UNIVERSITY OF COPENHAGEN Faculty of science

Use of near infrared spectroscopy for the assessment of waste wood quality to energy use

Manuela Mancini, Åsmund Rinnan, Giuseppe Toscano

Introduction in the waste wood world

Waste wood: what is it?

Study of the waste wood variability and optimal sampling procedure

Reliable and accurate analytical results

Prediction of the energy parameters of waste wood material

Sampling procedure (1)

EN-15442:2011 standard (CEN, 2011) with some modifications

Some numbers:

- **2 days** of sampling (February 2020)
- every hour deviation of WW material from the production stream in an external unloading tank
- 16 lots
- 24 increments of 10 L material for each lot

Sampling procedure (2)

Lab analysis

Technical standard UNI 15443

Technical standard ISO 18122

Technical standard ISO 18125

Net calorific value

NIR spectra (DT-Lab)

Moisure content Net calorific value Lab analysis **Negative correlation** 12041.5 Mean 29.2 r = -0.99Std 8.6 1779.7 Min 15.2 8596 46.1 15328 Max 30.8 Range 6732 $imes 10^4$ B) 1.5 A) 45 쿡 Å ₽ 40 Moisture(%) 30 52 Å Ā 20 Ţ 0.9 ·⊦₽ 11 12 13 14 15 16 2 3 1 5 9 10 4 6 8 2 14 15 16 3 12 13 1 8 9 10 11 Δ 5 6 Number of lots Number of lots

Moisture content

Net calorific value

PCA of DT-Lab

AgEng 2©21

PCA of DT-Sam

PCA of DT-Sam

Prediction of moisture content

Indices	Moisture prediction
RMSECV	1.34%
R ²	0.98
RPD	6.82

RPD > 5
any quality control applications

Prediction of net calorific value 🧼

Indices	Net calorific value prediction
RMSECV	414.65 J/g
R ²	0.94
RPD	4.29

3 < RPD < 5 Screening applications

Test the performance of the models

 $\text{DT-Sam}_{\text{Tot}} \text{ and } \text{DT-Sam}_{\text{Red}} \text{ as test sets}$

Four increments, and the corresponding

replicates and scans, are able to describe the variability between the lots

Linear regression

coefficient of multiple correlation $R^2 = 0.97$

NCV
$$(J g^{-1}) = a + b * M (\%)$$

b = -205.195

Conclusions

1

The variation in material composition has been investigated using PCA

✓ Samples are located in the scores space based on their **moisture content/net calorific value**

✓ The size of the confidence ellipses is proportionate to the relative variability within each lot

✓ Four increments, and the corresponding replicates and scans are able to describe the variability between the lots.

Prediction of the energy parameters of waste wood material

- ✓ NIRS allows the rapid assessment of the waste wood and of the suitability of the material for energy applications.
- ✓ A linear regression can be used for predicting net calorific value from moisture content, improving the quality control and the energy valorization of the waste wood material.

Acknoledgments

- The project leading to this application has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 838560
- Saviola panel board company

WoodSpec

The **Eco-Ethical** Company

Thank you!!

