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emergence of coherent rhythmic activity is thought to be inhibition-driven and stimulation-dependent.
However, the exact mechanisms of synchronization remain unknown. Recent optogenetic experiments
have identified two neuron sub-types as the likely inhibitory vectors of synchronization. Here, we show
that local networks mimicking the soma-targeting properties observed in fast-spiking interneurons
and the dendrite-projecting properties observed in somatostatin interneurons synchronize through
different mechanisms which may provide adaptive advantages by combining flexibility and robustness.
We probed the synchronization phase diagrams of small all-to-all inhibitory networks in-silico as a
function of inhibition delay, neurotransmitter kinetics, timings and intensity of stimulation. Inhibition
delay is found to induce coherent oscillations over a broader range of experimental conditions than
high-frequency entrainment. Inhibition delay boosts network capacity (In2)~N-fold by stabilizing locally
coherent oscillations. This work may inform novel therapeutic strategies for moderating pathological
cortical oscillations.

The synchronization of electrical activity in the brain has been studied for several years to understand the mech-
anisms underpining cognition? and memory consolidation’. The ~y-oscillations of cortical micro-circuits are
thought to be initiated by networks of parvalbumin®® or somatostatin interneurons® which entrain principal
cells’~. These two neuron sub-classes differ in their physiological characteristics and may have adapted to exploit
specific nonlinear properties. An understanding of these properties and their functional advantages is now
needed. Computational models have been used to test neuronal synchronization through the interneuron gamma
(ING) mechanism!®!!, the pyramidal interneuron gamma (PING) mechanism®!>!3, the action of both excitatory
and inhibitory synapses'*!7 and the modulation of long range inhibition by local dendritic gap junctions!$-%,
which have been derived from tonic current stimulation. Mutually inhibitory networks, however, are chaotic sys-
tems which encode the timings of current stimuli in cyclical paths of sequentially discharging neurons**?*. These
networks are therefore expected to exhibit abrupt transitions between modes of oscillation when both the timings
and amplitudes of stimuli are varied*¢-%°. This is reminiscent of phase transitions in systems with many degrees of
freedom whose sensitivity to interactions makes them difficult to predict from first principles. Recent advances
in neuromorphic engineering®>*! allow such phase transitions to be measured in physical networks and are the
only way to integrate complex multivariate stimuli in real time*>* without compromise on model accuracy, size
or complexity. A further merit of using neuromorphic systems is to demonstrate the robustness of the large num-
ber of stable modes of oscillation which we observe against noise and network imperfections. In particular, the
maximum network capacity is found to be robust against synaptic noise, component-to-component fluctuations
and other experimental deviations of relevance to cortical networks. In this way, we establish inhibition delay and
high frequency entrainment as dual mechanisms providing robust and tuneable synchronization.

Results

We built analog silicon models of all-to-all neuronal networks. The constituent neurons implemented the
Mahowald-Douglas model®® which transposes the conductances of ion channels into transistor conductances
to translate the Hodgkin-Huxley model®* to very large scale integrated (VLSI) technology. We interconnected
these neurons with mutually inhibitory synapses based on established VLSI circuit design®'. These synapses have
three gate biases which we set independently or in combination to delay the onset of the postsynaptic current,
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Figure 1. Synchronization of a pair of mutually inhibitory neurons and its dependence on synaptic kinetics.
(a) Fast-spiking soma-projecting and somatostatin dendrite-projecting interneurons. Synapses located on
dendrites effectively delay the inhibition of the postsynaptic neuron by 0- 800 ss. (b) Inhibitory postsynaptic
current (red line) evoked by a presynaptic action potential (black line) applied to a VLSI synapse. Synaptic
kinetics: inhibition delay d, neurotransmitter docking time 7, undocking time 7, and spike width W. (c)
Membrane voltage oscillations of mutually inhibitory neurons below, at, and above the synchronization current,
I. 7,= 1.5ms. (d) Frequency-current dependence of a VLSI neuron (square symbols) and frequency-current
dependence of phase-locked oscillations (red line). Their intercept gives the frequency (f;) and current (1))

of phasic oscillations. Domains of synchronized oscillations at d=0.2W (vertical bands). (e) Phase diagram

of synchronization in the d — I, plane where delay d is normalised by the spike width W. Two alternative
mechanisms contribute to synchronization in local inhibitory networks: a change in current stimulation (PVB:
parvalbumin neuron-type synchronization) and an increase in inhibition delay (SST: somatostatin neuron-
type synchronization). (f) Frequency of phasic oscillations as a function of the decay time of the postsynaptic
current.

change the rise and decay time of the postsynaptic current, and vary the synaptic conductance (Supplementary
Methods LII). Accordingly, individual synapses have a tuneable inhibition delay d which we vary from 20 ps to
model the latency time of neurotransmitter release®>, to 800 us to model the transmission line delay of inhibi-
tory signals as they diffuse along the dendrites towards to the axon hillock of dendrite projecting interneurons®.
These inhibition delays are chosen to match the transit time of action potentials across the 200 ym-700 ym long
dendrites of somatostatin interneurons® at an average speed of 1-100 m/s (Fig. 1(a)). The decay (resp. rise) time
of the postsynaptic current was set by the undocking (resp. docking) time of neurotransmitters on neurore-
ceptors (GABA), 7, (resp. 7). T, was tuned over 0-8 ms, a range comparable to the period of neuron oscillations:
5-20ms*® (Fig. 1(b)).

Synaptic kinetics of the half-center oscillator. We began to study the emergence of synchronization by
probing the synchronization phase diagram of a pair of mutually inhibitory neurons as a function of synaptic
kinetics in all connections (d, 7,) and current stimulation applied to all neurons (I;,). When inhibition delay is
small (d < 150 us), three modes of synchronized oscillations are observed as I;;,, increases (Fig. 1(c)). Above the
depolarization threshold (I, = 8 11A), neurons oscillate out-of-phase (antiphasic synchronization). They suddenly
lock in phase (phasic synchronization) at I, =14 pA. Higher current stimulation (I,;,, > L) increases the fre-
quency of neuron oscillations and makes inhibition increasingly tonic. As a result neurons decouple gradually.
This loose coupling regime is characterized by higher order phase locking where a neuron entrain the other at a
frequency which is a rational multiple of its own (Fig. 1(c)).

Longer inhibition delays (d > 150 ps) broaden the synchronization current I to a window of finite width [I;, I]
(Fig. 1(d)) which increases and eventually diverges atd > 300 us. The observation of phasic synchronization at
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longer inhibition delay concurs with similar results obtained by Van Vreeswijk et al.'! when the synaptic response
time becomes slower. Antiphasic, phasic, and loose coupling regimes form 3 domains in the d — I;;, phase diagram
of Fig. 1(e) showing that phasic synchronization may be induced either by delaying inhibition or by applying a stim-
ulation current close to 1. Delayed inhibition gives each neuron in the pair the time to depolarize prior to receiving
inhibition from its partner. This condition is necessary but not sufficient to explain phasic synchronization.
Inhibition delay also decreases the slope of the phase response curve of the post-synaptic neuron near the origin
(Supplementary Methods II). This reduces the phase correction that mutual inhibition applies to the early and late
firing neurons which has the effect of stabilizing synchronous oscillations.

For shorter inhibition delays (d < 150 us), the synchronization current (1) and frequency (f,) decrease when
T, increases. This dependency is well explained by calculating the frequency of phase synchronized oscillations f,
(Supplementary Discussion I) and its intercept with the excitatory response curve of a neuron (Fig. 1(d)). We find
fs ~ Tuil/ 3 (Fig. 1(f)). This result concurs with the onset of y-oscillations shifting to lower frequency (current
stimulation) following pharmacological manipulations that increase the recovery time of the postsynaptic
current”S.

3-cell mutually inhibitory network. Larger inhibitory networks (N > 3) generally have chaotic dynamics
which makes network oscillations highly dependent on the timings of current stimuli. We defined the state of the
system using the phase lags of individual neurons relative to a reference (neuron 1) and obtained the state trajec-
tories by measuring the temporal evolution of these phase lags {A®{}, i=2, 3 ...N over consecutive periods
p=1-50. The phase lag map of a 3-neuron network with 300 s inhibition delay shows state trajectories converg-
ing towards 6 point attractors (Fig. 2(a)). These attractors are sub-divided into 3 categories according to the
duration of their interspike intervals (ISI): T/3, T/2 and T where T is the period of synchronized oscillations
(Fig. 2(b)). Two attractors (circle symbols) correspond to three neurons discharging in the clockwise and anti-
clockwise sequences, 1 —2 — 3 and 1 — 3 — 2 (ISI = T/3). Three attractors (square symbols) correspond to 3

modes of partially synchronized oscillations including the sequence 1 — 2 and its 2 permutations (ISI = T/2).

The single coherent attractor (diamond symbol) corresponds to all 3 neurons discharging in phase (ISI=T). The
3-neuron map shows the basins of attraction becoming smaller as oscillations become more coherent. This
demonstrates the greater fragility of coherent states relative to the oscillations of sequentially discharging neu-
rons. We find that ford > 300 ps, coherent and partially coherent oscillations become stable over the entire range
of current stimulation. If d < 150 ps however, the network only supports the oscillations of sequentially discharg-
ing neurons, as we shall see below. We find that substituting non-delayed inhibitory synapses (d =0) with gap
junctions® produces qualitatively similar phase portraits in that they only support sequentially discharging neu-
rons (Fig. 2(c)). For completeness, we also considered gap junctions between excitatory neurons. We find that the
excitatory network hosts a single state of collective oscillations (Fig. 2(d)). This expected result validates the cor-
rect operation of our analogue network. Returning to the 3-neuron network connected by non-delayed inhibitory
synapses, and varying current stimulation applied to all neurons, we find that partially coherent oscillations van-
ish except in a very narrow range of current stimulation centered on I - as in the neuron pair.

In the 3-neuron and 4-neuron networks, the synchronization current I is the current that maximises the size
of the coherent basin of attraction and stabilizes the coherent attractor with respect to noise (Fig. 3). For long
inhibition delays (d =350 us), the network supports coherent oscillations over the entire range of current stimu-
lation. Whend < 150 ps, coherent oscillations only form in a narrow range of current stimulation about I,. These
observations generalize the d — I;;,, phase diagram of Fig. 1(e) to larger networks and demonstrate that synchro-
nization may be achieved either through increases in inhibition delay or current stimulation.

Emergence of synchronization in all-to-all inhibitory networks. We next demonstrate the emer-
gence of synchronization in larger networks (N=3, 4, 5) and the critical importance of inhibition delay in stabi-
lizing locally coherent oscillations. The maximum number of attractors in a N-neuron network was calculated by
counting the number of cyclically invariant discharge patterns allowing partial synchronization (Supplementary
Discussion II). We find that the maximum network capacity increases as T; =6, T, =26, T; =150, T,=1082, ...
Ty ~ (N — 1)!/(In2)"*. The minimum capacity, allowing sequential discharges only, is Ly= (N — 1)!

Experimental results show that the capacity of an inhibitory network to encode information about its envi-
ronment lies between Ly and Ty, depending on inhibition delay (Fig. 4). Longer inhibition delays (d =400 us)
stabilize oscillations which range from purely phasic (Fig. 4: (a) diamond, (b) triangle, (c) hexagon) to purely
sequential (Fig. 4(a—c) circles). In between, all intermediate states of partial synchronization are observed
(Fig. 4(a—c)). For example, the 4-neuron map in Fig. 4(b) has 6 sequential attractors with 1 spike per ISI giving
ISI occupancies (1, 1, 1, 1) (circle symbols), 12 partially synchronized attractors with ISI occupancies (2, 1, 1, 0)
(square symbols), 4 4 3 partially synchronized attractors with (3, 1, 0, 0) and (2, 2, 0, 0) occupancies respectively
(diamond symbols), and the coherent attractor (4, 0, 0, 0) (triangle symbol). Therefore the 4-neuron network
hosts 26 attractors in total.

Intermediate inhibition delay (d =250 ps) suppresses coherent oscillations (Fig. 4(d-f)). In the 4-neuron net-
work, the coherent attractor (ISI=T) and the partially coherent attractors (ISI= T/2) have vanished while those
with ISI = T/3 (square symbols) and T/4 (circle symbols) remain. The partially coherent attractors which survive
exhibit a reduced basin size (Fig. 4(d,f)).

When inhibition delay is reduced further (d =100 us), the only attractors left are sequential oscillations
(Fig. 4(g-1)). The network capacity then scales as: 2 (N=3), 6 (N=4), 24 (N=>5) which matches the Ly sequence
above. These results demonstrate that, provided the inhibition delay is sufficiently large, the number of attractors
increases according to sequence Ty. For this, the inhibition delay needs to be at least 1/3 of the duration of the
action potential (d > W/3). The network capacity was found to be less sensitive to neurotransmitter kinetics.
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Figure 2. Phase portraits of 3-neuron inhibitory networks. (a) Experimental phase portrait of a three neuron
network coupled via mutually inhibitory synapses. Antiphasic attractors (circle symbols), partially synchronized
attractors (square symbols) and phasic attractor (diamond symbol) are the 6 limit cycle oscillations of the
network. State trajectories (full lines) emanate from initial states evenly distributed over the entire phase space.
Neuron dephasings A®;, were normalised by the cycle period T. Reciprocal inhibition was balanced

8~ 8 =2 uSwith i, j=1, 2, 3. (b) Transient neuron oscillations showing convergence towards the antiphasic
aftractor (ISI= T/3), the partially synchronized attractor (ISI=T/2), and the phasic attractor (ISI="T). (c)
Phase portrait of a 3-neuron network interconnected with mutually inhibitory gap junctions showing antiphasic
attractors only (circle symbols). g ~ 8 =45 uS. (d) If mutually excitatory gap junctions are used instead, a
single phasic attractor is observed (diamond symbol). Parameters: (a,b) I;,, =25 pA, T=18ms, I, =8 uA,

gi;” =2 S, 7,= 1.5ms, 7,=1.5ms, d=300 us; (¢,d) Ly;,, = 50 pA, Iy, = 86 pA.

Increasing 7, from 1.5 ms to 3.5 ms marginally increased the number of attractors. No further change was
observed beyond 7, > 3.5 ms.

Figure 5 shows how the capacity of experimental networks scales with network size. At small inhibition delay
(d=100 ps), the experimentally observed capacity is minimum and follows sequence Ly. At longer inhibition
delay (d =400 ys), one observes that the maximum number of attractors increases according to sequence Ty. At
intermediate delays, the network supports partially synchronized oscillations with low coherence which includes
all oscillations exhibiting the smaller ISIs. Hence the network capacity lies between Ly and Ty. One concludes that
longer inhibition delays (d > 300 y s) boost the capacity to encode stimuli by a factor Ty/Ly = (In2) ~. With a
maximum capacity of (N — 1)!/(In2)" delayed inhibitory networks achieve a storage density which far exceeds
winnerless networks ~(N — 1)!** and Hopfield networks ~0.14N*0. By achieving the maximum theoretical
capacity, our in-silico networks demonstrate scalable associative memories with unprecedented memory
density.
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Figure 3. Current dependence of the coherent attractor. Phase lag maps of the 3-neuron and 4-neuron
inhibitory networks measured in the vicinity of the coherent attractor (yellow basin) at three levels of current
stimulation: I;;, =20 pA, 30 #A and 44 ;1A. Vicinal basins of partially synchronized oscillations (grey, purple
and blue trajectories) and antiphasic oscillations (red and black trajectories). The volume of the coherent basin
passes through a maximum at I, ~ 30 yA. Parameters: d=350 1A, 7,=1.5ms.

Discussion

Our results suggest that inhibitory networks may synchronize via two mechanisms that exploit the distinct neu-
rophysiological properties of fast-spiking interneurons® and the inhibition delay introduced by dendrite project-
ing synapses®’. This study considers the primary effect of dendrite targeting synapses to be the introduction of a
transmission line delay because the network frequency covers a very narrow range set by the constant step ampli-
tude of current stimuli. The complex spectral response of dendrites is however known to be important and would
need to be considered if the amplitude of current stimulation was varied. Dendrite projecting somatostatin
interneurons introduce transmission line delays of the order of 0 - 800 s by projecting synapses on the
200-700 um long dendrites of the mammalian visual cortex”. Transmission line delays of this magnitude post-
pone the onset of inhibition sufficiently to stabilize the coherent oscillations of inhibitory neurons (Fig. 4(a—c)).
The anatomical properties of somatostatin neurons would thus warrant robust phasic synchronization which is
weakly dependent on current stimulation or postsynaptic kinetics but is strongly dependent on the timings of
stimulation. This result is consistent with the rapid attenuation of visually induced ~-oscillations observed when
visual stimuli become uncorrelated®. The coherent attractor is unique and its basin occupies a very small volume
of phase space (triangle symbol, Fig. 4). As a result, the state of collective synchronization is the least robust of all
states with respect to noise and structural inhomogeneity. In contrast, the bulk of the phase space is filled with
partially coherent attractors whose proportion increases very rapidly according to 1 — (In2)" as the network size
increases. Using this expression, one calculates that partially coherent attractors form >98.7% of all attractors for
the typical neuronal population, N > 12, excited during optogenetic experiments®. Besides being more numer-
ous, partially coherent states also have wider basins which offer protection from decoherence by noise and struc-
tural heterogeneities (Fig. 4(a—c)). Accordingly, partially coherent states are the most thermodynamically stable
with respect to coherent and sequential states and are the most likely to support synchronized electrical activity
in the noisy environment of real cortical networks. Within partially coherent states, however, the neurons which
oscillate in phase may distribute differently over the volume of the network. A subset of L neurons (L < N) may
oscillate in phase at different locations of the network, producing spatially homogeneous firing akin to the fully
synchronized state. Two partially coherent states with identical L-number differ through the permutations of
stimuli. The equivalence of these states is demonstrated by the six-fold symmetry of phase maps of the 4-neuron
network (Fig. 4(b)).

Our results suggest that spatially homogeneous firing within partially coherent states may be promoted by
local repulsion through gap junctions*!. These junctions are known to predominantly couple neighbouring inhib-
itory cells of the same population*>*’. As we have seen in Figs 2(c) and 4(g), gap junctions and fast inhibitory
synapses share the property of supporting sequential neuronal oscillations. Electrical synapses thus have a dest-
abilizing effect on local neural synchronization as reported in earlier numerical simulations??*#, At the same
time, Fig. 4 show that transmission line delays promotes synchrony. An inhibitory network can thus achieve a
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Figure 4. Emergence of synchronization in small inhibitory networks and its dependence on inhibition

delay. Phase lag maps of the 3, 4 and 5-neuron networks measured at inhibition delays (a—c) d=400 ys,

(d-f) d=250 us and (g-i) =100 us while keeping constant both the decay time of the postsynaptic current:
7,= 1.5ms and the inhibition peak current: —13.8 uA. The (N — 1)-dimensional phase space (straight lines) and
the state trajectories within it (full lines) were projected orthographically. State trajectories converge towards
point attractors classified according to the duration of their ISIs: T/N (black lines, circle attractors), T/(N — 1)
(blue lines, square attractors), T/(N — 2) (orange lines, diamond attractors), T/(N — 3) (green lines, triangular
attractors), T/(N —4) (purple lines, hexagonal attractor). The total number of attractors observed at inhibitory
delay d=400/250/100 pis is 6/3/2 (N=3), 26/17/6 (N =4), 142/107/24 (N=5), 1053/688/120 (N=6).

homogeneous distribution of phasic neurons*® by breaking local coherence using gap junctions. Homogeneous
firing is established from the long range attraction of delayed inhibition and the short range repulsion of electrical
synapses. Note that many physical systems achieve long range order through short range repulsion. For example,
the Wigner crystal arises from Coulomb repulsion between electrons*® and vortex-to-vortex repulsion is respon-
sible for the Abrikosov lattice in type II superconductors®’. The effect of introducing heterogeneity in the network
is seen in Fig. 4(a—c) where residual imbalance in network conductance breaks the symmetry of phase lag maps.
Introducing a range of inhibition delays or mixing gap junctions with chemical synapses would similarly increase
the volume of some basins - those associated with spatially homogeneous firing - to the detriment of others?.

In contrast to somatostatin neurons, the wiring of parvalbumin neurons introduces delays which are too short
to warrant automatic synchronization. Instead parvalbumin neurons may achieve synchronization through high
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Figure 5. Scaling of network capacity with network size. Total number of attractors observed in the 3-neuron
to 6-neuron networks at three different values of the inhibition delay: d =400 us (red dots), 250 ps (blue
triangles), 100 us (green diamonds). At intermediate delay (250 ys), the network capacity lies between the upper
theoretical boundary Ty (solid line) and the lower boundary Ly (dashed line). Inset: Orthographic projections
of point attractors which are distinguished by the number of ISIs per cycle: ISI=T/N (black dots), T/(N—1)
(blue dots), T/(N — 2) (orange dots), T/(N — 3) (green dots), T/(N — 4) (purple dot).

frequency entrainment. This corresponds to the current induced synchronization which we observe at small d
(Fig. 1(c,e)). Because frequency f, is dependent on neurotransmitter kinetics (Fig. 1(f)), this synchronization
mechanism allows the onset of synchronized oscillations to be tuned using pharmacological manipulations tar-
geting GABA receptors®>7%45,

Our study leads us to propose that local cortical circuits may have adapted to exploit the robustness of synchro-
nization by delayed inhibition versus the tunability of synchronization by fast-spiking interneurons (Fig. 1(e)).
These synchronization mechanisms suggest strategies to reduce pathological cortical oscillations which include:
inactivating dendrite targeting synapses, blocking GABA receptors to accelerate the recovery of the postsynap-
tic potential, and applying visual stimuli lacking spatial coherence at frequencies in the y band. This study has
focussed on purely inhibitory networks (ING) which have intrinsically chaotic dynamics. The consideration of
excitatory neurons and feed-forward processes within the pyramidal-interneuron-gamma (PING) mechanism
invokes regular dynamics which has been treated elsewhere®.

Methods

Electronic models. We synthesized two VLSI networks interconnecting 6 Mahowald-Douglas neurons®
with either inhibitory synapses or gap junctions (Supplementary Methods I). VLSI neurons modelled the depend-
ence of the membrane voltage V on current stimulus I, using the analogue electrical equivalent circuit of the
neuron membrane. Its equation was CV = SalEnva — V) + gEx — V) + gV + L, where E,, and Ey are the
sodium and potassium reversal potentials and C is the membrane capacitance. The sodium and potassium con-
ductances, gy, and gi, are modelled by the transconductances of p— and n— type field effect transistors respec-
tively®. The gate variables m, h and n of the Hodgkin-Huxley model are represented in the analogue circuit by
currents ¢ which are either activated or inactivated according to: «(V_ ) = ¢,,, {1 + tanh[(V_, — V,)/dV,]}/2
where x = {m, h, n}, V, is the threshold voltage of each ion gate, and dV, is the width of the transition from the
closed to the open state of that gate. The V., , variables follow a first order dynamics V. . = (V — V. )/7x which
describes the recovery of each gate variable and is characterized by recovery time 7,%.

Chemical synapses were implemented using a differential pair integrator®! (Supplementary Methods II). As
our transistors functioned with above threshold currents as opposed to below threshold®, the postsynaptic cur-
rent was approximately given by L, (t) = gS(£) (Ve (t) — V,,) where V,,,=7 V was the reversal potential, V()
the membrane voltage of the postsynaptic neuron, g the maximum conductance and S(¢) was the fraction of
docked neurotransmitters at time . The neurotransmitter docking rate was given by: () = [S_( Vp,e(t)) — S/,
with § (V) = 0.5{1 + tanh[(V — V};)/dV,,]}. The empirical inhibition delay d, decay time 7, and synaptic
conductance g were controlled by 3 gate voltage parameters: Vy;,, Vi, and V. in the circuit (Supplementary
Methods II). The synaptic conductance varied in the range g=1-3 ps.

We implemented gap junctions electronically using a differential transconductance amplifier to model electri-
cal coupling between GABAergic-like interneurons*!. Their current-voltage transfer characteristics has been
measured by Zhao and Nogaret®. The gap junction current varies linearly as I post = 8 (Vyou(t) — V() near the
balance point of the pre-synaptic and post synaptic membrane potentials*’. The transconductance g’ is tuneable
in the range 24 s <g’ < 45 S using the gate bias V,; of the current source transistor (Fig. S7). Away from the
balance point, saturation effects reduce the rate of current injection®”. We were able to change the sign of the
injected current by swapping the voltage inputs and in this way obtain either an inhibitory or an excitatory link
(Fig. 2(d)).

Circuits were built from VLSI current mirrors (ALD1116, ALD117). The depolarization threshold of neurons
was adjusted to match the range of synaptic currents. This was done by adjusting the leakage conductance of the
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neuron membrane. The current thresholds were I;, =8 A (synaptic coupling) and 86 pA (gap junction coupling).
The duration of an action potential was W= 1ms.

Data acquisition and analysis. Individual neurons were stimulated by timed current steps of constant
amplitude I;;,. These stimuli were generated by the analogue outputs of two DAQ cards (NI PCI6259) and a
bank of 6 voltage-to-current converters. Labview code was written to vary the timings of current stimuli in a sys-
tematic manner so that initial conditions meshed the (N — 1)-dimensional phase space with a grid size of T/20.
The Labview/DAQ card recorded the membrane voltage time series of individual neurons during each current
protocol. The sampling frequency was 20 kHz. Between the end of one protocol and the beginning of the next,
a 200 ms long time window was inserted during which no stimulation was applied to let the system return to its
steady state.

The dephasings of voltage peaks (A®Y), A®Y), ... ADE)) were calculated in each oscillation period p = 1-50.
The phase shifts of individual neurons were calculated as A®¥) = (t”) — ¢{))/T using a Matlab programme
which extracted the timings of voltage peaks of neuron i and neuron 1 in each oscillation period. The state trajec-
tories A®® were projected orthographically in the Coxeter plane of the (N — 1)-dimensional hypercube (N=3,
4, 5) using projection matrices:

—+2 cosfl, /2 sinf, 1

By = ,
W A2 sinf,  —A/2 cos, 1 (1)
where 6,=7/12, and:
s (1 cosf 0 — cosOs
SN0 sinfy 1 sinfy | Q)

where 0; = 7r/4. The state trajectories pertaining to the same basin were regrouped using Matlab code which cal-
culated the coordinates of experimental attractors and their total number.
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