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Abstract: As software systems evolve, there is a growing 

concern on how to manage and maintain a large codebase and 
fully understand all the modules present in it. Developers spend a 
significant amount of time analyzing dependencies before making 
any changes into codebases. Therefore, there is a growing need 
for applications which can easily make developers comprehend 
dependencies in large codebases. These applications must be able 
to analyze large codebases and must have the ability to identify all 
the dependencies, so that new developers can easily analyze the 
codebase and start making changes in short periods of time. Static 
analysis provides a means of analyzing dependencies in large 
codebases and is an important part of software development 
lifecycle. Static analysis has been proven to be extremely useful 
over the years in their ability to comprehend large codebases. Out 
of the many static analysis methods, this paper focuses on static 
function call graph (SFCG) which represents dependencies 
between functions in the form of a graph. This paper illustrates 
the feasibility of many tools which generate SFCG and locks in on 
Doxygen which is extremely reliant for large codebases. The paper 
also discusses the optimizations, issues and its corresponding 
solutions for Doxygen. Finally, this paper presents a way of 
representing SFCG which is easier to comprehend for developers. 

Keywords: Static function call graph, Static analysis, Duplicate 
functions, Doxygen, Cytoscape.js  

I. INTRODUCTION 

Large software companies write quality software on a 
daily basis and track individual components very well. 
Codebases written in C language have been in use in system 
development, network development and many applications 
mainly because C language is easier to interface with 
machine hardware, consumes less memory and has faster 
runtimes. It also provides great control to the programmer to 
create efficient programs. 

Over the years, it has been found that large codebases are 
difficult to analyze due to its sheer scale and complexity 
involved and the different ways in which files can be linked 
with each other. There could be several links of a function 
present in a file with several other functions present within 
the file or other files which makes it hard for the developer to 
comprehend these links while making changes to the 
codebase. There exists a study by T. D. LaToza et al. [1] 
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which indicates ease of comprehending complex codebases 
using call graphs and it mentions that developers who use 
visual tools for call graphs were more likely to complete a 
task much faster than developers who do not use visual tools 
for call graphs. Hence, there is a need for a visual 
representation which can be used for easily visualizing all 
function call dependencies amongst files in the codebases. 

The early mention of using Call Graphs for static analysis 
was done in B. G. Ryder et al. [2] which explicitly defines a 
call graph as a representation in which “the nodes of the 

graph are the procedures of the program; each edge 
represents one or more invocations of a procedure Pj by a 
procedure Pi”. The first efforts in this direction were in the 
Fortran language in which call graphs were represented as a 
directed acyclic graph (since Fortran 77 is a non-recursive 
language). However, from then onwards several 
implementations of call-graphs have arisen in different 
languages and are still under active research. Most of the 
implementations make use of the abstract syntax tree (AST) 
of the underlying language in order to get the call 
dependencies amongst different functions. However, most of 
these languages have a single compiler hence making it 
simple to extract the required information. This is unlike the 
C language wherein multiple compilers exist and all these 
compilers were written for some use case such as Intel’s 

C/C++ compiler was written for Intel processors to achieve 
best runtimes. 

There have been several efforts in making developers 
comfortable with analyzing large C codebases. Compiler 
specific solutions for static analysis have been present for 
several years, such as Clang Static Analyzer [3]. However, 
these tools are compiler specific and since there are many 
compilers, using any of these tools might result in 
compatibility problems. Hence the required call graph tool 
must not be dependent on a specific compiler. This paper 
discusses the usage of Doxygen [4] as one such tool which is 
scalable, almost accurate and compiler independent. It further 
discusses how the functions and function calls can be 
visualized by using Cytoscape.js [5] which is a 
state-of-the-art graph theory visualization JavaScript 
framework to enable a better viewing experience for 
developers. 

II.  RELATED WORK 

Several implementations have been developed in this field 
in order to accurately represent function call graphs. The 
early formal research into the extraction of function calls was 
achieved by D. Callahan et al. [6] which proposes an 
algorithm to extract function calls from Fortran 8x language 
which handles recursion and has a time complexity  
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dependent exponentially on the number of procedures. It also 
asserts that polynomial time complexity can be achieved by 
setting an upper bound on the number of procedures. This 
was one of the earliest algorithms which could identify both 
normal function calls as well as recursion correctly, which is 
used in modern programming languages. 

A more rigorous overview of call-graph as a graph theory 
problem was done in T. Reps et al. [7] whose focus was to 
find solutions to a large set of interprocedural dataflow 
problems in polynomial time. He also proposes that instead 
of calculating the worst-time complexity of each algorithm, it 
is better to bound the total cost of the operations performed at 
each aspect. 

An in-depth dissertation on the effect of function pointers 
on call graphs was given in G. Antoniol et al. [8] wherein it 
proposes an algorithm to identify function pointers called the 
‘points-to’ algorithm. It also provides a quantitative 
evaluation of function pointers and the key role it plays in call 
graph construction. 

An algorithm to specifically identify virtual function calls 
as well as interfaces was also proposed in X. Zhuo et al [9]. 
wherein it makes use of type flow analysis to get the call 
dependencies. This algorithm also takes less time and space 
usage when compared to points-to algorithm. However, this 
algorithm only applies to object-oriented languages. 

An elaborate framework for call graph construction was 
proposed by D. Grave et al. [10]-[11]. These papers propose a 
general parameterized algorithm which provides a detailed 
vocabulary for depicting call graph algorithms, illustrates the 
differences and similarities of different algorithms and 
investigates the design space of call graph algorithms. It also 
assesses call graph algorithms with respect to an optimizing 
compiler (Vortex compiler) and the algorithms can be 
applied to any functional language. 

An alternative method for call-graph construction was 
proposed in Y. Terashima et al. [12] wherein a tool by the 
name ‘dcgg’ was proposed which made use of DWARF2 

debugging information. This paper illustrates a method 
which combines both binary analysis and debugging 
information in order to extract function call dependencies. 
This method could extract inline functions in C code as well 
virtual function calls in C++ apart from the default functions 
present in code. 

One of the earliest tools in order to generate call graphs is 
described in G. Antoniol et al. [13] by the name ‘XOgastan’. 

It was developed as a static analysis tool which makes use of 
gcc/g++ compiler. It exploits the internal representation of 
gcc/g++ compiler which is the abstract syntax tree and 
translates it into graph exchange language representation. 
The final output is in the XML format which can be easily 
parsed with XML parsers. However, since it is compiler 
dependent it cannot be used for codebases which are not built 
on gcc/g++ compiler. 

A framework was also proposed in H. Hoogendorp [14] 
which describes the complete steps right from data extraction 
to visualization of call graphs. This was one of the first 
frameworks which accounted for scalability of the system. It 
also explains about the different ways in which visualization 
can be done. The problem with this framework is that 
compiler wrapping must be done for every compiler. This 
makes the system compiler dependent. 

Another alternative method for call graph generation was 
done in F. Zhang et al. [15] which proposes a static analysis 

method that analyses the LLVM IR (Internal representation) 
generated by compilation of source programs. This method 
was used in order to analyze the parent-child relationship in 
between threads which are created using the pthread library. 
Compiler dependency of LLVM is the drawback of this 
method. A recent and similar tool which was developed for 
static analysis which is described in P. D. Schubert et al. [16] 
by the name ‘Phasar’. Phasar is built as an extension to the 

LLVM compiler infrastructure. The analysis is done on 
LLVM IR, since solving data-flow problems on IR is easier 
than source code itself. However, this makes the 
implementation compiler dependent in nature. 

Another tool for static analysis of source code was 
proposed in M. L. Collard et al. [17] which is named as 
srcML. It is a highly scalable tool and robust tool for source 
code analysis. It converts source code into XML format by 
making use of Clang AST, hence making the tool compiler 
dependent. A similar approach for C/C++ source code is also 
stated in A. M. Bogar et al. [18] in their implementation 
MLSA wherein it is designed to provide support for multiple 
languages. MLSA is lightweight, scalable and is written as an 
island grammar (a technique used to support multiple 
languages). The C/C++ code is parsed using Clang AST 
which is again compiler dependent. 

From all the papers featured above, we see that most of the 
tools are compiler dependent. Some tools are not scalable and 
hence do not work for large codebases. In order to address 
these issues, we are making use of Doxygen which is an 
effort to document large codebases. However, the parser that 
is used in Doxygen can be exploited to extract function call 
dependencies. The proposed system also discusses a unique 
way of representing function calls using Cytoscape.js which 
is interactive, user friendly and scalable by the number of 
nodes. 

III. PROPOSED SYSTEM 

The proposed system makes use of Doxygen as its tool for 
static analysis. It can be broken down into 2 phases - 
Preprocessing phase and visualization phase. 

A. Preprocessing phase 

This phase mainly involves extraction of call dependencies 
by using Doxygen. Doxygen requires a config file called 
Doxyfile which specifies the input files that must be 
analyzed, along with the output format that should be 
generated. Doxygen supports various output formats like 
HTML, XML, Latex, SQLite etc. In this system, we will use 
SQLite [19] database since it is lightweight, reliable and 
easily portable. The steps involved in preprocessing phase are 
as follows – 

▪ Identification of C files that are used during build / 
compilation - The C files which are used to create 
final executables / images are being used as input to 
the Doxyfile. The identification can be either as 
simple as looking into all C files in the codebase or 
looking into the Make files / past execution logs and 
deriving information about the C files. Once the C 
files are identified which are used for a specific build, 
it is inserted into the Doxyfile in the INPUT tag. 

http://www.ijsce.org/
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Fig. 1. A sample Doxyfile 
 

▪ Use Doxygen to extract call dependencies - Run 
Doxygen by using the Doxyfile. A sample Doxyfile 
would have the following tags as specified in Fig. 1. 
Some additional tags such as 
LOOKUP_CACHE_SIZE, 
NUM_PROC_THREADS can be set for faster 
execution time for very large codebases. This will be 
discussed in detail in the experimental results section. 

▪ Create support for duplicate functions - Duplicate 
functions are functions with the same name and same 
arguments but are implemented more than once. This 
is usually found in codebases wherein a functionality 
has several implementations and all of them are 
equally important. However, they are compiled 
separately in different images. These functions are 
usually seen in networking codebases wherein a single 
functionality has multiple implementations and 
depending upon the use case, one function is used over 
another. However, such dependencies are not handled 
in static analysis tools and hence support needs to be 
created. This can be done as follows -  

o Identify all the functions which have the 
same name, return type and arguments. 

o Get all the caller dependencies of all the 
duplicate functions involved. 

o Insert a link between the caller dependencies 
with all the duplicate functions. 

In other words, the caller dependencies are shared 
amongst all the duplicate functions. This will make 
sure that the call graph generated will reflect all the 
dependencies of the duplicate functions. The data 
extracted by Doxygen and the SQLite database output 
is described in Fig. 2. Similarly, other fields are 
defined which indicate the properties of the member 
indexed. The table ‘xrefs’ has the information 

pertaining to call dependencies. The fields 
‘src_rowid’ and ‘dst_rowid’ are foreign keys to 

‘memberdef’ table’s ‘rowid’. A record in ‘xrefs’ table 

signifies that there is a call dependency from member 
with ID ‘src_rowid’ to member with ID ‘dst_rowid’ 

provided that both these members are functions. 
 

 
Fig. 2. Doxygen Sqlite Database 

 
This is a unique way in which nodes and edges are stored 

and this can be easily used in the visualization phase. As 
discussed earlier, the links to the duplicate functions are 
inserted to the ‘xrefs’ table and no other table is modified. 
The ‘path’ table has information about the location of the 
members indexed in ‘memberdef’. In summary, the entire 
preprocessing phase can be shown in Fig. 3. 

 
Fig. 3. Preprocessing phase 

B. Visualization phase 

The visualization phase involves using the SQLite 
database in a Node.js application. Cytoscape.js is used for 
graph visualization since it is highly optimized, scalable and 
user-friendly. The function call graph is represented by 
making use of a compound graph wherein the file in which 
the function is present is symbolized as the parent node and 
function present in the file is represented as the child node. 
This creates a sense of inclusivity of functions within files 
and is easily understandable to the developer.  

The caller and callee edges are present in between different 
functions and no edges are present in between files. 
Cytoscape.js expects JSON formatted data in order to include 
edges and nodes. Each node and edge are uniquely identified 
by its ID, hence this ID is set to the row ID in ‘memberdef’ 
table for nodes and row ID of ‘xrefs’ table for edges to make 
it unique. In order to facilitate the usage of compound graph, 
Cola extension [20] is also used along with Cytoscape.js. It is 
also used to preassign the position of nodes, without manual 
setting of positions.  

 
 
 
 

INPUT = main1.c main2.c … mainN.c 
EXTRACT_ALL = YES 
EXTRACT_PRIVATE = YES 
EXTRACT_STATIC = YES 
REFERENCES_RELATION  = YES 
REFERENCED_BY_RELATION  = YES 
LOOKUP_CACHE_SIZE = 2 
GENERATE_XML = NO 
GENERATE_HTML = NO 
GENERATE_LATEX = NO 
GENERATE_SQLITE3  = YES 
SQLITE3_OUTPUT = sqlite 
SQLITE3_RECREATE_DB = YES 
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Every node and edge are randomly positioned with a 
predefined distance amongst them in order to avoid 
overlapping. 

Interactive functionalities can be implemented by creating 
buttons on the nodes of the graph. Since Cytoscape.js uses 
canvas element to plot the nodes and edges of a graph, all 
these buttons must be plotted on top of the canvas. The 
buttons are created using the context-menus extension [21].  

The architecture of the visualization phase can be shown in 
Fig. 4. When an input such as a function name and file name 
is taken from the sidebar window, appropriate results from 
the SQLite database are extracted and given to the webview 
which uses Cytoscape.js and plots the nodes and directed 
edges on the graph. All the information transfer between the 
extension backend and the webview happens in the form of 
messages sent from application backend to webview and 
vice-versa. 

 
Fig. 4. Visualization phase 

IV. EXPERIMENT RESULTS 

The experiments were conducted in a RHEL 8 machine 
with system specifications of 8 cores, 8 GB RAM, 512 GB 
hard disk. Several validations were done in order to identify 
duplicate functions correctly. The source of errors was seen 
in unused function pointers. However, unused function 
pointers are usually considered a bad practice, but they are 
valid. An example for duplicate function is shown in Fig. 5. 
The graph represents a small codebase with 3 files – main.c, 
a.c and b.c. The file main.c has the driver function ‘main’ 

which calls a function called ‘type1’ which is present in both 

a.c and b.c.  The definition of ‘type1’ is different in both files 

and hence they call different functions. However, when the 
code is compiled, only one file is passed into compilation 
thereby having only one definition of ‘type1’ during 
compilation.  

 

 
Fig. 5. Example of duplicate functions 

Table - I: Comparison of codebases on different metrics 
Codebases Size of 

codebase 
(kLOC) 

Time taken 
to analyze 
(s) 

Output 
SQLite 
database 
(MB) 

Redis 181.118 9.861 4.4 
OpenSSL 522.121 34.607 14 
PostgreSQL 1469.177 62.677 25 
Linux 20550.393 10255.646 732 

 
A comparison was done amongst 4 codebases - Redis [22], 

OpenSSL [23], PostgreSQL [24] and Linux [25]. Table. I   
illustrate the results obtained when Doxygen was run on these 
codebases. This table indicates that smaller codebases having 
smaller number of functions generate less amount of data 
when compared to its larger counterpart which is the obvious 
norm. It also indicates that if function call dependencies are 
more in a codebase, then a lot of data is generated, hence 
taking more time. This is especially seen in Linux codebase 
since the order at which memory increases is higher than 
order at which size of the codebases increases. Higher 
variable usage is also a potential reason for large database 
output as well since Doxygen generates data for variables as 
well. 

 
Fig. 6. Time required v/s. Lookup cache size 

 

 
Fig. 7. Cache misses v/s. Lookup cache size 

 
Optimization on execution performance was also 

considered. Doxygen was not originally coded for providing 
the best runtime behavior, however efforts were made to 
bring in efficiency. Doxygen makes use of a symbol lookup 
cache while parsing the code whose sizes can be manipulated 
to bring better performance. It is controlled by the following 
tag - LOOKUP_CACHE_SIZE.  
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The values of this tag ranges from 1 to 9, which indicates 
that the size of the symbol lookup cache ranges from 217 to 
225 symbol storage. Given the codebase, an optimal number 
needs to be set to decrease execution time as well as not use 
excessive memory. The effect of lookup cache size is not 
considerable for small codebases. The graph in Fig. 6 
indicates how execution time decreases with increase in 
lookup cache size for Linux codebase. After the size of 221 
(when LOOKUP_CACHE_SIZE = 5), the number of 
symbols remains constant and further increase in size is 
wasteful. Similar experiment was also conducted on the 
symbol lookup cache misses with the lookup cache size for 
Linux codebase whose graph is indicated in Fig. 7. Both 
graphs indicate that optimal size for symbol lookup cache 
must be reached to achieve the best execution time. 

The graphs generated by using Cytoscape.js are 
represented in the form of compound graphs by using Cola 
extension. One such graph is represented in Fig. 8. It is 
observed that as the complexity of the graph and number of 
nodes increases, the time required to render the graph also 
increases since there is automatic positioning of nodes. Time 
required to render the graph also increases with increase in 
the number of extensions used. Adding buttons on top of 
nodes by using the context-menus extension slows down the 
rendering of large graphs. However, if the number of nodes is 
300-500 which is normally the number of nodes viewed by 
developers, this does not affect performance significantly. 

 

 
Fig. 8. Call graph generated for a small component of 

Redis 

V. CONCLUSION 

This paper illustrates how Doxygen can be utilized to 
generate graphs which are scalable and efficient. It highlights 
the effectiveness of using compiler-independent tools for 
generating static function call graphs and focuses on visual 
representation which is dynamic and compatible with the 
web. It also provides a way of identifying duplicate functions. 
Additionally, it also explains the use of optimizations of 
Doxygen and compares it with several codebases.  

Possible improvements such as execution performance and 
better parsing methods can be used in order to bring down 
errors. Further improvements such as real-time syncing with 
the codebases must be explored which can make the tool 
more effective for developers. 
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