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WHY IGBT ?
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The Insulated Gate Bipolar Transistor (IGBT) is widely used in power

electronics where high dynamic range control with low noise is required. When

designing power electronics circuits, SPICE simulation is used.

The accuracy and reliability of SPICE simulations determines the quality of the

design of such electronic devices. The Hefner model [1] is widely used to simulate

IGBTs.

This model is built-in to the simulation programs of the leading CAD vendors

[2]. The inability to simulate a device containing an IGBT leads to significant

difficulties in the design of circuits.
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Open source code Verilog-A from QUCS [6] have several problems for use:

- the occurrence of a convergence problem,

- the description of the temperature behavior of the model does not correspond to

the experimental data for the range from -55C to +175C.

Disadvantages 

of the source code existing 



Mathematical algorithms used in SPICE

simulations demand continuity and

smoothness of mathematical expressions [3]

1. Break of the continuity condition for

functions and their first derivatives.

The figure shows the charge behavior

function Qgd.

Causes of problems
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2. Calculation of a function of the form:

𝑊 = 1 − 𝑥 − 1,

provided that W> 0. To get real part positive values of W, you need to limit x to

values from 1 to 2.



3. Software implementation of a piecewise continuous function of 2 variables

𝐹 𝑄1 𝑥 , 𝑄2 𝑥

is a non-trivial task.

In this function algorithm chooses Q=m ax(𝑄1 𝑥 , 𝑄2 𝑥 ) and then uses the

numerical value of the maximum variable to calculate the function 𝐹 𝑄 .

An incorrect transition between the values of the input variables leads to a

discontinuity in the derivative of function. In this case, the continuity of the function

itself is preserved.

Causes of problems
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4. There is a problem with simulating IGBTs over an extended temperature range

[4,5]. The use of the temperature dependences of the original model does not

correspond to the experimental data for the temperature range from -55 oC

to +175 oC.
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1. The use of the “if” operator

requires special attention, because it is the

source of the appearance of breaks in the

Qgd function and its derivative.

Comparing code fragments of a

piecewise-smooth capacitive model where

“if” is used

Cgdj = Agd*`EPSSI/(Wgdj+`TINY);

if (Vds < Vgs - Vtd) Cgd = Coxd;

else Cgd = Coxd*Cgdj/(Coxd+Cgdj);

Qgd = Cgd*Vdg;

and the charge model, where a single expression for the Qgr variable is used (there is

no “if” operator)

Wdgj = sqrt(2.0*`Esi_spice*(Vdg + vtd)/(`QEL*nb_m));

T1 = COXD*Wdgj/(`Esi_spice*agd);

T2 = `QEL*nb_m*`Esi_spice*agd*agd/COXD;

Qdg = T2*(T1 - ln(1.0 + T1));

Qdg = Qdg - COXD*vtd;

without abnormal behavior.
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2. To eliminate the problems associated with calculating a function of the form 𝑊 =

1 − 𝑥 − 1, and to ensure that real part positive values are obtained, it is proposed to use

the procedure

MINA_MAXA(val, min, max, a),

where, val - is the current value of the variable x, min - is the minimum x limit, max - is

the maximum x limit, a - is the smoothing factor that controls the smoothness of the

transition to min and max values. The use of this procedure for smoothing the Wbcj

function is shown in the figures below.

`define MINA_MAXA(val,min,max,a) \

0.5*((0.5*(val + min + sqrt((val - min)*(val - min) + a) ) + max)\

-sqrt((0.5*(val + min + sqrt((val - min)*(val - min) + a)) - max)\

*(0.5*(val + min + sqrt((val - min)*(val - min) + a)) - max) + a))
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Function Wbcj.

Derivative Wbcj
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3. The problem of obtaining the continuous derivative of a piecewise linear function

has been known for a long time. Its solution is based on the condition of equality of the

function and its derivative to the left and right at the transition point xo:

𝐹1 ቚ𝑥
𝑥<𝑥0

= 𝐹2 ቚ𝑥
𝑥≥𝑥0

, 𝐹1
′ ቚ𝑥

𝑥<𝑥0
= 𝐹2

′ ቚ𝑥
𝑥≥𝑥0

.

In our case, when programming a piecewise continuous function of 2-variables, the

transition point must be determined dynamically at runtime (the position of the point x0 is

not predefined).

With mathematical smoothing, it is necessary to perform a smooth transition from the

maximum value on the “right” to another maximum value on the “left”. To do this, select

a function so that the following conditions are met:

𝐹 𝑄1 𝑥 , 𝑄2 𝑥 =

lim
𝑥>𝑥0

𝐹 𝑄1 𝑥 ,𝑄2 𝑥 = 𝑄2 𝑥

lim
𝑥<𝑥0

𝐹 𝑄1 𝑥 , 𝑄2 𝑥 = 𝑄1 𝑥

𝐹 𝑄1 𝑥 , 𝑄2 𝑥 = 𝑄, 𝑤ℎ𝑒𝑛 𝑄1 𝑥0 = 𝑄2 𝑥0 = 𝑄
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To smooth the function of 2 variables, it is proposed to use the expression below:

𝐹 𝑥 = 𝐹 𝑄1 𝑥 , 𝑄2 𝑥 =
𝑄1
𝑛+1 𝑥 + 𝑄2

𝑛+1 𝑥

𝑄1
𝑛 𝑥 + 𝑄2

𝑛 𝑥
,

where n – even. If the values of the function Q1(x) on the (-∞, xo) are greater than the

function Q2(x), on the (xo, +∞) or vice versa Q2(x) > Q1(x), then we obtain the desired

result satisfying conditions above. The function is applicable if Q2(x) and Q1(x) both

have either positive or negative values at the same time:

lim
𝑥→+∞

𝑄1
3 𝑥 + 𝑄2

3 𝑥

𝑄1
2 𝑥 + 𝑄2

2 𝑥
= 𝑄2 𝑥 , 𝑥 > 𝑥0,

lim
𝑥→−∞

𝑄1
3 𝑥 + 𝑄2

3 𝑥

𝑄1
2 𝑥 + 𝑄2

2 𝑥
= 𝑄1 𝑥 , 𝑥 < 𝑥0.

If the values of the function Q2(x) or Q1(x) reverse the sign, then the expression 

requires additional modification.
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Let Q1(x) = 1 + x, Q2(x) = 1 - x, x = [-1, 1].

The program implements the following

algorithm:

𝑆 = 𝑆 𝑥 = ቊ
𝑄2 𝑥 , 𝑥 < 0

𝑄1 𝑥 , 𝑥 ≥ 0

The plot of S(x) (black line) – is a

piecewise continuous function that always has a

discontinuity in the derivative at the point x=0.

The derivative value changes from -1 to +1.

When replacing the original function S(x) with

F(x), we obtain a smooth derivative with a

slight deviation of the values of the function

near the break point. The deviation is regulated

by the exponent n. In the figures, the green line

corresponds to n = 2, the orange line

corresponds to n = 4.
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Consider the behavior of the

model variables QQ, Qdop, Q_old, Q.

Original value of Q_old (green

line) calculate like maximum value

between the input variables QQ(red

line) and Qdop (lilac line). The new

variable Q was calculated at two

values of the exponent n = 2 and n =

4. It can be seen from the Figures 6a

that at n = 2 the plot of the variable Q

(blue line) deviates more strongly near

the transition point from the line

Q_old than the line Q for case n = 4

(magenta line). Analyzing the

behavior of the derivatives, it can be

noted that dQ/dt at n = 2 (blue line)

smoother than at n = 4 (magenta line).
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4. The Hefner model uses the following physical characteristics to describe the thermal

properties of silicon [8].

𝜑𝑡0 =
𝑘∙𝑇0

𝑞
Thermal voltage at T0=27℃,

𝜑𝑡 =
𝑘∙𝑇

𝑞
Thermal voltage,

𝐸𝑔 𝑇0 = 1.16 −
7.02×10−4∙𝑇0

2

𝑇0+1108
Band gap at T0=27℃,

𝐸𝑔 𝑇 = 1.16 −
7.02×10−4∙𝑇2

𝑇+1108
Band gap,

𝑛𝑖 = 1.45 × 1010 ∙
𝑇

𝑇0

1.5
∙ 𝑒 Τ𝐸𝑔𝑡0 𝜑𝑡0− Τ𝐸𝑔𝑡 𝜑𝑡 Intrinsic carrier concentration,

𝜇𝑛 𝑇 = 𝜇𝑛 ∙
𝑇0

𝑇

2.5
Electron mobility,

𝜇𝑝 𝑇 = 𝜇𝑝 ∙
𝑇0

𝑇

2.5
Hole mobility,

𝐵𝑉𝑘𝑡 = 5.34 × 1013 ∙
𝑇

𝑇0

0.35
Break-down voltage coefficien,

𝜏 𝑇 = 𝜏 ∙
𝑇

𝑇0

𝜏1
Lifetime,

.
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To describe the temperature behavior of the I-V characteristic of a transistor,

expressions are used:

𝐽𝑠𝑛𝑒 𝑇 =
𝐽𝑠𝑛𝑒∙𝐴∙

𝑇

𝑇0

𝐽𝑠𝑛𝑒1

𝑒
14000∙

1
𝑇
−
1
𝑇0

Emitter saturation current for electrons,

𝑉𝑇 𝑇 = 𝑉𝑇 + 𝑉𝑇1 ∙ 𝑇 − 𝑇0 Threshold voltage,

𝐾𝑝 𝑇 = 𝐾𝑝 ∙
𝑇0

𝑇

𝐾𝑝1
Transconductance,

where 𝜏1, Jsne1, VT1, Kp1 – temperature coefficients.

For a more accurate IGBT simulation over a temperature range from -550С to

+1750С the above system of equations has been improved. So the expressions for ni,

𝜇𝑛 𝑇 , 𝜇𝑝 𝑇 и 𝜏 𝑇 replaced with:

𝑛𝑖 = 1.45 × 1010 ∙
𝑇

𝑇0

𝑛𝑖1

∙ 𝑒 Τ𝐸𝑔𝑡0 𝜑𝑡0− Τ𝐸𝑔𝑡 𝜑𝑡 𝑛𝑖2 ,

𝜇𝑛 𝑇 = 𝜇𝑛 ∙ 1 + 𝜇𝑛1 ∙ 𝑇 − 𝑇0 + 𝜇𝑛2 ∙ 𝑇 − 𝑇0
2 ,

𝜇𝑝 𝑇 = 𝜇𝑝 ∙∙ 1 + 𝜇𝑝1 ∙ 𝑇 − 𝑇0 + 𝜇𝑝2 ∙ 𝑇 − 𝑇0
2 ,

𝜏 𝑇 = 𝜏 ∙ 1 + 𝜏1 ∙ 𝑇 − 𝑇0 + 𝜏2 ∙ 𝑇 − 𝑇0
2 ,

where 𝑛𝑖1, 𝑛𝑖2, 𝜇𝑛1, 𝜇𝑛2, 𝜇𝑝1, 𝜇𝑝2 and 𝜏2 – additional temperature coefficients. 
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a)                                                                            b)

Results of comparison of experimental [7] and model characteristics in a wide 

temperature range. a) linear, b) semilogarithmic scales.



Summary

16

The improved IGBT model is based on the well-known Hefner model. It is suitable for both

transient (.TRAN) simulation and .DC circuit design. The identified convergence problem was

eliminated in the model. The model allows for circuit simulation of electronic circuits containing

IGBTs in a wide temperature range from −55°C to +175°C.

New points are:

- The use of a specially developed function of smoothing of 2 variables. This function meets the

requirement of dynamically determining the inflection point and allows you to control the

amount of smoothing by changing the exponent.

- The use of temperature dependences that differ from the known expressions makes it possible

to increase the accuracy of modeling circuits in a wide temperature range.

- The use of a charge model allows one to describe a single continuous function Qgd for the

entire range of input values.

The improved model embedded into the SymSpice circuit simulation program. The study was

supported by The Foundation for Assistance to Small Innovative Enterprises (FASIE).
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Thank you for attention!
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