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A B S T R A C T 

This article presents an efficient hardware architecture of EDF-based task scheduler, 
which is suitable for hard real-time systems due to the constant response time of the 
scheduler. The proposed scheduler contains a queue of ready tasks that is based on a 
new MIN/MAX queue architecture called Heap Queue, which is inspired by Shift 
Registers, Systolic Arrays, heapsort algorithm, the Rocket Queue architecture and dual-
port RAMs. The instructions of the proposed scheduler have throughput of one 
instruction per two clock cycles regardless of the actual number of tasks managed by the 
scheduler, and regardless of the scheduler capacity. The developed task scheduler is 
optimized for low chip area costs, which leads to lower energy consumption. The Heap 
Queue-based architecture has constant time complexity due to two clock-cycle response 
time of the instructions and therefore, the architecture is highly deterministic. The 
scheduler supports CPUs that can execute 1, 2 or 4 tasks simultaneously, and contains an 
implementation of clever and efficient logic that can handle conflicts caused by the fact 
that the scheduler is used by all CPU cores at the same time. The proposed scheduler 
was verified through SystemVerilog UVM-like simulations that applied billions of 
randomly generated test instructions. Achieved ASIC (28 nm) and FPGA synthesis 
results are presented and compared. More than 86% of the chip area and 93% of the total 
power consumption can be saved if Heap Queue architecture is used in hardware 
implementations of EDF algorithm. Advantages and disadvantages of the proposed task 
scheduler are discussed through the comparison to the existing solutions. 

 
 

1. Introduction 

Real-time systems represent a category of embedded systems 
that are processing real-time tasks. Success of real-time tasks 
depends not only on the computation result itself but also on time 
when these tasks are completed. Too late completion of hard real-
time tasks may represent the same failure as an incorrect result of 
the task. Thus, reliability of real-time systems means that the 
tasks are completed in correct time [1, 2]. 

Task scheduling algorithms are usually containing data sorting 
in a form of MIN/MAX queues, which are typically implemented 
in software. Software implementations are often sufficient for 
small and simple real-time systems with small amount of tasks. 
Nevertheless, increased complexity of systems and the number of 
real-time tasks require higher average performance and less 
varying latency caused by data sorting (i.e. constant response 
time). Constant response time is especially important for safety-
critical systems. Hard real-time systems are usually also safety-
critical systems, and vice versa, safety-critical systems usually 
include hard real-time systems. Due to this, the requirements for 
meeting deadlines of tasks can be also seen as reliability 
requirements because missing a deadline is also considered as a 
failure of the systems. Even if a micro-controller with the highest 
possible performance was used, there would still be no guarantee 
that all tasks will meet their deadlines. Therefore, a dedicated task 
scheduler that provides scheduling of real-time tasks should be 
used in real-time / safety-critical systems [3-7]. 

The constant latency of all operations within the system, 
including data sorting, is very important for more reliable 
scheduling in hard real-time systems. In such cases, software 

implementations do not fulfill all the requirements because 
software algorithms for data sorting do not operate in constant 
time. Alternative solutions are based on hardware acceleration, 
thus the data sorting and MIN/MAX queues can be implemented 
in a digital integrated circuit (e.g. ASIC or FPGA) [8-31]. Several 
hardware architectures designed for data sorting or 
implementation of MIN/MAX queues have been developed so 
far. However, they all suffer from consuming too many LUT 
(Look-up Tables) resources and they have relatively high chip 
area costs in ASIC (in addition to FPGA) technologies as well 
[10-28]. 

The research presented in this article is focused on designing 
an improved version of a coprocessor that implements task 
scheduling based on the Earliest-Deadline First (EDF) algorithm 
that is described in [4]. The EDF algorithm can be also seen as a 
dynamic version of deadline-driven scheduling algorithms [32]. 
The improvements are focused on increased performance together 
with system determinism on one side, and the reduced hardware 
costs (i.e. chip area or FPGA utilization) together with power 
consumption on the other side. This is achieved by 
implementation of an efficient hardware-based data sorting in a 
form of MIN/MAX queues, which requires reduced amount of 
logic resources needed. For this purpose, a new architecture 
called Heap Queue was developed in order to increase the 
scalability of data sorting implemented in hardware so that more 
items can be efficiently sorted [33, 34]. This architecture is 
suitable for usage in task scheduling for real-time systems, where 
the overall resource costs of the scheduling were significantly 
reduced too. 

This article also deals with the performance issue of modern 
CPUs that usually run multiple tasks in parallel due to multi-core 
paradigm adopted for CPU design. This brings new obstacles and 
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challenges for hardware-accelerated task scheduling and 
especially, for task scheduling suited for hard real-time systems.  

The structure of the paper is as follows. Section 2 describes 
related work on task schedulers for hard real-time systems. 
Section 3 contains related work on sorting MIN/MAX queue 
architectures that can be used for implementation of real-time task 
schedulers. In Section 4, two new task schedulers are proposed. 
Verification of the described solutions is described in Section 5. 
Section 6 contains synthesis results in a form of tables. These 
results are discussed and a conclusion of the paper is presented in 
Section 7. 

2. Related work on task schedulers for real-time systems 

Task scheduling as the main part of operating systems is 
responsible for deciding which task (i.e. process or thread) is 
running and executed by CPU in what time. These decisions 
highly depend on the algorithm that is used for the scheduling. 
While classic operating systems usually schedule tasks according 
to their priorities, real-time systems should create the schedule 
according to the deadlines of the tasks, because it is critically 
important to meet the deadlines of all hard-RT tasks. The most 
common and popular algorithm used for scheduling of hard-RT 
tasks is called Earliest-Deadline First. This algorithm simply sorts 
all tasks according to their deadlines so that the task with the 
earliest deadline (i.e. with the lowest deadline value) is selected 
for execution. Therefore, the MIN/MAX queues are ideal for 
implementation of the EDF algorithm [4, 35, 36]. 

An ideal real-time task scheduler always schedules the 
optimum sequence of tasks so that all tasks will be computed and 
completed before their deadlines are met. In addition to this, the 
ideal real-time task scheduler has no overhead on CPU that 
executes the tasks. The more the CPU is used for the scheduling 
algorithm, the less effective it is for computation and completion 
of the scheduled tasks. Of course, a real scheduler will always 
need to consume some amount of CPU time because it is needed 
to spend at least one CPU clock cycle to write input data to the 
scheduler or read the output data from the scheduler. 
Nevertheless, for the performance reasons, we would like to 
consume as little CPU time as possible. In order to keep the 
whole embedded system deterministic and well predictable, 
constant amount of spent CPU time is targeted regardless of any 
parameters, e.g. the number of tasks that are currently scheduled 
or the maximum possible number of tasks of the system (i.e. task 
queue size). 

In our previous work [24], a novel real-time task scheduler 
based on EDF algorithm and implemented in a form of a 
coprocessor unit has been developed. A comparison of hardware 
and software implementations in terms of performance and 
efficiency of the scheduler was done and achieved results were 
presented. The coprocessor uses instructions consuming two 
clock cycles of the CPU regardless of the current and the 
maximum number of tasks in the system. 

Then, we designed and proposed an extended version of the 
scheduler that is suitable for dual-core CPUs. Two approaches for 
solving of conflicts (i.e. situations when multiple CPU cores want 
to use the coprocessor at the same time) were designed and 
compared [26]. After that, we added a support for scheduling non-
real-time tasks in the same scheduler by using priorities instead of 
deadline values [27]. Finally, an improved form of the scheduler 

optimized in terms of timing precision, chip area costs and power 
consumption was proposed in [28]. 

Beside of our coprocessors, there are also other solutions 
existing. In [19], EDF algorithm is also used but with the 
maximum number of tasks being only 64, while the other 
approach uses priorities instead of deadlines that is not optimal 
for hard real-time systems [20]. There are also other solutions 
based on priorities or static scheduling [10, 21, 22]. The 
scheduler, we have already presented, is an efficient solution for 
simpler embedded systems containing hard real-time tasks and 
employing one single-core CPU. However, as systems grow in 
their complexity, more performance is required, which often leads 
to use of multi-core CPUs. In that case, a more complex task 
scheduler is needed in order to provide multi-core CPU support. 
The suitability of the EDF algorithm was deeply analyzed, and it 
was concluded that EDF is suitable for uniform multiprocessor 
systems [19]. Therefore, we decided to design completely new 
real-time task scheduling coprocessor that would be optimal for 
either dual-core or quad-core real-time embedded systems. 

3. Related work on MIN/MAX queues 

Deadline-based task schedulers for real-time systems perform 
task sorting according to their deadlines very intensively for 
implementation of decision, which task to select for execution. 
Therefore, data sorting in a form of MIN/MAX queues represents 
the core functionality of task schedulers implemented in hardware 
[19, 20, 24, 27]. 

The research presented in this paper is focused on data sorting 
in real-time systems, where the lowest value of the sorted data 
(i.e. the earliest deadline) is needed. Thus, the goal is to 
implement the MIN queue. These queues contain items that are 
being sorted. The items consist of these values [33, 34]: 

• SORT_DATA – the items shall be sorted according this 
value. Thus, if a queue is the MIN queue, then the 
output of the queue is the item with the lowest 
SORT_DATA value. If a queue is the max queue, then 
the output of the queue is the item with the highest 
SORT_DATA value. 

• PAYLOAD – a bit vector that represents some data that 
is relevant to the application. The payload does not 
affect the sorting decisions. This value can also serve as 
identification number of the item or as a pointer/address 
to memory. 

• VALID – this is a 1-bit value that informs, whether the 
item is valid or empty. If this value is high (i.e. logic 1), 
then the item is valid. Otherwise, the item is empty. If 
the output of the queue is an empty item (i.e. the first 
item within the queue is empty), then the whole queue 
is empty. 

 
The MIN queue must provide these three instructions 

identified by 2-bit opcode [33, 34]: 
• 00 – NOP – no operation is performed. The output of 

the queue will remain unchanged. This is used to keep 
the accelerator idle. This feature is required. 

• 01 – INSERT – a new item is inserted into the 
MIN/MAX queue. The insertion is performed in such a 
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manner that the items in the queue remain sorted so that 
the item with lowest/highest SORT_DATA remains to be 
the output of the MIN/MAX queue. This feature is 
required. 

• 10 – POP – the first item within the queue is removed 
from the queue. The remaining items update their 
positions so that the second item becomes the new first 
item of the queue. Thus, the output of the queue is 
updated to provide the new first item as a result. This 
feature is required.  

 
The attributes of the MIN queue are described from the 

hardware as well as real-time computing points of view. These 
attributes and their requirements are [33, 34]: 

• Constant instruction response time (the number of clock 
cycles needed for instructions to provide an updated 
output). The requirement is to have constant time 
complexity, i.e. all instructions of the accelerator are 
providing output in constant number of clock cycles. 
This means that the clock cycles amount does not 
change either by having various items count in the 
queue (i.e. changing actual number of values in the 
queue) or by having various queue capacity. Constant 
response time improves predictability and determinism 
of the whole real-time system [1]. 

• High performance. This attribute depends on the clock 
frequency multiplied by the amount of clock cycles 
needed for usage of one instruction. The clock 
frequency depends on the critical path length of the 
accelerator as well as the critical path of other parts of 
the system within the same clock domain. There is no 
reason to achieve significantly lower critical path length 
for the accelerator than for the rest of the clock domain. 
The number of clock cycles needed for calling the 
accelerator instructions should be as low as possible. 

• Low chip area costs. This attribute depends on the 
implementation technology. For ASICs, this is 
evaluated either by the number of transistors used or by 
real dimensions of the manufactured chip. For FPGAs, 
this is evaluated by the number of logic resources (e.g. 
LUTs, registers and RAM bits), depending on the 
selected FPGA device. 

 
Several architectures for data sorting in MIN/MAX queues 

have been developed, and can be used for task scheduling of real-
time systems. Nevertheless, they suffer from scalability issues due 
to increasing critical path length and resource cost with regards to 
increasing capacity of schedulers (i.e. the maximum number of 
tasks supported). The most popular architectures include FIFO 
with MUX Tree [10, 11, 14, 20], Shift Registers [17, 19, 22, 23], 
DP RAM Heapsort [18] and Systolic Array [24-29]. 

The FIFO approach is the least scalable in terms of critical 
path length due to the complexity of the MUX Tree part, which 
contains too long critical path (if higher capacity is selected). It is 
also very inefficient from chip area point of view [10, 11, 14, 20]. 

The Shift Registers architecture is more efficient approach 
than the previous one but there is still a problem with the critical 
path length. This architecture consists of homogenous cells, 

where each cell is composed of a comparator, control logic and a 
set of registers to store one item. The cells can exchange items 
with their neighbours, where each cell has two neighbours (they 
are connected within one line). All cells are receiving the same 
instruction simultaneously from the input of the queue. The more 
cells the queue contains, the longer the critical path is due to the 
bus width for providing instructions simultaneously and due to 
the control signals exchange between all cells. Thus, this 
architecture can be used for small capacities only. An example of 
Shift Registers architecture containing eight cells is displayed in 
Fig. 1 [17, 19, 22, 23]. 
 

 
Fig. 1. Shift Registers architecture example [17]. 

DP RAM Heapsort is relatively efficient sorting architecture due 
to adoption of dual-port RAM for storage of items within the 
architecture. However, it is not possible to perform INSERT or 
POP instructions independently. This architecture can perform 
POP and INSERT instructions only together. Therefore, this 
architecture is not usable for implementation of MIN/MAX 
queues [18]. 

 Systolic Array architecture is very similar to the Shift 
Registers. However, the critical path problem is solved by 
pipelining. It contains homogenous cells that are connected within 
one line. Each cell is a neighbour to one other cell to the left and 
to the right, except the first and the last cell in the queue. The first 
cell is the only cell that provides its output to the output of the 
whole queue and that receives instructions from the input of the 
queue. The instructions are gradually propagated from the first 
cell to the last cell (one cell per each clock cycle) in the similar 
way as instructions are propagated through pipeline stages in the 
pipelined CPUs [24-29]. 

Fig. 2 shows an example of the Systolic Array architecture 
containing 15 cells. The first cell from the right is the first cell of 
the queue, thus it behaves as an interface to the external 
environment too. The only signals propagated in parallel are clock 
and reset signals [24-29]. 
 

 
Fig. 2. Systolic Array architecture example [24-29]. 
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Each cell of the Systolic Array represents one pipeline stage 
including pipeline register. Thus, it takes N clock cycles to 
propagate one instruction through the whole structure, where N is 
the number of cells. However, due to the reason how pipelining 
works, each cell is executing a different instruction at the same 
time. Furthermore, the output of the whole queue is updated in the 
beginning already and thus, it takes only 2 clock cycles to read an 
updated output of the queue (1 clock cycle is needed to update the 
first cell and 1 clock cycle is used for reading from the updated 
cell). The MIN/MAX queue based on this architecture can accept 
a new instruction every 2 clock cycles, i.e. the instruction 
response time is 2 (regardless of the cell count) [24-29]. 

The Rocket Queue architecture was designed as an 
improvement to the Systolic array architecture inspired by DP 
RAM Heapsort. The Rocket Queue is structured into levels. There 
are two types of levels: duplicating levels and merged levels. An 
example of the Rocket Queue architecture is depicted in Fig. 3, 
where three duplicating levels and 11 merged levels were used. 
The amount of duplicating levels may be changed to lower or 
higher value. Nevertheless, more than 5 duplicating levels are not 
recommended due to the increasing critical path length [30, 31]. 

One of the most resource consuming parts of the queues is a 
comparator. While Systolic Array and Shift Registers are using 
one comparator per each cell, the Rocket Queue architecture 
employs a single comparator for all cells within the same level. 
Thus, the number of comparators in Rocket Queue depends on the 
amount of levels, not on the number of cells, which leads to lower 
resource costs of the Rocket Queue architecture [30, 31]. 

Among these architectures, only the Systolic Array and 
Rocket Queue architectures meet the requirements described in 
Section 2. Within these two architectures, the Rocket Queue is 
more efficient in terms of resource costs and therefore, it is the 
most suitable architecture among all existing ones [30, 31]. 
Furthermore, Systolic Array is able to remove an item from any 
position according to its ID, which is necessary for flexibility and 
extensibility of task schedulers. For example, inter-task 
synchronization may need to temporarily remove some tasks from 
the queue of ready tasks or reschedule a task (i.e. remove the task 
and schedule it again with other deadline/priority). 
 

 

Fig. 3. Rocket Queue architecture with three duplicating levels [30, 31]. 

4. Proposed task scheduler 

This paper presents two versions of tasks schedulers. Both 
versions implement EDF algorithm, which is known to be 
optimum solution for hard RT systems in terms of its decision-

making [1-4]. The difference between these two versions is that 
one version supports CPUs that can execute two tasks in parallel 
(called dual-core CPUs) [26-28], while the second version of the 
scheduler supports CPUs that can execute four tasks in parallel 
(called quad-core CPUs) [37]. 

The proposed schedulers are using one global EDF-based 
schedule that is shared for all CPU cores. The top M tasks with 
the earliest deadline values are selected for running at the present 
time, where M is the number of CPU cores. The users of the 
proposed schedulers do not assign real-time tasks to specific CPU 
cores, like it is common in hypervisors nowadays. Instead of that, 
the CPU power (i.e. computing resources) are shared for all real-
time tasks, which balances the usage of all CPU cores 
automatically, resulting in the maximum CPU utilization at all 
times. 

The proposed task schedulers are designed as a coprocessor 
unit that provides two instructions: 

• schedule_task – this instruction is used to add and 
schedule a new task to the scheduler. The scheduler 
updates the list of scheduled tasks and if the new task has 
a stricter deadline constraint than any of the currently 
running tasks, then a preemption is performed in the 
scheduler. If a preemption occurs, the scheduler informs 
the relevant CPU core to perform a task switch.  

• kill_task – this instruction is used to deschedule one of 
the existing scheduled task among the currently running 
tasks. The running task is removed from the scheduler 
and the task with the earliest deadline among all ready 
tasks is selected for execution. 

4.1. Top module of the scheduler 

The top module of both versions of the task scheduler (i.e. 
dual-core scheduler and quad-core scheduler) is consisting of the 
following three components: 

• Ready Queue module – contains ready tasks (i.e. tasks 
that are ready for execution but are not running) 

• Running Tasks module – contains running tasks 
• Semaphore module – handles conflicts of attempts to use 

the task scheduler by more CPU cores at the same time 
The organization of these three blocks within the top module 

for dual-core version of the scheduler is described by a block 
diagram displayed in Fig. 4. The instructions coming from CPU 
cores are at first being processed by the Semaphore unit that is 
responsible for deciding, which CPU core has granted access to 
add or remove a task at the moment, and which CPU core has to 
wait for two clock cycles. The instruction of the winning CPU 
core is being provided to the next component – Running Tasks 
component which is handling the tasks that are supposed to be 
executed at the moment. Communication with the Ready Tasks 
component is performed only through the Running Tasks 
component, which sends to the Ready Tasks component those 
tasks that are preempted. This component also reads the task with 
the lowest deadline value among the ready tasks (from the Ready 
Tasks). The control signals from Semaphore module are driven to 
the Ready Tasks indirectly through the Running Tasks module. 
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Fig. 4. Top level module for dual-core version of the scheduler. 

The top module of the quad-core version of the scheduler is 
very similar to the previously presented dual-core version. The 
only difference is that the interfaces of the top module, 
Semaphore and Running Tasks components are extended for 
communication with four CPU cores. The block diagram for the 
quad-core version of the scheduler is displayed in Figure 5. 

 
Fig. 5. Top level module for the quad-core scheduler. 

4.2. Running Tasks module 

The Running tasks module contains control logic that is 
responsible for decision whether to keep actual tasks in the cells 
or to perform any change. Whenever any of the running tasks is 
killed, the task with the earliest deadline among the ready tasks is 
inserted to the Running tasks module. Whenever a new task is 
being added to the system, a situation called preemption can 
occur depending on the deadline of the new task and deadlines of 
the running tasks. If the new task has earlier deadline than any of 
the running tasks, then this task replaces the running task with the 
highest deadline. The replaced task is called preempted task and 
execution of the preempted task should be paused. If preemption 
occurs, then the Ready tasks queue stores the preempted task, 
otherwise the new task is inserted to the Ready Tasks module. 
This module maintains two remaining tasks – running tasks (tasks 
that are being executed by the CPU cores). The running tasks are 
using different logic that ensures that there are no redundant task 
switching operations. The new architecture is shown in Fig. 6, 

where an example of killing Task 1 is presented. The CPU core 1 
stops executing Task 1 and starts executing Task 3 (task with the 
earliest deadline among the tasks in the Ready tasks queue), while 
the CPU core 2 continues executing Task 2 without any change 
[26-28].  

 
Fig. 6. Example of task kill operation in Running Tasks [26-28]. 

The second example (illustrated in Fig. 7) is the case, when a 
new task (Task 4) is added to the system. The new task has lower 
deadline than the deadlines of the running tasks, and Task 1 has 
higher deadline than Task 2 and therefore, the preemption occurs. 
In the Running tasks queue, Task 1 is replaced by the new task 
(Task 4) and inserted into the beginning of the Ready tasks queue. 
In this way, we keep both CPU cores executing tasks with the 
earliest two deadlines while eliminating all unnecessary 
occurrences of task switching [26-28]. 

 
Fig. 7. Example of task add operation in Running Tasks [26-28]. 

Fig. 8 shows the logic circuit that implements the Running 
Tasks module with support of two CPU cores. The circuit 
contains four sets of registers (task ID of CPU core 1, task 
deadline of CPU core 1, task ID of CPU core 2, and task deadline 
of CPU core 2) and one 1-bit register (in the upper-right part of 
the circuit) that remembers which of these two tasks has higher 
deadline value. For this comparison, one comparator is used. The 
second comparator is used for comparison of the task with the 
higher deadline value with deadline of the new, incoming task. 

CPU core 2

CPU core 1

Task 2

Task 1
Task 4 Task 3

CPU core 2

CPU core 1

Task 2

Task 3
Empty Task 4

Before killing 
Task 1
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The NAND and AND logic gates are used only for enabling of 
the registers that hold the running tasks. 

 

 
Fig. 8. Logic circuit of Running Tasks module. 

For quad-core CPU support, the Running Tasks component 
has to be extended so that it holds four tasks rather than only two 
tasks. These tasks are the tasks that are supposed to be running in 
the CPU cores. The dual-core version of the Running Tasks 
component contained two comparators for comparison of the 
deadlines between the running_task_for_core_1, 
running_task_for_core_2 and the new_task provided from the 
Control Unit. The decision logic within the Running Tasks 
component needed only one clock cycle in dual-core version. 

In quad-core version of the Running Tasks component, there 
are five comparators needed. Due to the critical path length 
requirements for the combination logic (mainly consisting of the 
comparators), the decision logic is performed in two clock cycles. 
In order to remember the temporary results from the first clock 
cycle, additional (intermediate) registers containing two tasks and 
two bits are needed. The first clock cycle is used for performing 
two comparisons in parallel – compare running_task_for_core_1 
to running_task_core_2, and compare running_task_for_core_3 
to running_task_core_4. The tasks with the higher deadline 
values are being stored to the intermediate registers and two 
additional bits are used for storing the identification of the tasks 

within this module. The second clock cycle replicates the original 
logic that was used in the Running Tasks component designed for 
dual-core CPUs. This means that the deadlines from the 
temporary results (stored in intermediate registers) are compared 
to each other and to the new task provided from the Control Unit. 
According to these computations, preemption can occur, which 
means that one of the running tasks can be preempted and 
replaced by a new task. Regardless of the preemption occurrence, 
one of those tasks is further provided to the Ready Tasks module 
anyway [37]. 

4.3. Semaphore module 

What if two or more CPU cores decide to add a new task or 
kill an existing task at the exactly same time (clock cycle)? Let us 
call such a situation a conflict. All previous approaches assumed 
that there is always one request at a time. This assumption is 
totally correct in single-core systems. However, the opposite is 
true in multi-core systems. There can be very low probability of 
such a situation. For example, if each CPU core uses custom 
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instructions of the coprocessor 1% of time (one instruction of the 
scheduling per 100 instructions), then the probability of a conflict 
occurrence is 0.01% for dual-core CPUs. So the conflict would 
occur very rarely but still it has to be taken into account. 

If a conflict occurs, it is resolved dynamically by the 
semaphore module. This module is responsible for choosing 
which CPU core can use the coprocessor at the corresponding 
time. The second core will use the coprocessor 2 clock cycles 
later and thus, it must be stalled for 2 clock cycles in that case. 

The Semaphore module for dual-core CPU systems consists 
mainly of multiplexers for selecting the instruction. In addition to 
that, there is only one D Flip-Flop (DFF) added for remembering 
whether the last conflict-winning core was CPU core 1 or CPU 
core 2. In the case of a conflict occurrence, the multiplexer is also 
controlled by the output of the DFF. The best-case execution time 
is one clock cycle. However, it is important to keep in mind that 
the main target is hard real-time systems, where the worst-case 
execution time should be taken in consideration instead of the 
best case or average execution time. The worst-case execution 
time of the semaphore approach is four clock cycles because in 
the worst-case scenario, a conflict occurs every clock cycle. Fig. 9 
shows the logic circuit that implements Semaphore module 
handling conflicts for two CPU cores. 

 
Fig. 9. Semaphore module circuit for dual-core systems. 

For quad-core systems, the situation is much more 
complicated because there are more possible combinations of the 
conflicts that may occur. Even bigger conflicts (i.e. three or more 
CPU cores intending to use the coprocessor at the same time) can 
occur too. There are eleven possible combinations of conflicts in 
total, represented by the CPU core numbers. There exist six 
versions of conflicts when two CPU cores are in conflict: CPU 
core 1 and CPU core 2 conflict named as 1-2, CPU core 1 and 
CPU core 3 named as 1-3, CPU core 1 and CPU core 4 named as 
1-4, CPU core 2 and CPU core 3 named as 2-3, CPU core 2 and 
CPU core 4 named as 2-4, CPU core 3 and CPU core 4 named as 
3-4. These four versions of conflicts can occur when three CPU 
cores are trying to use the scheduler at the same time: CPU core 
1, CPU core 2 and CPU core 3 conflict named as 1-2-3, CPU core 
1, CPU core 2 and CPU core 4 conflict named as 1-2-4, CPU core 
1, CPU core 3 and CPU core 4 conflict named as 1-3-4 and CPU 
core 2, CPU core 3 and CPU core 4 conflict named as 2-3-4. The 

last possible combination is when all four CPU cores are trying to 
use the scheduler at the same time, which is named as 1-2-3-4. 

There are two requirements for the semaphore module, 
primary and secondary. The primary requirement is that there is 
specified a maximum possible number of delays (CPU stalls) 
caused by the conflicts and that this number is relatively low. 
Such a requirement is crucial because the scheduler is intended 
for real-time systems. The secondary requirement is fairness from 
the point of view of the CPU cores – each CPU core has 
approximately the same amount of possibilities to win to use the 
scheduler instantly [37]. 

The proposed solution for the new Semaphore module 
consists of a 2-bit counter that is used for representation of four 
states. These four states are called: 1234, 2143, 3412 and 4321. 
Each of these states implicitly specifies the priority order that is 
used for selecting a winner whenever any of the eleven possible 
conflicts occurs. For example, the 1234 state means that the CPU 
core 1 has higher priority than core 2, CPU core 2 has higher 
priority than core 3, and CPU core 3 has higher priority than core 
4. Whenever a conflict occurs, the state is changed to the next one 
by incrementing the 2-bit counter. We decided to reduce the total 
number of 24 possible permutations or priority orders to only 4 
orders defined by the four states because in this way, the state 
machine responsible for decision of which CPU wins the conflict 
is much simpler, resulting in simpler design and smaller 
hardware. The four orders were chosen so that these orders are 
symmetric, fair and they are rotating after every conflict. 
Whenever a conflict occurs, the order is changed to the next order 
by updating the state machine moving from the current state to 
the next state.   

The states are specified by 2-bit counter in the following way 
[37]: 

• value “00” represents state/order 1234. The next value 
is “01”. 

• value “01” represents state/order 2143. The next value 
is “10”. 

• value “10” represents state/order 3412. The next value 
is “11”. 

• value “11” represents state/order 4321. The next value 
is “00”. 

All combinations of conflicts with respect to the actual state 
and the corresponding winners are listed in Table I. Each line of 
the table represents a possible scenario of conflicting CPU cores. 
The columns represent the four possible orders, where one of 
them is selected at a given time depending on the current state of 
the state machine. One can observe that both requirements for the 
Semaphore are met because the maximum possible number of 
losses for any CPU core is three in a row (i.e. the CPU core can 
lose 0, 1 2 or 3 times at most), and the winning of CPU cores is 
evenly distributed. Due to the rotating behavior of states/orders, it 
is guaranteed that one instruction will take 2M clock cycles in the 
worst-case scenario (the case when all CPU cores want to use the 
scheduler all the time), where M is the number of CPU cores. The 
best-case scenario is 2 clock cycles. Thus, for quad-core CPUs, 
one instruction can take 2 to 8 clock cycles depending on the 
occurrence of the conflicts. 

TABLE I.  TABLE OF WINNERS FOR QUAD-CORE SEMAPHORE 
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 1234 2143 3412 4321 

1-2 1 2 1 2 

1-3 1 1 3 3 

1-4 1 1 4 4 

2-3 2 2 3 3 

2-4 2 2 4 4 

3-4 3 4 3 4 

1-2-3 1 2 3 3 

1-2-4 1 2 4 4 

1-3-4 1 1 3 4 

2-3-4 2 2 3 4 

 1234 2143 3412 4321 

1-2-3-4 1 2 3 4 

Based on the description above, Fig. 10 shows a block 
diagram of the Semaphore module for quad-core CPUs. This 
module consists of Conflict Detector module, Winner Selector 
module, AND gate, two D-FFs, and three multi-bit multiplexers. 
Both, Conflict Detector and Winner Selector modules, need from 
the input instructions only the bit that specifies, whether the 
instruction is valid (i.e. whether the CPU core is trying to use the 
task scheduler or not). The Winner Selector module performs the 
decision, which CPU instruction is selected among the currently 
valid instructions. The decision is represented by signals SEL1, 
SEL00 and SEL01, which are used as control inputs for the 
multiplexers that select one of the CPU instructions and provides 
the selected instruction to the output called instr. The instr output 
is used by the Running Tasks module. 

 
Fig. 10. Block diagram of Semaphore module. 

Fig. 10 also shows that the Semaphore module provides four 
1-bit output signals to the CPU cores, each for one CPU core. 
These signals are called stall_core_# and they are used for 
informing the particular CPU core that its request to use the task 
scheduler has been rejected due to a conflict with another CPU 
core. The CPU core that receives the “stall” signal should wait 
until the conflict is resolved. Eventually, the CPU can execute 
other instructions while waiting for the conflict to be resolved. 
The core_#_instr_valid and stall_core_# signals are used as a 
handshaking mechanism between the CPU and the scheduler. 

Fig. 11 shows the logic circuit that represents the Conflict 
Detector module. The whole circuit consists of six 2-input NAND 
gates and one 6-input NAND gate. The module detects the 
situation, when at least two CPU cores want to use the scheduler 
at the same clock cycle. Therefore, whenever there are at least 
two inputs driven by logic 1, then the output conflict shall be 
logic 1. If it is not the case or only one CPU core has a valid 
instruction, then the output value shall be logic 0. 
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Fig. 11. Logic circuit of Conflict Detector module. 

The Winner Selector module is displayed in Fig. 12. The SEL1 
output is generated by three 2-input NOR gates and one 3-input 
NOR gate. The SEL00 and SEL01 outputs require two 2-input 
NAND gates each. This circuit contains two inverters for 
generating negated inputs too. The Winner Selector module 
performs the same decision logic that was described in Table I. 

 
Fig. 12. Logic circuit of Winner Selector module. 

4.4. Ready Queue module 

The Ready Queue module is responsible for storing and 
sorting of all tasks that are ready for execution. This module is 
implemented as a sequential circuit, which always provides on the 
output the task with the earliest deadline among all tasks stored in 
this circuit. Thus, the task with the smallest deadline value 
associated to this task is always at the beginning (and output) of 
the Ready Queue. The Ready Queue module can accept a request 
for a inserting a new task into the queue but only one at a time. 
Alternatively, the task with the earliest deadline (i.e. at the 
beginning of the queue) can be popped, which means that this 
task is removed from the queue and the rest of the queue is 
updated. Whenever either a new task is inserted or the output task 
is removed, the queue has to reorganize in such a way that a new 
task with the earliest deadline is selected for the queue output (i.e. 
the queue keeps updating/reorganizing). 

The Ready Tasks module alone represents the core EDF 
functionality, which is responsible for answering the question: 
Which task has the earliest deadline? This is the task that is 

supposed to be selected for execution. Even when the scheduler 
has already the Running Tasks module that is supposed to contain 
the tasks that are selected for the execution, the Running Tasks 
module needs to know, which task among all ready tasks is the 
best candidate for execution next. For this selection, the Ready 
Tasks module provides the answer. 

As it was already mentioned in Section 3, there exist multiple 
architectures for implementation of sorting MIN/MAX queues. In 
[26-28], the Ready Tasks module was implemented using Shifts 
Registers architecture. In this paper, the proposed Ready Tasks 
module is implemented by Heap Queue architecture, which is 
much more efficient architecture that should result in much better 
task scheduler in terms of chip area, power consumption and 
timing as well. The Heap Queue is layered into levels similar way 
as the Rocket Queue architecture. The difference is that while the 
Rocket Queue architecture consists of duplicating levels and 
merged levels, the levels used in the Heap Queue architecture are 
all duplicating ones only. This means that each level is 
duplicating the number of items that can be stored within such s 
level. For example, the first level has capacity of one item, the 
second level two items, the third level four items, the fourth level 
eight items, and the next level contains sixteen items. 

The duplicating levels of Rocket Queue and Heap Queue 
architectures form a binary tree that realizes a heapsort algorithm 
displayed in Fig. 13 [18]. 
 

 

Fig. 13. Heapsort algorithm based on a binary tree [18]. 

Another difference between Rocket Queue and Heap Queue is 
that the Rocket Queue architecture is storing all data into 
registers, which is not true for the Heap Queue architecture. Items 
that are inserted into Heap Queue are stored in dual-port random 
access memories. Similarly, the numbers used for tree balancing 
are stored in RAM instead of registers too. The tree balancing is a 
feature that was developed for Rocket Queue in order to ensure 
that whenever a new item is inserted into the queue, the items are 
reorganized in such a manner that the tree of filled cells (i.e. the 
cells filled with an item) is balanced. The tree balancing feature is 
very common for binary trees in informatics theory too [33, 34]. 

Fig. 14 depicts the Heap Queue architecture layered into 
levels. Each level consists of one Control Unit (CU) and various 
number of Item Storage units (IS). One IS unit can be used for 
preserving of one item and one number that is used for the tree 
balancing feature. Each subsequent level contains two times more 
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IS units than the previous one. The Control Units communicate 
with other Control Units from neighboring levels. This 
communication is used for propagation of instruction from upper 
levels below and for items exchanges between levels. Since one 
Control Unit manages several IS units, the selection of particular 
IS unit is performed according to address provided by the Control 
Unit. The first three levels use registers for implementation of the 
IS units due to too small memory sizes. All the other levels are 
using dual-port RAM memories for implementation of IS units. 
The Control Unit of the first level serves as an interface of the 
whole queue to the external environment. It provides the first item 
(stored in the IS of level 1) as an output, which represents the 
item with the minimum/maximum sorting value among all items 
inserted into the queue [33, 34]. 

One can also notice that the Control Unit performs a 
combination of several Sorting Nodes employed in heapsort 
algorithm displayed in Fig. 13. The reason is that each Sorting 
Unit would require to instantiate its own comparator, and since 
comparators are relatively resource expensive, the merging of 
several Sorting Units into a single Control Unit saves significant 
portion of combinational logic within the queue [30, 31]. 

 
Fig. 14. Top level module for quad-core version of the scheduler [33, 34]. 

Since the Heap Queue architecture uses RAM memory instead 
of registers, it is no longer possible to find and remove any item 
within the queue in a reasonable (and constant) time. The reason 
is that with registers, the Rocket Queue architecture is able to read 
all registers within the same level simultaneously in one clock 
cycle [30, 31]. However, with RAM memory it would be needed 
to sequentially read the memory one item per clock cycle. 
Therefore, the Heap Queue architecture allows removing only the 
first item (at the top of the queue) from the queue. Depending on 
the usage of the MIN/MAX queue, this limitation may be 
acceptable or not. Thus, the Heap Queue architecture is suitable 

only for those cases, where only the item with the MIN/MAX 
sorting values are needed to be removed (e.g. scheduling of hard 
real-time tasks and Dijkstra’s algorithm). For other cases, the 
Rocket Queue architecture remains to be the optimum solution for 
hardware acceleration (e.g. Worst-fit memory allocation 
algorithm) [33, 34]. 

The Heap Queue architecture is very similar to the DP RAM 
Heapsort architecture [18]. However, the major difference 
between these two architectures is that the DP RAM Heapsort 
architecture lacks any tree balancing techniques, which can cause 
data overflows if items are inserted without simultaneous item 
removals. The Heap Queue has reused the tree balancing 
technique from the Rocket Queue architecture [30, 31]. Thus, the 
Heap Queue architecture represents a combination of Rocket 
Queue and DP RAM Heapsort architectures into a novel 
architecture that uses the best advantages from both former 
architectures [33, 34]. 

The items used in Heap Queue consist of two values – ID and 
DATA. The ID is used for identification of the item and the DATA 
is used for sorting the items within the queue. The EDF algorithm 
sorts tasks, where each task has its unique ID and one deadline 
value. Therefore, the implementation of EDF algorithm is 
achieved when Heap Queue item represents one EDF task, which 
means: 

 
• ID of the item in Heap Queue is used as the task ID in 

EDF-based Ready Tasks module. 
• DATA of the item in Heap Queue is used as the deadline 

value in EDF-based Ready Tasks module. 
• schedule_task operation of EDF is using the INSERT 

instruction of Heap Queue. 
• kill_task operation of EDF is using the POP instruction of 

Heap Queue. 

5. Verification 

The proposed task scheduler and its variations were described 
in SystemVerilog language and then, verified by simulations in a 
form of a coprocessor unit. The following variations of the 
scheduler were verified: 

• Proposed task scheduler based on Heap Queue for dual-
core CPUs 

• Proposed task scheduler based on Heap Queue for 
quad-core CPUs 

• Existing task scheduler based on Systolic Array 
• Existing task scheduler based on Shift Registers for 

dual-core CPUs 
 

Besides SystemVerilog language, a simpler version of 
Universal Verification Methodology (UVM) was used for the 
verification phase as well. Since the interface of our coprocessor 
unit is relatively simple, the UVM usage could be simplified too. 
In this case, one transaction in UVM is just one instruction 
performed in two clock cycles and thus, there is no need to use 
agents for interfacing the device under test (DUT). We used only 
one test procedure generating constrained random inputs, 
predictor and scoreboard. The test procedure is generating 
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millions of instructions with fixed opcode and UID but with 
randomized sorting values. The predictor is a module that predicts 
the DUT output according to the inputs (it behaves just like a 
DUT but at higher level of abstraction similar to high-level 
software languages). The description of the predictor is pure 
sequential and high level. The predictor uses SystemVerilog 
queue structure and sort() function for ordering the items in the 
queue. The testbench used for the verification is shown in Fig. 15. 

The correct behavior of all the designed coprocessors was 
verified through 1 000 000 test iterations, each consisting of 510 
instructions randomly generated by the test procedure. In this test, 
50% of instructions were schedule_task and the other 50% of 
instructions were kill_task. Full capacity of the Ready Tasks 
module was used in these tests. The following configuration 
parameters were used for the coprocessor verification: 8-bit ID 
values, Ready Queue Capacity set to 255 and 32-bit width of 
random deadline values.  

 

Fig. 15.  Test bench architecture. 

6. Synthesis results 

We have performed an FPGA synthesis of four task schedulers 
in total. Two of them are the proposed task schedulers based on 
Heap Queue (Proposed Solution CPU2 is a version designed for 
two CPU cores and Proposed Solution CPU4 is designed for four 
CPU cores). The other two solutions are existing schedulers, 
Existing SA Solution CPU1 and Existing SR Solution CPU2 from 
[26-28]. The Existing SA Solution CPU1 is based on Systolic 
Array architecture and supports only one CPU core. The Existing 
SR Solution CPU2 is based on Shift Registers architecture and 
supports two CPU cores using the semaphore approach [26-28]. 
The target device for the synthesis was Intel FPGA Cyclone V 
(5CSEBA6U23I7), and the clock frequency of 100 MHz was 
targeted. A comparison has been performed for Adaptive Logic 
Module (ALM) consumption. 
 In Table II, the comparison of ALM consumption for various 
maximum numbers of tasks is presented, where all four 
schedulers are compared. The Ready Queue Capacity number 
represents the configuration of Ready Queue in the scheduler, 
which defines the maximum number of tasks that can be stored 
into Ready Queue of the scheduler. The Ready Queue capacity is 
varying from 31 to 32767 and bit width of task ID is always the 
minimum possible (e.g. 5 bits for 31 tasks or 6 bits for 63 tasks). 
The total number of tasks that can be stored into the scheduler are 
increased by two for the Proposed Solution CPU2 and by four for 
the Proposed Solution CPU4 due to the storage of tasks in the 
Running Tasks module. The deadline bit-width is 32 for all 
schedulers. The synthesis of the existing solution was not 
successful for higher Ready Queue Capacities due to too high 

consumption of the ALM resources.  

TABLE II.  CONSUMPTION OF ALM RESOURCES 

Ready 
Queue 

Capacity 

Proposed 
Solution 

CPU2 

Proposed 
Solution 

CPU4 

Existing SA 
Solution 

CPU1 

Existing SR 
Solution 

CPU2 

31 1 544 1 624 2 458 3 629 

63 1 968 2 058 4 874 6 906 

127 2 296 2 391 10 119 13 754 

255 2 913 3 011 21 757 26 255 

511 3 403 3 503 - - 

1023 3 801 3 906 - - 

2047 4 312 4 418 - - 

4095 4 492 4 600 - - 

8191 5 092 5 191 - - 

16383 5 592 5 702 - - 

32767 6 163 6 283 - - 

 
In Table III, the comparison of RAM bits consumption for 

various maximum numbers of tasks is presented, where all four 
schedulers are compared. The existing scheduler based on 
Systolic Array does not consume any RAM bits in FPGA because 
this architecture simply does not use any memories as storage of 
scheduled tasks, but only registers. One can see that the 
consumption of RAM bits for the proposed task schedulers is 
increasing exponentially. This is expected because the Ready 
Queue Capacity is increasing exponentially as well. Thus, the 
memory consumption scales in fact linearly with respect to this 
parameter. 

TABLE III.  CONSUMPTION OF RAM RESOURCES 

Ready Queue 
Capacity 

Proposed 
Solution CPU2 

Proposed 
Solution CPU4 

Existing 
Solutions 

31 912 912 0 

63 2184 2184 0 

127 4864 4864 0 

255 10344 10344 0 

511 21584 21584 - 

1023 44600 44600 - 

2047 91680 91680 - 

4095 187976 187976 - 

8191 384568 384568 - 

16383 785960 785960 - 

32767 1605144 1605144 - 
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In addition to the FPGA synthesis, we also performed ASIC 

synthesis for the same task schedulers (except for Existing SR 
Solution CPU2), in order to analyze their scalability when 
implemented in ASIC as well. For this purpose, we decided to use 
28 nm TSMC High Performance Mobile process with 2 GHz 
clock frequency and 0.9 V power supply voltage. The chip area 
(in µm2) results are displayed in Table IV. The results show that 
the proposed task schedulers require lower chip area than the 
existing Systolic Array task scheduler as long as the Ready Queue 
Capacity is 63 or more. 

Since the Heap Queue architecture is using SRAM-based 
memories of various depths, too small memories are synthesized 
into flip-flops. One flip-flop bit is significantly less efficient than 
one SRAM bit in terms of chip area and power consumption. The 
Heap Queues with smaller capacity are using mostly flip-flop 
based memories, which causes that the overall results are 
relatively poor. However, as queue capacity is increasing, most of 
the memory bits are realized by SRAM. Therefore, the Heap 
Queue outperforms other architectures the most when higher 
queue capacity is selected. 

TABLE IV.  CHIP AREA CONSUMPTION 

Ready Queue 
Capacity 

Proposed 
Solution CPU2 

Proposed 
Solution CPU4 

Existing SA 
Solution CPU1 

31 12 007 12 215 11 167 

63 21 597 21 782 23 271 

127 39 877 40 061 48 097 

255 45 990 46 202 98 945 

511 62 545 62 767 203 085 

1023 81 177 81 390 415 358 

2047 133 647 133 873  850 377 

4095 236 564 236 794 1 738 448 

 
The following table (Table V) shows the total power 

consumption for the synthesized task schedulers with respect to 
the Ready Queue Capacity. The total power consumption 
represents a sum of static power consumption (i.e. leakage power) 
and dynamic power consumption. For the dynamic power 
consumption, it is assumed that the queues are actively used once 
every 20 clock cycles (i.e. every 20th instruction of CPU is a valid 
instruction of the tested coprocessor). The results are presented in 
microwatts (μW). 

TABLE V.  TOTAL POWER CONSUMPTION 

Ready Queue 
Capacity 

Proposed 
Solution CPU2 

Proposed 
Solution CPU4 

Existing SA 
Solution CPU1 

31 2 357 2 392 3 129 

63 4 148 4 184 6 417 

127 6 883 6 925 13 069 

Ready Queue 
Capacity 

Proposed 
Solution CPU2 

Proposed 
Solution CPU4 

Existing SA 
Solution CPU1 

255 8 171 8 214 26 953 

511 9 866 9 909 55 045 

1023 11 721 11 760 111 747 

2047 18 206 18 243 234 515 

4095 30 765 30 807 478 279 

 
The overall comparison of the synthesized task schedulers is 

presented in Table VI. One can conclude that the proposed task 
schedulers are more efficient in terms of chip area costs in ASIC 
implementation and ALM consumption in FPGA than the existing 
task scheduler. The resource costs of the proposed scheduler 
designed for four CPU cores are only negligibly higher than the 
costs of the scheduler designed for two CPU cores. However, the 
performance gain caused by running four tasks in parallel instead 
of only two tasks is significant, as the total performance can be 
increased by 100%. Both proposed task schedulers are better than 
the existing task scheduler offering higher performance due to the 
fact that the proposed task schedulers are compatible with running 
of two or four CPU tasks in parallel, increasing the performance 
of the whole real-time system to 200% (when two CPU cores are 
used) or to 400% (for four CPU cores). 

If we compare the proposed HW-implemented task schedulers 
with software implementation of EDF, it is clear that the proposed 
schedulers execute EDF instructions in constant and much shorter 
time regardless of the number of tasks that are scheduled within 
the system, which is impossible for software implementations of 
EDF schedulers. 

From the results presented in Table VI, it is expected that the 
proposed solution is also applicable and scalable in terms of chip 
area costs for even higher amount of CPU cores too. However, 
the design effort due to design complexity, the maximum number 
of CPU stalls in a row, the worst-case execution time and critical 
path length (which affects the maximum clock frequency) are the 
most limiting factors for scaling to more than four CPU cores. 

 

TABLE VI.  OVERALL COMPARISON OF THE SCHEDULERS 

Criterion 
Scheduler Version 

software 
scheduler 

existing  
SA scheduler 

proposed  
 schedulers 

Chip Area 
Costs 

no 100% 46% * 

Best Case 
Execution Time  

tens of clock 
cycles 

2 clock cycles 2 clock cycles 

Worst Case 
Execution Time  

thousands of 
clock cycles 

2 clock cycles 2 clock cycles 

CPU Cores 1 1 2 or 4 

CPU 
Throughput 80% to 98% 100% 200% or 400% 

* applies for the Ready Queue Capacity parameter of 255. 
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7. Discussion and conclusion 

Two different improvements of hardware-implemented EDF-
based task schedulers were proposed and presented: resource cost 
decrease caused by usage of Heap Queue sorting architecture for 
implementation of Ready Queue in the scheduler and overall real-
time system performance increase caused by providing a support 
for CPUs that can execute two or four real-time tasks 
simultaneously. 

The synthesis results show that the change of sorting 
architecture of Ready Queue module from Systolic Array to Heap 
Queue can reduce the resource costs of the task scheduler by 84% 
of ALMs in FPGA and 84% of chip area in ASIC, depending on 
the scheduler capacity. 

The second improvement is the added support of CPUs that 
can run two or four tasks (programs) in parallel. Due to the 
parallelism offered by such CPUs, the overall real-time system 
performance is significantly improved at a cost of negligible 
increase of resource costs needed to implement this support. In 
multi-core systems, a conflict can occur whenever at least two 
CPU cores attempt to use the coprocessor at the same clock 
period. Our research was focused on solving this problem 
efficiently in terms of both performance, determinism and chip 
area costs. The architecture is based on semaphore approach that 
solves conflicts whenever they occur by selecting one core as a 
winner and locking the scheduler for the selected core, while the 
other cores are losers that are stalled in the meantime. Each core 
is stalled at most three times in a row because the selection of the 
winner and loser is always switched deterministically. This 
ensures fairness of the approach in any cases too. The semaphore 
approach can be theoretically further used for even more CPU 
cores (e.g. 8 or 16), however, the design and timing complexity of 
the semaphore is not very well scalable for such extensions at the 
moment. The proposed solution is definitely not suitable for 
larger numbers of CPU cores (e.g. 16 or more). 

In terms of timing, all presented schedulers were synthesized 
for 100 MHz clock frequency in FPGA and 2 GHz clock 
frequency in 28 nm ASIC. These schedulers perform each 
instruction (task schedule or task kill) in constant time, regardless 
of the current amount of tasks present in the scheduler and the 
scheduler capacity (i.e. the maximum number of tasks). Both 
response time and throughput are two clock cycles. Compared to 
the software implementation of EDF algorithm, this is a huge 
benefit in terms of scheduling performance and system 
determinism. 

According to the synthesis results, it has been shown that the 
proposed task scheduler improvements based on using new Heap 
Queue architecture and support of two or four CPU cores can be 
used for significant improvement of performance, determinism 
and reliability of task schedulers used in systems and applications 
that belong to safety-critical and hard real-time domain. 
Consequently, the whole real-time system using such an 
improved task scheduler would be improved too. For example, 
more tasks could be executed without causing deadline misses, or 
these tasks could contain more time-consuming features, while 
the execution on time would be still guaranteed by the improved 
task scheduler and due to the fact that more powerful CPUs could 
be used. 

The proposed task schedulers were designed in a form of 
coprocessor units that can be implemented either together with an 

open-source CPU (e.g. RISC-V CPUs) on a single ASIC chip, or 
the coprocessor can be implemented in FPGA that is closely 
connected to an existing CPU (typically called FPGA SoC). The 
proposed architecture of task scheduling coprocessors is designed 
to be versatile. The architecture remains unchanged regardless of 
what application is the scheduler used for, provided that the 
maximum number of tasks and deadline bit width parameters are 
large enough. 

The proposed task schedulers are not intended to fully replace 
existing software implementations of operating systems, rather to 
be combined with these software solutions in a reasonable way. 
This means that selected functions of software-implemented 
operating systems can call the instructions of the proposed 
coprocessors that implement the hardware-accelerated task 
scheduling. The proposed schedulers do not distinguish between 
periodic, aperiodic and sporadic tasks. All tasks are scheduled and 
prioritized according to their deadlines only, regardless of 
whether the task is periodic or not. The periodical behavior is 
supposed to be handled on higher level (in software part of the 
OS). Thus, whenever a new task is scheduled using the 
schedule_task instruction, it is expected to be executed only once 
from the view of the proposed HW-implemented task scheduler. 
Periodic tasks can be achieved by software extension of the HW-
implemented task scheduler by periodic usage of the 
schedule_task instruction in the software part of the operating 
system. Task synchronization and sharing mechanisms are not 
considered within the proposed HW-implemented task scheduler 
neither, and it is expected to handle these problems by software 
part of the OS. The software part can use the kill_task instruction 
to temporarily deschedule a running task followed by a 
schedule_task instruction using a new deadline for the task. In 
this way, any running task that is blocked by other tasks with later 
deadlines can be easily rescheduled in order to become 
unblocked. 

From reliability point of view, the hardware implemented 
features can be used for increased reliability of real-time systems, 
as they can perform the same algorithm that can be implemented 
in software. Thus, a redundancy can be performed by combining 
the software implementation with hardware realization relatively 
easily as well [38, 39]. 
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