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Review on 3D Mapping and Segmentation 
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Abstract: The deployment of a robot in a remote environment 

is a field of research that has huge applications. The robotic 

system must have the capability of sensing its surroundings and 

being aware of what it is around. We concluded two key tasks for 

this purpose, which are 3D mapping and segmentation. This 

paper shows a comprehensive review of the different 3D mapping 

and segmentation methods. Mapping techniques include those 

using RGB images, RGBD images and LIDAR. Segmentation 

techniques include PointNet, PointNet++, 3D semantic and 

instance segmentation and joint instance segmentation. We also 

describe two end-to-end approaches for mapping and 

segmentation. These methods are reviewed elaborately, 

comparisons are drawn between them, challenges are presented 

and future directions in addressing these challenges are pointed 

out.   

Keywords: 3D Mapping, JSNet, Segmentation, SLAM, Sfm, 

PointNet  

I. INTRODUCTION 

The robot in a remote environment has to be aware of its 

surroundings. It has to build a detailed 3D map of the 

environment and perform semantic 3D point cloud 

computing. We believe that this is important for the robot to 

get a high-level understanding of the surrounding objects 

and to make context-aware decisions. This has numerous 

applications in the field of remote healthcare, disaster relief, 

personal assistants and infrastructure mapping.  

To achieve robot interaction in a remote environment, the 

robot must be capable of sensing its surroundings, so that it 

can relay the information to another location. There is 

increasing interest in adding high-level knowledge to many 

robotics applications in recent years to make robots more 

capable, even ready to react to unexpected events. To this 

end, this paper deals with methods of building a 3D map 

based on the sensor data and performing semantic 

segmentation of the acquired point cloud. 

3D mapping refers to creating a 3D environment model 

that depicts the shape and presence of real-world objects in 

the form of a point cloud. We deal with 3D mapping 

methods for 3 kinds of inputs, which are RGB images,  

RGB-D images and the input from LIDAR.  
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Methods using RGB mainly involve SfM (Structure from 

Motion) and SLAM (Simultaneous Localisation and 

Mapping) and another method uses a semantically guided 

hierarchical SfM approach for 3D reconstruction. As for 

RGB-D input, we discuss Kinect Fusion as illustrated in [6] 

and another method which estimates camera pose directly 

from the SDF using the information it encodes in each voxel 

as described in [9]. The method with the LIDAR input 

constructs a 3D model by processing high-density LIDAR 

data points. We do not cover techniques of 3D mapping for 

dynamic environments or those environments which involve 

non-rigid or deformable objects.  

With the growth of Neural Networks, the segmentation 

and object detection in 2D images has made remarkable 

progress. This advancement in the identification and 

segmentation of 2D artefacts has encouraged the extension of 

research to the 3D environment. Older methods of predicting 

bounding boxes for 3D objects were performed with a single 

input RGB-D frame with handcrafted feature architecture and 

then extended the technique to work on learnt features. 

Further path requires the use of RGB frame data to increase 

the accuracy of classification of detected objects. But the 

proposed model does the combined learning between RGB 

and geometry for explicit spatial mapping. Frustum 

PointNet[2] uses an alternative approach, where 

identification is achieved by a 3D image and then projected 

back onto 3D, using which the final bounding boxes are 

optimized. Their SGPN[3] approach is based on PointNet++ 

variation on semantic segmentation. They propose 

segmentation of instances as a clustering problem through 

the implementation of a similarity matrix prediction similar 

to the concept inspired by panoptic segmentation on a 

semantically segmented point cloud. Although deep learning 

has been effectively utilized for RGB images, the feature 

learning capabilities of 3D point clouds with irregular data 

structures still pose a lot of challenges. PointNet[11] has 

recently become one of the first methods to specifically apply 

neural networks to point clouds. This uses mutual multi-layer 

perceptron and max-pooling to learn from unordered point 

sets profound features. PointNet, however, is having trouble 

catching local features. PointNet++[12] dealt with this 

downside with a hierarchical neural network. The max-

pooling operation is a crucial structure for both PointNet and 

its extended version PointNet++ to extract features from 

point cloud. But it only retains the best activation of feature 

maps on a local or global area, which can cause some useful 

detailed information to be lost for semantic segmentation 

tasks. While in 3D-SIS[13], they specifically map all multi-

view RGB inputs with 3D geometry to conclude end-to-end 

segmentation of the 3D instance together. To the best of our 

understanding, this is the first paper which reviews 3D 

mapping and segmentation,  
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the two key initial tasks for a robot in a remote 

environment. 

The rest of the paper is organised as follows. Chapter 2 

summarises the various methods on 3D Mapping and 

Segmentation, Chapter 3 summaries the comparisons of 

different methods, their evaluations and the challenges 

involved. Chapter 4 speaks of the future scope of 3D 

Mapping, Segmentation and the end to end methods, 

Chapter 5 is the conclusion for the review conducted and 

Chapter 6 has all the references for this review paper. 

II. METHOD OVERVIEW 

A. 3D Mapping Methods 

1) Using RGB images 

There are several techniques for 3D mapping using RGB 

images using SfM (Structure from Motion). SfM is a 

photogrammetric imaging technique for estimating 3D 

models from 2D image sequences. Traditional methods 

which use SfM are limited by their computational 

efficiency. They also have the drawback that the 3D map 

cannot be constructed in real-time and it is difficult to obtain 

the real-scale tool. [8] uses a combination of SLAM 

(Simultaneous Localisation and Mapping) and SfM 

(Structure from Motion) to eliminate this drawback. The key 

idea is to use SfM to generate a local photo map with no 

real-scale followed by SLAM for  estimating the 3D 

locations among the local maps. SLAM generates a map that 

is globally consistent by calculating the real-scale. This kind 

of approach allows learning on the fly, online mapping as 

well. This is illustrated in Fig. 1. 

 
Fig 1.Local map generation using SfM and globally 

consistent mapping using SLAM in 3D photorealistic 

mapping with SfM and SLAM method  

The SfM consists of four procedures. They are two view 

triangulation, RANSAC refinement, image stitching and 

texture mapping. Each of the local maps undergoes these 

procedures. The local maps generated have their coordinates 

which do not contain the global information. When the local 

maps are being built, 3D SLAM procedures are integrated in 

such a way that the translation and rotation of the robot used 

is embedded into the two-view triangulation procedure. This 

is done for re-scaling each local map into a real one. 

 
Fig 2. Automatically generated 3D photorealistic map 

using SfM and SLAM 

The most recent method at the time of writing this paper is 

[7] which uses an approach which is a semantically guided 

one. This is the hierarchical SfM approach for indoor 3D 

reconstruction. This method integrates into one single 

pipeline- clustering of images, segmentation of objects, and 

reconstruction of the 3D point model. The approach performs 

SfM in an annotated hierarchical manner with which the 

cluttered images are classified independently followed by 

reconstruction along a hierarchical scene tree. This improves 

the efficiency of computation and also balances the error 

distribution.  

 

 
Fig 3. Annotated hierarchical SfM approach workflow 

The 3 steps involved in this approach are: 

● Extraction of Semantic Information and Classification of 

Images 

The Fisher vector encoding based on Bag of Visual 

Words (BOVW) and a popular classification algorithm,  

Support Vector Machine (SVM) is combined to 

acknowledge and classify the images to characterise the 

indoor scenes features for classification more robustly.  
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The BOVW algorithm groups or clusters features which are 

similar, as a visible word and then counts the number of 

times every work occurs within the image. This makes the 

feature vector needed to improve the semantic level. The 

result of this stage is a well-categorized image set , which 

represents the diverse indoor objects. 

● Object-Oriented Partial Scene Reconstruction 

With the well-classified images of the scene, the next 

step reconstructs the object models separately from the 

classified images by exploiting the SfM algorithm. This 

stage uses a framework consisting of object recognition, 

joint semantic annotation and reconstruction. 

● Point Cloud Registration and Optimization 

After obtaining the separate object models in the 

previous step, the separate point cloud models of the 

acquired indoor objects are merged using the RGPA 

algorithm into one complete indoor model. 

 
Fig 4. Reconstructed model of a meeting room using 

hierarchical SfM method 

2) Using RGB-D images 

[10] made it possible to reconstruct surfaces by 

integrating groups of aligned range images. The volumetric 

representation consists of a cumulative weighted signed 

distance function (SDF). Each image was scan-converted to 

a distance function and then combined with the data already 

acquired using an additive scheme. This paved the way for 

real-time 3D reconstruction using a stream of RGBD 

images.  

Many methods use SDFs. One such method is [6] which 

uses SDFs as a non-parametric representation to fuse partial 

depth scans. KinectFusion uses a low-cost depth camera for 

real-time mapping of arbitrary indoor scenes. The incoming 

RGBD stream is used to perform real-time dense SLAM 

which produces a consistent 3D scene in an incremental 

manner. Simultaneously, the camera’s pose is tracked using 

all of the depth data in each frame.  

The 4 components which make up this system are: 

● Surface measurement: The raw depth measurements are 

used to generate a dense vertex map and normal map 

pyramid. This is a pre-processing stage.  

● Surface reconstruction update: The surface 

measurement is fused into the scene model maintained 

with a truncated signed distance function (TSDF) 

representation, given the pose estimated by making use 

of the depth data from a new frame. This is a global 

scene fusion process. 

● Surface prediction: The loop between localisation and 

mapping is closed by tracking the live depth frame 

against the globally fused model. This is done by a 

rendering technique called raycasting. The SDF is ray-

casted into the estimated frame in order to provide a 

dense surface prediction.  

● Sensor pose estimation: This is the localisation part 

where the 6DOF pose of the camera is tracked using a 

multi-scale ICP algorithm.  

These 4 components are illustrated in Fig. 5 

 

 
Fig 5. Workflow of KinectFusion 

 

Another method makes use of the fact that the SDF 

already encodes the distance of each voxel to the surface. As 

a result, this method illustrated in [9] also uses dense depth 

images as input and SDF for geometric representation but 

does not use ICP to achieve real-time performance. The 

camera pose is optimised directly on the SDF by minimizing 

the error of depth images on the SDF. This allows the pose 

optimization to be carried out quickly. The camera poses are 

iteratively estimated and the RDG-G data is integrated in the 

voxel grid to get a detailed reconstruction of an indoor 

environment.  

3) Using LIDAR: 

LIDAR comprises high frequency which is very precise 

especially for short-distance measurement. LIDAR has an 

advantage over Radio Detection and Ranging (RADAR) and 

Sound Navigation and Ranging (SONAR) in speed, density 

and accuracy of data. LIDAR can also be used to prepare 

Digital Elevation Models (DEM) with a precision of 0.1 m. 

LIDAR is fixed on a servo motor which enables it to move 

in all the 3-dimensions, therefore, LIDAR calculates the 

distance from a stationary point. The servo motor of the  

LIDAR is programmed to move so that the elevation angle 

from the other motor will shift from 0-180 degree with a 5 

degree difference. After receiving all the values of LIDAR, 

the code is run to process and change the values to 3D points 

X, Y and Z [1]. 

The values received from LIDAR are 

 
the code converts the value into 3D points x, y, z using the 

formula: 
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Fig 6. Shows the real box picture[1]. 

 

3D Mapping is used in the areas of farming, optimisation 

of wind turbines and rescue. 3D- Mapping is very reliable 

and cost-effective using this method[1]. LIDAR is installed 

on a servo motor which makes a 3D map of the front 

hemisphere of the box. High-density LIDAR data points that 

plot high-resolution mapping of the 3D hemisphere are 

processed. The sharpness of the plots can be reduced further 

by interpolating the data points. 

 
Fig 7. shows the front-top view after filtration [1]. 

B. 3D Segmentation Methods 

1) PointNet 

 
Fig 8. PointNet Applications 

 

PointNet is a deep net architecture suitable for 3D 

consumption of unordered point sets without rendering or 

voxelization. It is a cohesive architecture that learns features 

from global as well as local points, providing a quick, 

powerful and active approach to various 3D detection tasks. 

PointNet takes point clouds directly as input and assigns 

class labels for the whole point cloud or per point segment 

or section labels for each input point. They train the network 

to perform 3D instance and semantic segmentation and 

semantic scene parsing tasks. They provide a detailed 

empirical and theoretical study of our method's stability and 

effectiveness. And illustrate the 3D simulated functions of 

the selected neurons on the net and establish intuitive 

explanations for their output. 

The key approach of the model is the use of a single 

symmetric function and max pooling, to deal with unordered 

input collection. Effectively the network learns a series of 

optimization functions that pick points of the point cloud that 

are important or insightful and encode the reason for the 

selection. The network's final completely connected layers 

aggregate these learned optimal values for the entire shape 

into the global descriptor or are used to predict per point 

labels. Our input format is simple to add to stiff or affine 

transformations, as each point is independently transformed. 

Further, they added a data-dependent spatial transformer 

network that tries to canonize the data before it is processed 

by the PointNet to further boost the performance. 

Fig 9. PointNet architecture. 

 

The network that performs classification takes input as n 

points, applies input and performs feature transformations, 

and then aggregates point features by max pooling. The 

performance is the score of classification for groups m. The 

segmentation network is an extension of the ranking network. 

It concatenates global and local characteristics per point 

scores and outputs. Mlp stands for multilayer perceptron, its 

layer sizes are the numbers in the frame. Batchnorm is 

employed with ReLU for all layers. Dropout layers in the 

classification system are used for the final mlp. 

2) PointNet++ 

 
 Fig 10. PointNet++ architecture. 

 

pointNet++ is a novel deep learning network which 

processes in a hierarchical fashion a set of points sampled in 

a metric space (2D points are used for this example in 

Euclidean space). PointNet++ overall concept is clear. We 

initially partition the set of points by the distance metric of 

the underlying space into overlapping local regions. As with 

CNNs, we extract local characteristics by capturing of fine 

geometric structures from small vicinities; these local 

characteristics are then grouped into larger units and 

processed to create higher-level 

characteristics.  
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This cycle is repeated until we get all point set apps. 

3) 3D-Semantic and Instance segmentation(3D-SIS) 

The provided architecture is the first attempt on using 

both 2D features from RGB images and 3D features from 

point cloud for end-to-end learning to perform 3D 

segmentation and detecting the object bounding boxes. 3D-

SIS is a fully convolutional model, allowing to effectively 

deduce prediction of huge 3D areas in a single shot. In 

contrast to other methods, they specifically map all multi-

view RGB inputs with 3D features to conclude end-to-end 

segmentation of the 3D instance together. 

 

 Fig 11. 3D-SIS network architecture. 

 

Model takes the input as the 3D Map and the 

corresponding RGB frames. Set of 2D convolutions are 

being applied on the RGB frames to extract the 2D features 

i.e, they use ENet architecture for 2D semantic segmentation 

and then they are back-projected into the voxel grid. On the 

other hand, 3D convolutions operate on the scanned 3D 

point cloud, where the features are jointly learned from both 

geometry and RGB data. These generated features are used 

to identify the class labels and their associated bounding 

boxes are generated by processing through a 3D- Region 

Proposal Network and prediction of done class labels is 

done using a 3D-Region of interest network with a set of 

pooling layers for each object. Further for each identified 

object and their corresponding characteristics from both 2D 

colour and 3D geometry are fed into a per-voxel instance 

mask prediction network where the training is performed in 

an end-to-end fashion. 

4) Joint Instance and semantic segmentation of 3D point 

clouds(JSNet) 

JSNet consists of a more efficient Point Cloud Feature 

Fusion(PCFF) module to produce more discriminative 

features and enhance point prediction accuracy.  They 

propose a novel model module that is joint instance and 

semantic segmentation(JISS) to facilitate mutual 

segmentation of instances and semantics. This module 

further increases the accuracy during the training phase with 

reasonable GPU memory usage. They have achieved good 

results on S3DIS dataset[14] along with the major 

improvements on the segmentation of the 3D instances. 

Additionally, ShapeNet dataset experiments suggest that 

JSNet can achieve adequate performance for the task of 

component segmentation.  

 

  
Fig 12. JSNet network 

 

The entire network consists of four main components 

including a common encoder, two parallel decoders, one 

point cloud feature fusion module for each decoder, the last 

element being a joint segmentation module. One aims to 

extract semantic features for each point for the two parallel 

divisions, while the other is a segmentation job. For example, 

we can directly use PointNet++ or PointConv as our 

backbone network by duplicating a decoder explicitly for the 

function encoder and two decoders as the two decoders have 

the same structure. however, for semantic segmentation, the 

PointNet++ can lose most of the detailed information thanks 

to max-pooling operation and even the PointConv uses 

expensive GPU memory during the training process. They 

are combining the PointNet++ and PointConv in this work to 

create a more efficient backbone network with reasonable 

memory costs. The backbone encoder is built by 

concatenating a PointNet++ set abstraction module and three 

PointConv encoding layers of apps. Likewise, the  

 

decoders are composed of PointConv's three profound 

decoding layers followed by a PointNet++ function 

propagation module. 

C. End to End Methods of Mapping and Segmentation 

1) 3D Semantic Mapping with Convolutional Neural 

Networks (CNN) 

To analyse an environment thoroughly and perform tasks 

as simple as fetching an object needs knowledge of both 

what the object is and where it is located. It would be useful 

to be able to fetch semantic information from a map by 

simply offering a database of written tasks about the 

semantics of a map that was earlier created. The geometric 

information from a SLAM (simultaneous localisation and 

Mapping) system ElasticFusion is combined with semantic 

segmentation using CNN[5].  

SLAM system is used to build the 3D map from the 

corresponding 2D frames. It helps to combine the CNN's 

predictions into a detailed segmented map as seen in Fig 13. 
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Fig 13. a detailed reconstruction of a video in the left 

[5] and semantically annotated map on the right. 

 

The map's structure also offers valuable knowledge that 

can be used to control the final predictions efficiently. The 

system accuracy is tested on the NYU v2 data and 

demonstrated that using the information from an unlabeled 

video, therefore the segmentation efficiency is bosted using 

only one frame. 

This suggests that not only does the SLAM provide an 

instantly usable semantic 3D map, it also suggests that most 

of the 2D individual frame semantic segmentation methods 

may be improved in efficiency if used with SLAM[5]. 

Through improvising on the dataset to complete room 

reconstruction, it was discovered that the device was 

especially well equipped for lengthier scans with a relatively 

larger range of viewpoints.  

SemanticFusion  is composed of three steps shown in fig 14:  

1. Real-time SLAM system ElasticFusion,  

2. Convolutional Neural Network 

3. Bayesian update scheme  

 
Fig 14. Map is constructed from images using SLAM. 

By Bayesian updates, these maps are merged into a 

detailed semantic map[5]. 

 

The SLAM method provides a widely compatible map of 

the merged surface elements, then CNN obtains a 2D image 

(RGBD) and produces a set of probabilities for each pixel 

class. Ultimately, a Bayesian update scheme for all surfel 

measure the class probability distribution and uses SLAM to 

refine those probabilities based on predictions by CNN's. 

 

 

2) 3D Reconstruction and Class Segmentation 

In this method, the simultaneous segmentation of images 

and 3D reconstruction is developed as a combined 

volumetric inference process over multiple labels, using 

class-specific smoothness assumptions to improve the 

efficiency of reconstruction. The method uses a parametric 

representation for the all smoothness priors, that results in a 

condensed representation for the priors and allows the 

underlying parameters to be modified simultaneously from 

training data.  

As a volumetric approach operating on a standard polygon 

mesh grid, this method shares the limitations with many 

other volumetric methods regarding spatial resolution.  

The method proposes to study the likelihoods of 

appearance and class-specific geometry priors in an initial 

step for surface orientations of the training data[6]. The 

priors are used to identify pairwise and individual potentials 

of segmentation framework, complementing that of a 

calculated evidence acquired from depth maps. Optimizing 

the label assignment in its volume, picture-based 

probabilities, machine stereo depth maps, and priors 

communicate with each other, resulting in improved detailed 

reconstruction and labelling. 

III. COMPARISONS AND EVALUATIONS 

The 3D photorealistic method which uses SfM and SLAM 

has the main advantage that it can run on the fly, that is, 

online. The execution time of the method was calculated to 

be 3.92 sec when it was run on 11 sets of data using an Intel 

i7 870 CPU. This execution time is just enough for real-time 

implementation. The main challenge is to speed-up this 

process to the microsecond level.  

The annotated hierarchical SfM method is computationally 

efficient compared to traditional incremental SfM methods 

which involve exhaustive pairwise image matching. The 

State  Key  Laboratory of Information Engineering in 

Surveying, Mapping and Remote Sensing (LIESMARS)  

building is used as the dataset. Three bag-of-words based 

SVM classification methods were run on this dataset and the 

results are shown in Table 1.  

Table 1: Results of the three classification methods 

 
 

The proposed method was also compared to the state of 

the art VisualSfm (VSFM) method. The results are shown in 

Table 2. 

 

Table 2. Comparison of hierarchical SfM to VSFM 

 
 

 

 

 



International Journal of Engineering and Advanced Technology (IJEAT) 

ISSN: 2249 – 8958, Volume-9 Issue-6, August 2020 

28 

 

Published By: 

Blue Eyes Intelligence Engineering 

and Sciences Publication  

Retrieval Number: E1020069520/2020©BEIESP 

DOI: 10.35940/ijeat.E1020.089620 

The main challenge of the hierarchical SfM is that it 

cannot be used for real-time purposes. Also,this method 

makes it difficult to reclaim partially occluded models. 

With RGB-D images as input, KinectFusion method was run 

with different voxel resolutions as the sensor reconstructs in 

a volume of a 3-metre cube. The time taken is illustrated Fig 

15. 

 

 
Fig 15.  Real-time cumulative timing results of 

KinectFusion over a range of resolutions 

 

The challenge with KinectFusion is the reconstruction of 

large scale models such as the interior of a whole building. 

In such large models, another important challenge is to 

efficiently perform automatic relocalisation when the 

tracking has failed.  

 

The 3D reconstruction using signed-distance functions 

method does not use the ICP algorithm. An evaluation of 

benchmark data has shown that this method is more accurate 

and robust than the ICP algorithm used by KinectFusion. It 

also provides a similar accuracy at a much higher speed 

when compared to bundle adjustment methods such as 

RGB-D SLAM.  

Table 3. Semantic Segmentation results on ShapeNet 

dataset 

Method mIoU(mean 

intersection over union) 

PointNet[11] 83.7 

PointNet++[12] 84.9 

JSNet 85.8 

 

The experimental results show that fusing the 

characteristics of different layers(JSNet) could increase the 

precision of segmentation due to the richer features after 

fusion. As for the only instance fusion of semantic 

segmentation and only segmentation of semantic awareness 

instances, the results indicate that better instance predictions 

could allocate more accurate category labels to semantic 

branches, which could boost semantic efficiency. 

Table 4. Segmentation results on ScanNet  Dataset 

Method Avg(Mean average 

Precision) 

Mask R-CNN[15] 5.8 

SGPN[3] 14.3 

R-PoinNet 30.6 

3D-SIS[13] 36.2 

 

By comparing the above results 3D-SIS outperforms the 

previous(Mask R-CNN) or current state of art 

methods(PointNet) on ScanNetV2 3D semantic instance 

benchmark. With an IoU threshold of 0.25 over 23 groups 

have been tested by mean average accuracy. Therefore, joint 

colour-geometry function helps us to achieve more accurate 

performance in segmentation instances. 

IV. FUTURE SCOPE 

There is a lot of scope for improvement for 3D mapping 

methods. The joint solution using SfM and SLAM can focus 

on genuine real-time implementation using either parallel 

computing or system-on-chip technique. The method can 

also be extended to apply to an environment with non-plane 

geometric objects. The hierarchical SfM method can look at 

combining geometric and semantic priors to determine the 

dense point cloud and recover partially occluded models. 

Extension of the dataset size and employing improved, more 

robust feature extraction methods can lead to better model 

quality. KinectFusion can be extended for large scale models 

by using a sub-mapping framework. For 3D reconstruction 

using SDFs, colour information can be included for camera 

tracking and methods with more efficient representation of 

3D geometry can be explored. 3D Mapping with LIDAR to 

be mounted on a drone for military purposes, It can be used 

in self-driving vehicles to create a detailed map of the 

surroundings. Global System for Mobile Communications 

can use the method for the places inaccessible to humans, for 

example in case of an earthquake. 

As for semantic segmentation, the models provided above 

are just a starting point for obtaining 3D semantic 

segmentation from 3D point clouds of high quality, which is 

a common issue for RGB-D reconstructed models. The 

problem of semantic segmentation in the 3D environment is 

distant from being solved, and the semantic instance of 3D 

segmentation is in its infancy as well.There are also specific 

questions about the representation of the scene to realize 3D 

CNN models, and how to deal with mixed sparse-dense 

representations of data. We also look into the enormous 

possibility for integrating multi-modal characteristics in 3D 

reconstruction for generative assignments, such as scene 

completion and texturing. For the end to end methods, the 

improvement can be achieved with longer trajectories, which 

will result in better labelling. As with the volumetric 

approach operating on a standard polygon mesh grid, the 

system faces the limitations of spatial resolution, adaptive 

representation of this data may be a potential solution, for a 

finer segmentation there should be an increase in the number 

of object categories.  
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V. CONCLUSIONS 

The paper establishes the two key tasks for a robot in a 

remote environment to sense its surroundings and be aware 

of its environment, which are mapping in 3D and 

segmentation. We summarize the important methods for 

mapping and segmentation separately along with two end-

to-end methods which do the joint task of mapping and 

segmentation. The results of each method are displayed and 

comparisons are drawn. Each method’s evaluation is 

summarised and challenges involved are mentioned. The 

future directions to overcome these challenges are also 

suggested. 
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