
International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-10 Issue-2, December 2020

224

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.B20971210220
DOI:10.35940/ijeat.B2097.1210220
Journal Website: www.ijeat.org



Abstract: This paper proposes an improved data compression
technique compared to existing Lempel-Ziv-Welch (LZW)
algorithm. LZW is a dictionary-updation based compression
technique which stores elements from the data in the form of
codes and uses them when those strings recur again. When the
dictionary gets full, every element in the dictionary are removed in
order to update dictionary with new entry. Therefore, the
conventional method doesn’t consider frequently used strings and

removes all the entry. This method is not an effective compression
when the data to be compressed are large and when there are
more frequently occurring string. This paper presents two new
methods which are an improvement for the existing LZW
compression algorithm. In this method, when the dictionary gets
full, the elements that haven’t been used earlier are removed

rather than removing every element of the dictionary which
happens in the existing LZW algorithm. This is achieved by
adding a flag to every element of the dictionary. Whenever an
element is used the flag is set high. Thus, when the dictionary gets
full, the dictionary entries where the flag was set high are kept
and others are discarded. In the first method, the entries are
discarded abruptly, whereas in the second method the unused
elements are removed once at a time. Therefore, the second
method gives enough time for the nascent elements of the
dictionary. These techniques all fetch similar results when data
set is small. This happens due to the fact that difference in the way
they handle the dictionary when it’s full. Thus these

improvements fetch better results only when a relatively large data
is used. When all the three techniques' models were used to
compare a data set with yields best case scenario, the compression
ratios of conventional LZW is small compared to improved LZW
method-1 and which in turn is small compared to improved LZW
method-2.

Keywords : data compression, LZW, dictionary encoding,
lossless encoding.

I. INTRODUCTION

In this current digital world data processing, data transferring
and data storage is inevitable for every sector such as IT
industry, banking, manufacturing, hospitals, E-commerce etc.
Data being so important is collected in ways such as videos,
images and text. Data which is collected massively in each
and every sector requires huge amount of space for its storage.

Revised Manuscript Received on December 25, 2020.
*Corresponding author

S. Revathi, School of Electronics Engineering, VIT Chennai, India,
Email: revathi.s@vit.ac.in

 D.Thiripurasundari*, School of Electronics Engineering, VIT
Chennai, India, Email: dthiripurasundari@vit.ac.in

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

This huge amount of data will turn to a possible problem when
needed to be transferred or shared from one to another. This
problem can be overcome when the data is compressed. The
compressed data requires low storage space comparatively.
The amount of data is directly proportional to the power it
takes to compress. Along with the space and energy needed to
store compressed data, the time required to compress data is
another task. It is important to take time into account when
data is compressed. Design of efficient algorithm is a possible
solution to all kinds of the problems involved with data. It
might help in decreasing the storage capacity required to store
the data, reduce the power consumption and also help in
saving the time required to compress the data. One such
effective data compression algorithm was proposed by
Abraham Lempel, Jacob Ziv and Terry Welch [1-3] and
named as LZW algorithm. LZW technique represents strings
with integral codes and it doesn't analyse the input text in any
sorts. Rather, it just appends new characters it gets to a table
called as dictionary. Compression is observed when an
integral code is given as output in place of a string. LZW
compression is made for files which have a lot of repetitive
data. This usually happens with text and monochrome images.
Files which don't have any repetitive data at all can even grow
bigger due to the fact that we are replacing 8-bit character
with 12-bit integral-code value. Some of the researchers have
used this coding for different applications. Archarya and
Mukerjee [4] have proposed a way look for the dictionary
used in the form of a binary tree. All the properties of the
binary tree can be easily converted into memory. When the
size of the text is small the algorithm overrides the normal
LZW scheme. But its functionality undermines larger texts.
Samish Kamble et al., [5] provide the most explicit hardware
description language (VHDL) modeling environment of the
Lempel-Ziv-Welch (LZW) algorithm for binary data
compression to facilitate interpretation, validation,
simulation, and hardware realization. For this
implementation, the LZW dictionary with all possible
symbols need to be preloaded in FPGA and LZW replaces a
string of compression characters with code. Agrawal Arohi et
al., [6] implemented the algorithm in FPGA in which the input
to the compressor is 1-bit bit stream and it is read according to
the input clock cycle of the compressor. The output is an 8-bit
integer stream, given in the decompressor, which is an
indicator of the memory location of the bit string stored in the
dictionary.

An Approach to Efficient Dictionary Utilization
and Improved Data Compression Technique for

LZW Algorithm
S. Revathi, D. Thiripurasundari

mailto:revathi.s@vit.ac.in
mailto:dthiripurasundari@vit.ac.in
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijeat.B2097.1210220&domain=www.ijeat.org

An Approach to Efficient Dictionary Utilization and Improved Data Compression Technique for LZW

Algorithm

225

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.B20971210220
DOI:10.35940/ijeat.B2097.1210220
Journal Website: www.ijeat.org

The reference model for data compression software using
LZW is designed in MATLAB / Simulink. Simrandeep Kaur
et al [7] have proposed LZW algorithm that can replace their
codes with 5 bits instead of 7 bit ASCII code. The designed
dictionary is based on content addressable memory (CAM)
array. In this method they observed that storage space is
reduced up to 60.25% and compression rate improved up to
30.3%. Yonghui Wu et al [8] have used LZ -78 improvised
version of dictionary coding algorithm for hardware
implementation for high-performance disk controllers. Here
they focus on the problem of increasing the durability of the
LZW. Compared to their previous work LZ - 77, based on the
LZW additional fragments needed to maintain the
involvement of the error estimators and it is also more
involved. Deepa et al [9] added modified algorithm logic to
assign codes to inverted string pairs. This logic uses the idea
of using an existing string code with odd code for the newly
encountered string LZW compression returns strings of
characters with single codes. It does not perform any analysis
of the incoming text. Instead, it adds each new set of
characters that you see in the strings table. Dheemanth H A
[10] created the dictionary when data is encoded. So you can
encode on the fly. The dictionary need not be transmitted
and can be built upon receiving the end on the fly. If it
overflows, we need to restart the dictionary and add a bit to
each code word The first 256 elements of the dictionary are
given to the gray levels 0-255. Remaining part of the
dictionary is gradually filled with sequences of the gray
levels. LZW compression is relatively fast and gives best
results when there are repetitive parts in the data. This coding
technique doesn’t require any prior knowledge like

probability of occurrence. It’s an easy encoding-decoding
process with a good compression ratio. However, the
disadvantage is it creates some elements in the dictionary that
are never be utilised. This paper discusses on two methods of
the improved LZW algorithms which utilises the dictionary in
an efficient manner.

II. ALGORITHM

This section describes the encoding and decoding procedure
of conventional LZW coding, and two methods of improved
LZW coding.

A. Conventional LZW Coding:

A dictionary is initialized with ASCII characters coded from
0-255, in a way such that all strings can be formed using these
256 elements. The algorithm continuously scans for
substrings of data till it doesn't find it in dictionary. If such a
substring is seen, the code of the substring before the final
iteration is taken from the dictionary and given as output, and
the current substring is appended to dictionary with a newer
accessible code. The previous input character is again utilised
as the current initialising point to look for substrings. The
encoding process is illustrated as flow chart in Fig. 1.

Fig. 1: Flow of conventional LZW encoding

Thus, the output of the encoding is the value from respective
dictionary entry for the maximum length of the string
matches. This methodology of encoding is suitable for data
with repetitions. Therefore, the early snippets of the message
will observe less compression and as the data increases, the
compression ratio gets maximized.
At the decoder, an initial dictionary with ASCII characters
coded from 0-255 is available and the dictionary update is
done during the decoding process. The decoding process is
carried out by taking one integral-code of the encoded output
at a time and, returning the character array from dictionary
which is assigned to that code. The dictionary is updated with
new entry that comprises of previous decoded string and the
first character of current string. If the integral-code of the
encoded output is not seen in the dictionary, then the decoded
output is the current sub-string appended with its first
character. Also, this decoded output should be updated in the
dictionary for the respective integral-code. This process of
decoding is repeated until the entire coded element is
complete and there are no more additions to the dictionary.
The standard dictionary address is 13 bit in size and hence the
number of dictionary entries is 4096. When the dictionary is
full with the maximum limit of 4096, and if a new encoded
string need to be entered in the dictionary, then already
existing string will be deleted and this new string will be
added to dictionary. Here, the first 0-255 entries of the
dictionary which are the trivial entries of 256 ASCII values
will not be deleted and the deletion will start from the 257th
element i.e. dictionary index of 256. The deletion will take
place in sequence for every new entries of encoded string in
the dictionary.
The conventional LZW algorithm is an efficient data
compression technique. However, the main disadvantage of
this method is the updation of dictionary once the entire index
is full. In the conventional method the deletion of the
dictionary entries took place in sequence from the index 256.
For example, if there is 10 new encoded strings, then the
existing dictionary entry from index 256 to 4095 will be
erased and the new strings will be updated. The flow sequence
after the dictionary filled is shown in Fig. 2.

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-10 Issue-2, December 2020

226

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.B20971210220
DOI:10.35940/ijeat.B2097.1210220
Journal Website: www.ijeat.org

Fig. 2: Flow sequence of conventional LZW after
dictionary is full

The main disadvantage of the conventional LZW is that it
doesn’t consider any frequently used strings and all the entries
are erased. This method of dictionary updation will increase
the time of encoding. Also, the repeated string will be
encoded again as it doesn’t appear in dictionary. The

conventional LZW is good when the data set to be
compressed is small or when there is less number of repeated
strings.

B. Improved LZW coding – Method 1

This LZW improvement is inspired from LZMW proposed by
V. Miller and M. Wegman [3]. This is based on two
principles:
1. When a dictionary is completely full, the elements which
are less frequently used are deleted. Many methods are there
to find these elements, and the coders can find any such
methods which can do the task, one of the many methods
involves finding an element that has never been used to make
another element, i.e. we need to find an element that has never
been extended and removing the earliest such element. An
independent structure must be utilised such that we can have
an indication about the age of the elements and also find a way
to have the information about the frequency of the elements
being used. The first 256 dictionary phrases should never be
deleted. It can be improved by appending to elements which
have been successively found in the dictionary rather than the
method used in regular LZW which appends on the first
character and the current string to dictionary.
The algorithm proposed by V. Miller and M. Wegman
suggested looking for the strings in dictionary which are used
again. This method will increase the time of compression as
every string must be compared with following strings. To
overcome the disadvantage, this paper proposes a first
method that considers the first principal of LZMW and
implemented it in the general LZW. To improve the
compression time a flag is introduced to each of the dictionary
entries and when the dictionary gets filled the entries with
unchanged flags are removed.
The algorithm for encoding of the improved LZW method -1
is described in Fig. 3. The flow chart depicts the working of
improvement 1 and how it handles the dictionary when it’s

full. It sets a flag high when an element is used and thus when

it has to remove elements, it only removes the ones which
have the flag set as low.

Fig. 3: Flow of improved LZW method-1

C. Improved LZW coding- Method 2

LZW improvement 1 is furthermore refined to give relatively
efficient compression ratio. This algorithm is also based on
removing the unused entries in the dictionary but rather than
removing all the unused entries all at once, we remove them
one at a time thus giving another chance for the newer entries
in the dictionary. The process flow for the encoding algorithm
of improved LZW method-2 after the dictionary is full is
shown in Fig. 4.

Fig. 4: Flow of improved LZW method- 2

Figure 4 is the flow chart of the algorithm of improvement 2
and depicts how this technique handles the dictionary when it
is full. It can be seen that the unused elements are removed
only when a new element has to be added to the dictionary.

III. RESULT AND DISCUSSION

To illustrate the working of all the three algorithms and the
dictionary entries, consider an input string
ABCABBABCAABCABBABCAA with only three
alphabets A, B and C. The input string was taken such that it
repeats for every ten alphabet. The initial dictionary entry is
given in Table I.

An Approach to Efficient Dictionary Utilization and Improved Data Compression Technique for LZW

Algorithm

227

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.B20971210220
DOI:10.35940/ijeat.B2097.1210220
Journal Website: www.ijeat.org

Table I: Initial dictionary for the given string

Index Dictionary Content

1 A

2 B

3 C

To illustrate the effectiveness of the algorithm the dictionary
is restricted to have only 10 entries. The dictionary entries at
different level of encoding, status of dictionary and encoded
output for conventional LZW, improved LZW method-1 and
improved LZW method-2 are shown in Table II, Table III and
Table IV respectively.
In the conventional LZW given in Table II, it is evident that
once the dictionary is full, all the entries except the initial
dictionary entry got deleted and the new encoded string are
updated.

In the improved LZW method-1 given in Table III, it is
evident that once the dictionary is full, all the entries except
the initial dictionary entry and the flagged entry (i.e. repeated
strings ‘AB’ and ‘CA’) got deleted and the new encoded
string are updated.
In the improved LZW method-2 given in Table IV, the
unflagged entries are shown in red color. It is evident that
once the dictionary is full, not all the unflagged entries are
removed at once. Instead for a new encoded string, only one
unflagged entry is removed and others are kept as it is. For
example, when the dictionary is full and new encoded string
‘ABCA’ appears, then the first unflagged entry ‘BC’ in the
index 5 alone is deleted and replaced by new string. This
method gives enough time for the nascent elements of the
dictionary and hence the compression is high.

Table II: Dictionary Entries and the encoded output of conventional LZW algorithm
Index Conventional LZW

 First level
of
dictionary
updation

Status of
dictionary
after full

Second
level
dictionary
updation

Encoded
output

1 A A A {1, 2, 3,
4, 2, 4, 6,
1, 2, 3, 4,
2, 4, 6,
1}

2 B B B

3 C C C

4 AB - AB

5 BC - BC

6 CA - CA

7 ABB - ABB

8 BA - BA

9 ABC - ABC

10 CAA - CAA

Table III Dictionary Entries and the enclosed output of Improved LZW method-1 algorithm
Index Improved LZW method-1

 First level
of
dictionary
updation

Status of
dictionary
after full

Second
level
dictionary
updation

Encoded
output

1 A A A {1, 2, 3, 4,
2, 4, 6, 4, 5,

2, 2, 6, 1} 2 B B B

3 C C C

4 AB AB AB

5 BC CA CA

6 CA - ABC

7 ABB - CAB

8 BA - BB

9 ABC - BA

10 CAA - ABCA

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-10 Issue-2, December 2020

228

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.B20971210220
DOI:10.35940/ijeat.B2097.1210220
Journal Website: www.ijeat.org

Table IV: Dictionary entries and the encoded output of improved LZW method-2 algorithm
Index Improved LZW method-2

 First level
of
dictionary
updation

Status of
dictionary
after full

Second
level of
dictionary
updation

Third
level of
dictionary
updation

Encoded
output

1 A A A A {1, 2, 3,
4, 2, 4, 6,
9, 7, 5}

2 B B B B

3 C C C C

4 AB AB AB AB

5 BC BC ABCA ABCA

6 CA CA CA CA

7 ABB ABB ABB ABBA

8 BA BA BA BA

9 ABC ABC ABC ABC

10 CAA CAA CAA CAA

The final dictionary content after completion of the encoding
process is given in Table V.
The compression ratio for this example was calculated to have
64.25 %, 69.09 % and 76.19 % for conventional LZW,
improved LZW method-1 and improved LZW method -2
respectively. It is evident from the encoded output that the
compression ratio of conventional LZW is smaller compared
to the improved method 1 and method 2.
Table V: Final dictionary content after encoding of string

Index Dictionary Content

 Conventional
LZW

Improved
LZW
method-1

Improved
LZW
method-2

1 A A A

2 B B B

3 C C C

4 AB AB AB

5 BC BC ABCA

6 CA ABC CA

7 ABB CAB ABBA

8 BA BB BA

9 ABC BA ABC

10 CAA ABCA CAA

To enumerate the effectiveness of all the three algorithms,
text file of different sizes were taken for compression. The
size of the compressed output is given in the Table VI. The
input file size of 2063 bytes, 4628 bytes, 50767 bytes and
1907036 bytes were named as A1, A2, A3 and A4
respectively. It can be seen from the Table VI that the
compressed file A1 and A2 have the same size for all the three
algorithms. This is because, the input file size is less than
4096 bytes and the dictionary is not yet filled and therefore,
the algorithm works similar. The effectiveness of the
algorithm can be found only if the dictionary is filled and this
is depicted in the Table VI of input file A3 and A4. It is clear

from the Table that the output file size after compression for
conventional LZW is greater than LZW improvement 1,
which in turn is greater than LZW improvement 2.
Table VI: Output file size in bytes for four different input

file sizes
Coding/input A1 A2 A3 A4
Conventional

LZW
1968 4168 34794 1035202

LZW
Improvement 1

1968 4168 32878 1017672

LZW
Improvement 2

1968 4168 32281 996350

Table VII gives the compression ratio of all the three
algorithms. Also, it can be seen from Table 7 that if the input
file size is larger, then the compression ratio is also larger.

Table VII: The retained percentage of four different
input file size after compression

Coding/input A1 A2 A3 A4
Conventional

LZW
95.4 90.1 68.5 54.3

LZW
Improvement 1

95.4 90.1 64.7 53.4

LZW
Improvement 2

95.4 90.1 63.6 52.2

The comparison of all the three algorithms for four different
file sizes is given in the Fig. 5. Till the dictionary is filled all
the three algorithms work similar. However, after the
dictionary is filled the improved LZW method-2 algorithm
exhibits larger compression.

An Approach to Efficient Dictionary Utilization and Improved Data Compression Technique for LZW

Algorithm

229

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.B20971210220
DOI:10.35940/ijeat.B2097.1210220
Journal Website: www.ijeat.org

Fig. 5: Comparison of the conventional and improved

LZW algorithms.

IV. CONCLUSION

In this paper the algorithm for conventional LZW was
discussed with the help of flow chart and briefed on the
encoding and decoding processes. Also two new
improvements on the conventional LZW were suggested, and
their algorithms were discussed with flow charts. An example
to illustrate the working of algorithms was discussed with
input string of 21 bytes and dictionary size with 10 bytes. A
text file of four different size was compressed using these
algorithms and the results were discussed. The file with
smaller data sets gave the same results for all the three
algorithms, while the file with large data sets was compressed
greatly by improved algorithm.

REFERENCES

1. J. Ziv and A. Lempel, "An universal algorithm for sequential data
compression", IEEE Transactions on Information Theory, vol. 23, no.
3, pp. 337-343, 1977.

2. J. Ziv and A. Lempel, "Compression of individual sequences via
variable-rate coding", IEEE Transactions on Information Theory, vol.
IT-24, issue 5, pp. 530-536, 1978.

3. Terry A. Welch, "A technique for high-performance data
compression", IEEE Computer, vol. 17, no. 6, pp. 8-19, 1984.

4. T. Acharya, A. Mukherjee, "A Tree-based Binary Encoding of Text
Using LZW Algorithm", Data Compression Conference, 1995.

5. Samish Kamble and S B Patil, “FPGA Based Data Compression using

Dictionary based LZW Algorithm”, International Journal of Scientific
and Engineering Research, volume 7, no. 2, February-2016, pp.
679-683.

6. Agrawal Arohi and V. S. Kulkarni, “FPGA Based Implementation of

Data Compression using Dictionary based “LZW” Algorithm”,
International Journal of Innovative Research in Electrical, Electronics,
Instrumentation and Control Engineering, vol. 2, no. 4, 2014,
pp-1391-1395.

7. Simrandeep kaur and V.Sulochana Verma, “Design and

Implementation of LZW Data Compression Algorithm”, International

Journal of Information Sciences and Techniques, vol.2, no.4, 2012, pp
71-81.

8. Yonghui Wu, S. Lonardi, W. Szpankowki, “Error-Resilent LZW data
compression” Data compression conference (DCC’06), Snowbird, UT,

2006, pp. 193-202, doi: 10.1109/DCC.2006.33.
9. A. Deepa, Nitasha, Namrata Chopra, “Intensification of

Lempel-Ziv-Welch Algorithm”, International Journal of Innovative

Technology and Exploring Engineering, vol. 8, no.9, 2019, pp:
587-591.

10. Dheemanth H N, “LZW data compression”, American journal of
engineering research, vol. 03, no.02, pp: 22-26.

AUTHORS PROFILE

S. Revathi is currently an Associate Professor
with the School of Electronic Engineering,
VIT at Chennai, Chennai. She has over 20
years of teaching and research experience. Her
expertise is in CMOS, microelectronic
manufacture, MEMS, microsystems,
Embedded systems and IoT.

 D. Thiripurasundari is professor in School
of Electronics Engineering VIT Chennai with
more than 27 years of teaching, research
experience. Her interests are centred on the
design of antennas for various applications
MIMO antenna, werable, optically transparent
antenna and dielctric resonatror antenna.
 She had published around 30 papers in national

/ international journal / conference. She was also Co-PI of the
project titled Design and Development of Wearable Antenna for
Military applications funded by DRDO.
.

.

