a
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Fig. 5 Assimilation and prediction of a respiratory neuron. a Intracellular recording of a respiratory neuron acquired from a slice of the Bötzinger region of
the rat brain stem (black line). The neuron was stimulated with a current waveform alternating hyperchaotic oscillations and current steps (blue line). The
RN SSN model was used to assimilate the experimental membrane voltage over a 920-ms-long window (green trace) to estimate the optimum parameters.
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sigmoidal current I0 ¼ Imax=2 1þ tanh βðV � VtγÞ
h i

(Supplementary Note 5,

Supplementary Fig. 6), which supplies the source current of the p-type differential
pair I ¼ I0=2 1þ tanh βðVt � VÞ½ �. The product of activating and inactivating
characteristics thus produces the bell-shaped voltage dependence of IoTγ . By adding
a constant current Iτγ to IoTγ , one obtains:

IΣγ ¼ Iτγ þ
ITγ
4

1� tanh2βðV � VtγÞ
h i

; ð4Þ

which has the same voltage dependence as τγðVÞ, γ 2 m; hf g. This result assumes
sub-threshold transistors44 for which β ¼ κ=ð2UT Þ � 14 V−1, UT � 25mV is the
thermal voltage, κ ¼ COx=ðCOx þ CDÞ � 0:7 and, COx (CD) is the capacitance of
the oxide (depletion) layer.

IΣγ is injected in one input of an analogue current multiplier, which requires some
transistors to be biased in the above-threshold region (Fig. 1e)67. The other input
receives the displacement current through capacitor Cγ : ICγ ¼ CγdVγ=dt, (Fig. 1a).
The output of the current multiplier is ICγ ¼ I ´γ ´ Iτγ=IΣγ . A current mirror drains
I ´γ to ground and equates it to the current output by the transconductance amplifier:
Iτγ tanh βðV � VγÞ (Fig. 1f, Supplementary Note 5, Supplementary Figs. 7, 8). This
analogue circuit determines the rate of change of gate variable, Vγ . Substituting Eq.
(4) in the equality ICγ ¼ Iτγ ´ Iτγ tanh βðV � VγÞ=IΣγ , one obtains the following
equation of motion for the gate variable:

Cγ

dVγ

dt
¼ Iτγ tanh βðV � VγÞ

1þ ITγ
4Iτγ

1� tanh2βðV � VtγÞ
h i : ð5Þ

Vγ is the membrane voltage delayed by a recovery time identical to τγðVÞ. The
delayed voltage is then input into a sigmoidal circuit (Fig. 1g), which generates gate
current Iγ (Supplementary Note 5):

Iγ ¼
Igγ
2

1þ tanh βðVγ � VtγÞ
h i

: ð6Þ

Equations (5) and (6) are exact solutions derived from the circuit analysis. It is useful
to compare these equations with the equations of gate variables in conductance
models:

dγ
dt

¼ γ1ðVÞ � γ

τγðVÞ
; ð7Þ

where γ1ðVÞ ¼ 0:5½1þ tanhððV � VtγÞ=δVγÞ� and τγðVÞ ¼ t0;γ þ ϵγ½1�
tanh2ððV � VtγÞ=δVτγÞ�. In the limit V � Vγ , which corresponds to the domain
of operation of the circuit (see Discussion section), Eq. (5) becomes identical to
Eq. (7) once the change of variable γ1ðVÞ � V=UT and γ � Vγ=UT is made.
The gate recovery times of the conductance model are then given by t0;γ ¼
2CγUT=ðκIτγÞ and ϵγ ¼ CγUTITγ=ð2κI2τγÞ.

In actual neurons, the width of the transition region from the open to the closed
state of the gate, δVγ , and the width of the bell-shaped recovery time, δVτγ , vary
from one type of ion channel to another. The corresponding parameter in the SSN
equations Eqs. (5) and (6) is β�1 � 71:4 mV. For the circuits of Fig. 1, these values
are fixed by processing technology. However, by changing circuit design it is
possible to modify them. This is essential to adequately emulate biological
properties. Another factor that effectively increases the slope of (in)activation
curves is the exponent of gate variables in the equation of ionic currents:
Iα ¼ �gαm

ahbðEα � VÞ, where �gα is the maximum conductance and Eα the ion
reversal potential (Table 2). To first order, the exponents a and b increase the slope
of transition regions from 1=δVm ! a=δVm and 1=δVh ! b=δVh while shifting
the effective voltage thresholds Vtm and Vth higher. It is therefore essential to
incorporate additional flexibility in the design of Fig. 1a to allow for variable
activation slopes β ! βm and inactivation slopes β ! βh. It is equally desirable to
make the width of the bell-shaped kinetics adjustable through β ! βτm and
β ! βτh . In the next section, we describe the circuit modifications made to Fig. 1a
to introduce adjustable activation slopes βγ � a=δVγ and kinetics βτγ � 1=δVτγ to
describe the different types of ionic currents in Table 2.

Analogue interpolation of activation curves and gate kinetics. To emulate a
variable slope βγ and more generally activation curves of arbitrary shape, we
designed a new circuit composed of multiple differential pairs and superposed their
currents (Fig. 6a). The differential pairs are biased at different voltage thresholds
Vtγ;i , and saturation currents Imax;i , i ¼ 1; ¼ ; n39. The sum of their currents
interpolates the activation (inactivation) according to:

Iγ ¼
Xn
i¼1

Igγ;i
2

1þ tanh βðVγ � Vtγ;iÞ
h i

: ð8Þ

Figure 6b shows an example of interpolation of the activation curve of the A
channel of a thalamic relay neuron as measured by McCormick and Huguenard45.
We used n ¼ 9 differential pairs to interpolate this activation curve (open dots) to
excellent accuracy (solid red line). The summations of the first 3, 6 and 8 currents

Ii are also shown (dashed lines). Our SSN circuit thus replaces the static activation
circuit of Fig. 1a with the interpolation circuit of Fig. 6a. Correspondingly, we
replaced the fixed activation slope β with βγ in the SSN model (Supplementary
Fig. 9). The source currents Igγ;i of the interpolating circuit satisfy the sum rule
Igγ ¼

Pn
i¼1Igγ;i .

Similarly, the width of the voltage-dependent kinetics βτγ is made to vary by
superposing the currents of n bell-shaped generating circuits (Fig. 6c, Supplementary
Fig. 10), which peak at thresholds Vtγ;i spanning a range of voltages and source
currents ITγ;i. A bell-shaped current of given width at half-maximum is synthesized
as:

IoTγ ¼
Xn
i¼1

ITγ;i 1� tanh2βðV � Vtγ;iÞ
h i

: ð9Þ

Figure 6d shows the voltage-dependent inactivation kinetics of the HCN current
(open dots) measured by Huguenard and McCormick45 in a thalamic relay neuron.
This dependence is fitted (full red line) by summing n ¼ 9 bell-shaped current
curves (dashed lines). The bell-shaped generating circuit in Fig. 1a is to be replaced
with Fig. 6c.

SSN model. The equation of motion of the SSN model may now be written out by
replacing β with the interpolated βγ in Eq. (6) and β with βτγ in the denominator of
Eq. (5). The rate of change of the membrane voltage is obtained from Kirchhoff’s
current and voltage laws applied to the electrical equivalent circuit of the neuron
membrane (Fig. 1b). A SSN incorporating Na, K and leak channels (D ¼ 4) has the
following equations:

C
dV
dt

¼ ðIm � IhÞ θðIm � IhÞ � In þ IL tanh βLðEL � VÞ þ αI inj þ Idark ;

dVm

dt
¼

~Iτm tanh βðV � VmÞ
1þ ~ITm

4~Iτm
1� tanh2βτmðV � VtmÞ
� � ; Im ¼ Igm

2
1þ tanh βmðVm � VtmÞ
� �

;

dVh

dt
¼

~Iτh tanh βðV � VhÞ
1þ ~ITh

4~Iτh
1� tanh2βτhðV � VthÞ
� � ; Ih ¼

Igh
2

1þ tanh βhðVh � VthÞ
� �

;

dVn

dt
¼

~Iτn tanh βðV � VnÞ
1þ ~ITn

4~Iτn
1� tanh2βτnðV � VtnÞ
� � ; In ¼ Ign

2
1þ tanh βnðVn � VtnÞ
� �

;

ð10Þ
where θðÞ is the Heaviside step function. Because the rate of change of gate vari-
ables in Eq. (5) depends on Cγ and Iτγ , one defines the ratios ~Iτγ ¼ Iτγ=Cγ ,
γ 2 m; h; nf g. For a VLSI designer, this has the advantage that capacitances may be
made as small as convenient provided that the source current is decreased
accordingly. A typical gate recovery time of 0.1–100 ms would be implemented in
the solid-state with a source current of Iτγ ¼ 0:26�260 pA and a capacitance of
Cγ ¼ 1 pF. It follows that the NaKL SSN model has 22 independent parameters:

IgL, Igγ , ~Iτγ , ~ITγ , βL, βγ , βτγ , EL, Vtγ for γ 2 m; h; nf g. We have introduced para-
meter Idark to account for the leakage current of sub-threshold circuits in the OFF
state. This current (� 10 pA) is generally small compared to ionic currents. We
also introduced the scaling parameter α to amplify the current injection protocol as
the membrane voltage was re-scaled from the biological range [−100, +45 mV] to
[0, Vdd] where Vdd ¼ 1:8 V. This parameter also accounts for the surface area of
the neuron which receives the injection current.
The NaKL SSN model presents obvious similarities with the HH conductance model1:

C
dV
dt

¼ gNam
3h ENa � Vð Þ þ gKn

4 EK � Vð Þ þ gL EL � Vð Þ þ J inj;

dm
dt

¼ m1ðVÞ �m

t0;m þ ϵm 1� tanh2 V �Vtm
δVτm

h i ; m1ðVÞ ¼ 0:5 1þ tanh
V � Vtm

δVm

� �
;

dh
dt

¼ h1ðVÞ � h

t0;h þ ϵh 1� tanh2 V �Vth
δVτh

h i ; h1ðVÞ ¼ 0:5 1þ tanh
V � Vth

δVh

� �
;

dn
dt

¼ n1ðVÞ � n

t0;n þ ϵn 1� tanh2 V �Vtn
δVτn

h i ; n1ðVÞ ¼ 0:5 1þ tanh
V � Vtn

δVn

� �
:

ð11Þ
The main difference between both models is the order in which delay and

threshold are applied to the membrane voltage as this order is inverted. Additional
ionic currents ðIm � IhÞ θðIm � IhÞ may be inserted in Eq. (10) in the same way as
the gαm

ahb Eα � Vð Þ in Eq. (11) together with the corresponding rate equations for
gate variables. This versatility in principle allows modelling the most complex
neurons. A universal model incorporating all the ion channels of Table 2 may be
built without a priori knowledge about biology since absent ion channels would be
assigned a null current by the assimilation filter35,37.

From the mathematical viewpoint of model optimization, both the SSN
equations (Eq. (10)) and the HH equations (Eq. (11)) are approximations of the
exact equations of a biological neuron that are unknown. The SSN and HH
equations are, however, sufficiently close to the true equations of a biological
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neuron for excellent predictions to be made. Because of formal differences in the
HH and SSN systems of equations, completed SSN and HH model of the same
biological neuron will have different parameters. The advantage of the SSN model
over the HH model, however, is that its equations are identical to those of the
hardware. Therefore, the parameters of completed SSN models will be the only
ones that can be used to directly configure the hardware and make it behave exactly
like the biological neuron as we will show below.

Electrophysiological protocols
Current injection protocols. Current injection protocols were designed to optimally
constrain the model parameters and fulfil the requirements of Takens’ theorem68.
These protocols include (i) current steps of different duration to probe the different
recovery times of ion channels, and (ii) currents of different amplitudes so that
information is extracted from the depolarized, sub-threshold and hyperpolarized
states of the neuron. Each protocol was 10 s long and comprised various sequences
of depolarizing and hyperpolarizing current steps mixed with hyperchaotic current
oscillations generated using the x variable of the following system69:

dx
dt

¼ xð1� yÞ þ ζz;

dy
dt

¼ ρðx2 � 1Þy;
dz
dt

¼ γð1� yÞv;
dv
dt

¼ ηz

ð12Þ

for ðζ; ρ; γ; ηÞ ¼ ð�2; 1; 0:2; 1Þ. Chaotic or hyperchaotic injection currents play an
important role in making the state of the neuron at a given time less dependent on
the past steps that led to that state. The removal of the memory of past events
(Markov condition) is important to decouple the optimization constraints from
one another. These constraints are obtained by linearizing Eq. (1) at each time
point of the assimilation window. Assimilation protocols had the spectrum of a low
pass filter with a 8 kHz cut-off frequency. This frequency was greater than the
fastest of the gate recovery rates in the biological neurons which we probed. In
total, each neuron was subjected to a 10-min-long sequence of 60 protocols. These
protocols allowed testing the predictive accuracy of completed models over a
variety of stimuli.

Current-clamp recordings. Current-clamp recordings were performed using acute
brain slices from male Han Wistar rats at P1–3 (respiratory neurons) and P16–17
(hippocampal neurons). Following decapitation, the brain was removed into ice-

cold slicing solution composed of (mM): NaCl 52.5; sucrose 100; glucose 25;
NaHCO3 25; KCl 2.5; CaCl2 1; MgSO4 5; NaH2PO4 1.25; kynurenic acid 0.1, and
carbogenated using 95% O2/5% CO2. A Campden 7000 smz tissue slicer (Campden
Instruments UK) was used to prepare transverse hippocampal slices at 350 μm, or
rhythmically active transverse medullary slices at 400 μm, containing the pre-
Bötzinger complex as well as the hypoglossal motor nucleus (XII) and rootlets.
Slices were transferred to a submersion chamber containing carbogenated artificial
cerebrospinal fluid (aCSF) composed of (mM): NaCl 124; glucose 30; NaHCO3 25;
KCl 3 (or above, as specified); CaCl2 1.5; MgSO4 1; NaH2PO4 0.4, and incubated at
30 °C for 1–5 h prior to use.

Brainstem slices were transferred to the stage of an Axioskop 2 upright
microscope (Carl Zeiss) and respiratory neurons were visualized using differential
interference contrast optics. The chamber was perfused with carbogenated aCSF
(composition as above) at 2 ml min−1 at 30 ± 2 °C. Patch pipettes were pulled from
standard walled borosilicate glass (GC150F, Warner Instruments) to a resistance of
7–10MΩ and filled with an intracellular solution composed of (mM): potassium
gluconate 130; sodium gluconate 5, HEPES 10; CaCl2 1.5; sodium phosphocreatine
4; Mg-ATP 4; Na-GTP 0.3; pH 7.3.

A custom-built LabView interface injected current protocols into neurons
through a USB-6363 DAQ card and a MultiClamp 700B amplifier. Time series
membrane voltage and current data were simultaneously recorded in current-
clamp mode at 100 kHz in response to the clamp protocols (Supplementary
Fig. 11). Inspiratory respiratory neurons were identified by anatomical location and
the presence of burst firing activity in phase with activity in the XII motor nucleus
or rootlet. To achieve this, extracellular [K+] was temporarily raised to 7–9 mM.
Experiments measuring neuronal activity in response to the protocols applied in
current-clamp mode were made in the presence of (μM) kynurenate 3, picrotoxin
0.05, and strychnine 0.01 to isolate the neuron from synaptic inputs from other
neurons in the slice.

Model and VLSI data. Model data were synthesized with the HH model calibrated
for a thalamic relay neuron45,46. Model parameters are listed in Supplementary
Table 1. The time series evolution of the neuron state xðtÞ ¼ VðtÞ;mðtÞ; hðtÞ; nðtÞf g
was computed by integrating current protocols with Eq. (11). The membrane voltage
time series was assimilated with the SSN model (Eq. (10)). This approach allowed the
dynamics of HH gate variables—which cannot be observed in real neurons—to be
compared with the dynamics of gate variables in the SSN model.

The membrane voltage observed in biological neurons was re-scaled from
[−100, +45 mV] to [0, 1.8 V] to fit the voltage range of the VLSI chip hosting the
SSN microcircuits (Supplementary Fig. 12). The conversion formula from the
observed membrane voltage (Vmem) to the SSN membrane voltage V was
V ðmVÞ ¼ 12:414 ´Vmem ðmVÞ þ 1241:4.
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Fig. 6 Analogue interpolation of the gate activation curves and gate kinetics. a Sigmoidal currents I1 þ � � � þ IN are summed to interpolate the activation
curve of an ionic gate. The adjustment parameters are the voltage thresholds Vt1; ¼ ;VtN and source currents Imax;1; ¼ ; Imax;N . b Activation curve of the A
channel of a thalamic relay neuron (circle symbols)45 interpolated by nine sigmoids whose sum gives the output current Iout (full red line). The output
current normalized by Imax ¼ Imax;1 þ � � � þ Imax;9 gives the biological activation curve, m1ðVÞ. c Circuit interpolating the activation/inactivation kinetics by
summing N bell-shaped curves centred at Vt1; ¼ ;VtN with amplitudes Imax;1; ¼ ; Imax;N. d Activation kinetics of the HCN current, τðVÞ,45 (circle symbols)
interpolated by summing nine bell-shaped curves in the output current Iτout (full red line). Iτmax ¼ Iτmax;1 þ � � � þ Iτmax;9.
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Ethical statement. All experiments were performed under Schedule 1 in accor-
dance with the United Kingdom Scientific Procedures (act of 1986).

Data availability
All data generated or analysed during this study are included in this published article and
its supplementary information files. Additional requests for data may be made from the
authors.

Code availability
Exemplar equation and specification files may be requested from A.R.Nogaret@bath.ac.uk.
The optimization code [www.coin-or-org/ipopt] implemented the MA97 linear solver
[http://www.hsl.rl.ac.uk/catalogue]. Completed models were forward integrated with the
odeint() routine [http://numerical.recipes or www.python.org].
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