

Novel efficient on-chip task scheduler for multi-core hard real-time systems

L. Kohútka, V. Stopjaková*
Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology in Bratislava,
Slovakia

A B S T R A C T

This article presents an efficient hardware architecture of EDF-based task scheduler,
which is suitable for hard real-time systems due to the constant response time of the
scheduler. The proposed scheduler contains a queue of ready tasks that is based on a
new MIN/MAX queue architecture called Heap Queue, which is inspired by Shift
Registers, Systolic Arrays, heapsort algorithm, the Rocket Queue architecture and dual-
port RAMs. The instructions of the proposed scheduler have throughput of one
instruction per two clock cycles regardless of the actual number of tasks managed by the
scheduler, and regardless of the scheduler capacity. The developed task scheduler is
optimized for low chip area costs, which leads to lower energy consumption. The Heap
Queue-based architecture has constant time complexity due to two clock-cycle response
time of the instructions and therefore, the architecture is highly deterministic. The
scheduler supports CPUs that can execute 1, 2 or 4 tasks simultaneously, and contains an
implementation of clever and efficient logic that can handle conflicts caused by the fact
that the scheduler is used by all CPU cores at the same time. The proposed scheduler
was verified through SystemVerilog UVM-like simulations that applied billions of
randomly generated test instructions. Achieved ASIC (28 nm) and FPGA synthesis
results are presented and compared. More than 86% of the chip area and 93% of the total
power consumption can be saved if Heap Queue architecture is used in hardware
implementations of EDF algorithm. Advantages and disadvantages of the proposed task
scheduler are discussed through the comparison to the existing solutions.

1. Introduction

Real-time systems represent a category of embedded systems
that are processing real-time tasks. Success of real-time tasks
depends not only on the computation result itself but also on time
when these tasks are completed. Too late completion of hard real-
time tasks may represent the same failure as an incorrect result of
the task. Thus, reliability of real-time systems means that the
tasks are completed in correct time [1, 2].

Task scheduling algorithms are usually containing data sorting
in a form of MIN/MAX queues, which are typically implemented
in software. Software implementations are often sufficient for
small and simple real-time systems with small amount of tasks.
Nevertheless, increased complexity of systems and the number of
real-time tasks require higher average performance and less
varying latency caused by data sorting (i.e. constant response
time). Constant response time is especially important for safety-
critical systems. Hard real-time systems are usually also safety-
critical systems, and vice versa, safety-critical systems usually
include hard real-time systems. Due to this, the requirements for
meeting deadlines of tasks can be also seen as reliability
requirements because missing a deadline is also considered as a
failure of the systems. Even if a micro-controller with the highest
possible performance was used, there would still be no guarantee
that all tasks will meet their deadlines. Therefore, a dedicated task
scheduler that provides scheduling of real-time tasks should be
used in real-time / safety-critical systems [3-7].

The constant latency of all operations within the system,
including data sorting, is very important for more reliable
scheduling in hard real-time systems. In such cases, software

implementations do not fulfill all the requirements because
software algorithms for data sorting do not operate in constant
time. Alternative solutions are based on hardware acceleration,
thus the data sorting and MIN/MAX queues can be implemented
in a digital integrated circuit (e.g. ASIC or FPGA) [8-31]. Several
hardware architectures designed for data sorting or
implementation of MIN/MAX queues have been developed so
far. However, they all suffer from consuming too many LUT
(Look-up Tables) resources and they have relatively high chip
area costs in ASIC (in addition to FPGA) technologies as well
[10-28].

The research presented in this article is focused on designing
an improved version of a coprocessor that implements task
scheduling based on the Earliest-Deadline First (EDF) algorithm
that is described in [4]. The EDF algorithm can be also seen as a
dynamic version of deadline-driven scheduling algorithms [32].
The improvements are focused on increased performance together
with system determinism on one side, and the reduced hardware
costs (i.e. chip area or FPGA utilization) together with power
consumption on the other side. This is achieved by
implementation of an efficient hardware-based data sorting in a
form of MIN/MAX queues, which requires reduced amount of
logic resources needed. For this purpose, a new architecture
called Heap Queue was developed in order to increase the
scalability of data sorting implemented in hardware so that more
items can be efficiently sorted [33, 34]. This architecture is
suitable for usage in task scheduling for real-time systems, where
the overall resource costs of the scheduling were significantly
reduced too.

This article also deals with the performance issue of modern
CPUs that usually run multiple tasks in parallel due to multi-core
paradigm adopted for CPU design. This brings new obstacles and

2

challenges for hardware-accelerated task scheduling and
especially, for task scheduling suited for hard real-time systems.

The structure of the paper is as follows. Section 2 describes
related work on task schedulers for hard real-time systems.
Section 3 contains related work on sorting MIN/MAX queue
architectures that can be used for implementation of real-time task
schedulers. In Section 4, two new task schedulers are proposed.
Verification of the described solutions is described in Section 5.
Section 6 contains synthesis results in a form of tables. These
results are discussed and a conclusion of the paper is presented in
Section 7.

2. Related work on task schedulers for real-time systems

Task scheduling as the main part of operating systems is
responsible for deciding which task (i.e. process or thread) is
running and executed by CPU in what time. These decisions
highly depend on the algorithm that is used for the scheduling.
While classic operating systems usually schedule tasks according
to their priorities, real-time systems should create the schedule
according to the deadlines of the tasks, because it is critically
important to meet the deadlines of all hard-RT tasks. The most
common and popular algorithm used for scheduling of hard-RT
tasks is called Earliest-Deadline First. This algorithm simply sorts
all tasks according to their deadlines so that the task with the
earliest deadline (i.e. with the lowest deadline value) is selected
for execution. Therefore, the MIN/MAX queues are ideal for
implementation of the EDF algorithm [4, 35, 36].

An ideal real-time task scheduler always schedules the
optimum sequence of tasks so that all tasks will be computed and
completed before their deadlines are met. In addition to this, the
ideal real-time task scheduler has no overhead on CPU that
executes the tasks. The more the CPU is used for the scheduling
algorithm, the less effective it is for computation and completion
of the scheduled tasks. Of course, a real scheduler will always
need to consume some amount of CPU time because it is needed
to spend at least one CPU clock cycle to write input data to the
scheduler or read the output data from the scheduler.
Nevertheless, for the performance reasons, we would like to
consume as little CPU time as possible. In order to keep the
whole embedded system deterministic and well predictable,
constant amount of spent CPU time is targeted regardless of any
parameters, e.g. the number of tasks that are currently scheduled
or the maximum possible number of tasks of the system (i.e. task
queue size).

In our previous work [24], a novel real-time task scheduler
based on EDF algorithm and implemented in a form of a
coprocessor unit has been developed. A comparison of hardware
and software implementations in terms of performance and
efficiency of the scheduler was done and achieved results were
presented. The coprocessor uses instructions consuming two
clock cycles of the CPU regardless of the current and the
maximum number of tasks in the system.

Then, we designed and proposed an extended version of the
scheduler that is suitable for dual-core CPUs. Two approaches for
solving of conflicts (i.e. situations when multiple CPU cores want
to use the coprocessor at the same time) were designed and
compared [26]. After that, we added a support for scheduling non-
real-time tasks in the same scheduler by using priorities instead of
deadline values [27]. Finally, an improved form of the scheduler

optimized in terms of timing precision, chip area costs and power
consumption was proposed in [28].

Beside of our coprocessors, there are also other solutions
existing. In [19], EDF algorithm is also used but with the
maximum number of tasks being only 64, while the other
approach uses priorities instead of deadlines that is not optimal
for hard real-time systems [20]. There are also other solutions
based on priorities or static scheduling [10, 21, 22]. The
scheduler, we have already presented, is an efficient solution for
simpler embedded systems containing hard real-time tasks and
employing one single-core CPU. However, as systems grow in
their complexity, more performance is required, which often leads
to use of multi-core CPUs. In that case, a more complex task
scheduler is needed in order to provide multi-core CPU support.
The suitability of the EDF algorithm was deeply analyzed, and it
was concluded that EDF is suitable for uniform multiprocessor
systems [19]. Therefore, we decided to design completely new
real-time task scheduling coprocessor that would be optimal for
either dual-core or quad-core real-time embedded systems.

3. Related work on MIN/MAX queues

Deadline-based task schedulers for real-time systems perform
task sorting according to their deadlines very intensively for
implementation of decision, which task to select for execution.
Therefore, data sorting in a form of MIN/MAX queues represents
the core functionality of task schedulers implemented in hardware
[19, 20, 24, 27].

The research presented in this paper is focused on data sorting
in real-time systems, where the lowest value of the sorted data
(i.e. the earliest deadline) is needed. Thus, the goal is to
implement the MIN queue. These queues contain items that are
being sorted. The items consist of these values [33, 34]:

• SORT_DATA – the items shall be sorted according this
value. Thus, if a queue is the MIN queue, then the
output of the queue is the item with the lowest
SORT_DATA value. If a queue is the max queue, then
the output of the queue is the item with the highest
SORT_DATA value.

• PAYLOAD – a bit vector that represents some data that
is relevant to the application. The payload does not
affect the sorting decisions. This value can also serve as
identification number of the item or as a pointer/address
to memory.

• VALID – this is a 1-bit value that informs, whether the
item is valid or empty. If this value is high (i.e. logic 1),
then the item is valid. Otherwise, the item is empty. If
the output of the queue is an empty item (i.e. the first
item within the queue is empty), then the whole queue
is empty.

The MIN queue must provide these three instructions

identified by 2-bit opcode [33, 34]:
• 00 – NOP – no operation is performed. The output of

the queue will remain unchanged. This is used to keep
the accelerator idle. This feature is required.

• 01 – INSERT – a new item is inserted into the
MIN/MAX queue. The insertion is performed in such a

3

manner that the items in the queue remain sorted so that
the item with lowest/highest SORT_DATA remains to be
the output of the MIN/MAX queue. This feature is
required.

• 10 – POP – the first item within the queue is removed
from the queue. The remaining items update their
positions so that the second item becomes the new first
item of the queue. Thus, the output of the queue is
updated to provide the new first item as a result. This
feature is required.

The attributes of the MIN queue are described from the

hardware as well as real-time computing points of view. These
attributes and their requirements are [33, 34]:

• Constant instruction response time (the number of clock
cycles needed for instructions to provide an updated
output). The requirement is to have constant time
complexity, i.e. all instructions of the accelerator are
providing output in constant number of clock cycles.
This means that the clock cycles amount does not
change either by having various items count in the
queue (i.e. changing actual number of values in the
queue) or by having various queue capacity. Constant
response time improves predictability and determinism
of the whole real-time system [1].

• High performance. This attribute depends on the clock
frequency multiplied by the amount of clock cycles
needed for usage of one instruction. The clock
frequency depends on the critical path length of the
accelerator as well as the critical path of other parts of
the system within the same clock domain. There is no
reason to achieve significantly lower critical path length
for the accelerator than for the rest of the clock domain.
The number of clock cycles needed for calling the
accelerator instructions should be as low as possible.

• Low chip area costs. This attribute depends on the
implementation technology. For ASICs, this is
evaluated either by the number of transistors used or by
real dimensions of the manufactured chip. For FPGAs,
this is evaluated by the number of logic resources (e.g.
LUTs, registers and RAM bits), depending on the
selected FPGA device.

Several architectures for data sorting in MIN/MAX queues

have been developed, and can be used for task scheduling of real-
time systems. Nevertheless, they suffer from scalability issues due
to increasing critical path length and resource cost with regards to
increasing capacity of schedulers (i.e. the maximum number of
tasks supported). The most popular architectures include FIFO
with MUX Tree [10, 11, 14, 20], Shift Registers [17, 19, 22, 23],
DP RAM Heapsort [18] and Systolic Array [24-29].

The FIFO approach is the least scalable in terms of critical
path length due to the complexity of the MUX Tree part, which
contains too long critical path (if higher capacity is selected). It is
also very inefficient from chip area point of view [10, 11, 14, 20].

The Shift Registers architecture is more efficient approach
than the previous one but there is still a problem with the critical
path length. This architecture consists of homogenous cells,

where each cell is composed of a comparator, control logic and a
set of registers to store one item. The cells can exchange items
with their neighbours, where each cell has two neighbours (they
are connected within one line). All cells are receiving the same
instruction simultaneously from the input of the queue. The more
cells the queue contains, the longer the critical path is due to the
bus width for providing instructions simultaneously and due to
the control signals exchange between all cells. Thus, this
architecture can be used for small capacities only. An example of
Shift Registers architecture containing eight cells is displayed in
Fig. 1 [17, 19, 22, 23].

Fig. 1. Shift Registers architecture example [17].

DP RAM Heapsort is relatively efficient sorting architecture due
to adoption of dual-port RAM for storage of items within the
architecture. However, it is not possible to perform INSERT or
POP instructions independently. This architecture can perform
POP and INSERT instructions only together. Therefore, this
architecture is not usable for implementation of MIN/MAX
queues [18].

 Systolic Array architecture is very similar to the Shift
Registers. However, the critical path problem is solved by
pipelining. It contains homogenous cells that are connected within
one line. Each cell is a neighbour to one other cell to the left and
to the right, except the first and the last cell in the queue. The first
cell is the only cell that provides its output to the output of the
whole queue and that receives instructions from the input of the
queue. The instructions are gradually propagated from the first
cell to the last cell (one cell per each clock cycle) in the similar
way as instructions are propagated through pipeline stages in the
pipelined CPUs [24-29].

Fig. 2 shows an example of the Systolic Array architecture
containing 15 cells. The first cell from the right is the first cell of
the queue, thus it behaves as an interface to the external
environment too. The only signals propagated in parallel are clock
and reset signals [24-29].

Fig. 2. Systolic Array architecture example [24-29].

4

Each cell of the Systolic Array represents one pipeline stage
including pipeline register. Thus, it takes N clock cycles to
propagate one instruction through the whole structure, where N is
the number of cells. However, due to the reason how pipelining
works, each cell is executing a different instruction at the same
time. Furthermore, the output of the whole queue is updated in the
beginning already and thus, it takes only 2 clock cycles to read an
updated output of the queue (1 clock cycle is needed to update the
first cell and 1 clock cycle is used for reading from the updated
cell). The MIN/MAX queue based on this architecture can accept
a new instruction every 2 clock cycles, i.e. the instruction
response time is 2 (regardless of the cell count) [24-29].

The Rocket Queue architecture was designed as an
improvement to the Systolic array architecture inspired by DP
RAM Heapsort. The Rocket Queue is structured into levels. There
are two types of levels: duplicating levels and merged levels. An
example of the Rocket Queue architecture is depicted in Fig. 3,
where three duplicating levels and 11 merged levels were used.
The amount of duplicating levels may be changed to lower or
higher value. Nevertheless, more than 5 duplicating levels are not
recommended due to the increasing critical path length [30, 31].

One of the most resource consuming parts of the queues is a
comparator. While Systolic Array and Shift Registers are using
one comparator per each cell, the Rocket Queue architecture
employs a single comparator for all cells within the same level.
Thus, the number of comparators in Rocket Queue depends on the
amount of levels, not on the number of cells, which leads to lower
resource costs of the Rocket Queue architecture [30, 31].

Among these architectures, only the Systolic Array and
Rocket Queue architectures meet the requirements described in
Section 2. Within these two architectures, the Rocket Queue is
more efficient in terms of resource costs and therefore, it is the
most suitable architecture among all existing ones [30, 31].
Furthermore, Systolic Array is able to remove an item from any
position according to its ID, which is necessary for flexibility and
extensibility of task schedulers. For example, inter-task
synchronization may need to temporarily remove some tasks from
the queue of ready tasks or reschedule a task (i.e. remove the task
and schedule it again with other deadline/priority).

Fig. 3. Rocket Queue architecture with three duplicating levels [30, 31].

4. Proposed task scheduler

This paper presents two versions of tasks schedulers. Both
versions implement EDF algorithm, which is known to be
optimum solution for hard RT systems in terms of its decision-

making [1-4]. The difference between these two versions is that
one version supports CPUs that can execute two tasks in parallel
(called dual-core CPUs) [26-28], while the second version of the
scheduler supports CPUs that can execute four tasks in parallel
(called quad-core CPUs) [37].

The proposed schedulers are using one global EDF-based
schedule that is shared for all CPU cores. The top M tasks with
the earliest deadline values are selected for running at the present
time, where M is the number of CPU cores. The users of the
proposed schedulers do not assign real-time tasks to specific CPU
cores, like it is common in hypervisors nowadays. Instead of that,
the CPU power (i.e. computing resources) are shared for all real-
time tasks, which balances the usage of all CPU cores
automatically, resulting in the maximum CPU utilization at all
times.

The proposed task schedulers are designed as a coprocessor
unit that provides two instructions:

• schedule_task – this instruction is used to add and
schedule a new task to the scheduler. The scheduler
updates the list of scheduled tasks and if the new task has
a stricter deadline constraint than any of the currently
running tasks, then a preemption is performed in the
scheduler. If a preemption occurs, the scheduler informs
the relevant CPU core to perform a task switch.

• kill_task – this instruction is used to deschedule one of
the existing scheduled task among the currently running
tasks. The running task is removed from the scheduler
and the task with the earliest deadline among all ready
tasks is selected for execution.

4.1. Top module of the scheduler

The top module of both versions of the task scheduler (i.e.
dual-core scheduler and quad-core scheduler) is consisting of the
following three components:

• Ready Queue module – contains ready tasks (i.e. tasks
that are ready for execution but are not running)

• Running Tasks module – contains running tasks
• Semaphore module – handles conflicts of attempts to use

the task scheduler by more CPU cores at the same time
The organization of these three blocks within the top module

for dual-core version of the scheduler is described by a block
diagram displayed in Fig. 4. The instructions coming from CPU
cores are at first being processed by the Semaphore unit that is
responsible for deciding, which CPU core has granted access to
add or remove a task at the moment, and which CPU core has to
wait for two clock cycles. The instruction of the winning CPU
core is being provided to the next component – Running Tasks
component which is handling the tasks that are supposed to be
executed at the moment. Communication with the Ready Tasks
component is performed only through the Running Tasks
component, which sends to the Ready Tasks component those
tasks that are preempted. This component also reads the task with
the lowest deadline value among the ready tasks (from the Ready
Tasks). The control signals from Semaphore module are driven to
the Ready Tasks indirectly through the Running Tasks module.

5

Fig. 4. Top level module for dual-core version of the scheduler.

The top module of the quad-core version of the scheduler is
very similar to the previously presented dual-core version. The
only difference is that the interfaces of the top module,
Semaphore and Running Tasks components are extended for
communication with four CPU cores. The block diagram for the
quad-core version of the scheduler is displayed in Figure 5.

Fig. 5. Top level module for the quad-core scheduler.

4.2. Running Tasks module

The Running tasks module contains control logic that is
responsible for decision whether to keep actual tasks in the cells
or to perform any change. Whenever any of the running tasks is
killed, the task with the earliest deadline among the ready tasks is
inserted to the Running tasks module. Whenever a new task is
being added to the system, a situation called preemption can
occur depending on the deadline of the new task and deadlines of
the running tasks. If the new task has earlier deadline than any of
the running tasks, then this task replaces the running task with the
highest deadline. The replaced task is called preempted task and
execution of the preempted task should be paused. If preemption
occurs, then the Ready tasks queue stores the preempted task,
otherwise the new task is inserted to the Ready Tasks module.
This module maintains two remaining tasks – running tasks (tasks
that are being executed by the CPU cores). The running tasks are
using different logic that ensures that there are no redundant task
switching operations. The new architecture is shown in Fig. 6,

where an example of killing Task 1 is presented. The CPU core 1
stops executing Task 1 and starts executing Task 3 (task with the
earliest deadline among the tasks in the Ready tasks queue), while
the CPU core 2 continues executing Task 2 without any change
[26-28].

Fig. 6. Example of task kill operation in Running Tasks [26-28].

The second example (illustrated in Fig. 7) is the case, when a
new task (Task 4) is added to the system. The new task has lower
deadline than the deadlines of the running tasks, and Task 1 has
higher deadline than Task 2 and therefore, the preemption occurs.
In the Running tasks queue, Task 1 is replaced by the new task
(Task 4) and inserted into the beginning of the Ready tasks queue.
In this way, we keep both CPU cores executing tasks with the
earliest two deadlines while eliminating all unnecessary
occurrences of task switching [26-28].

Fig. 7. Example of task add operation in Running Tasks [26-28].

Fig. 8 shows the logic circuit that implements the Running
Tasks module with support of two CPU cores. The circuit
contains four sets of registers (task ID of CPU core 1, task
deadline of CPU core 1, task ID of CPU core 2, and task deadline
of CPU core 2) and one 1-bit register (in the upper-right part of
the circuit) that remembers which of these two tasks has higher
deadline value. For this comparison, one comparator is used. The
second comparator is used for comparison of the task with the
higher deadline value with deadline of the new, incoming task.

CPU core 2

CPU core 1

Task 2

Task 1
Task 4 Task 3

CPU core 2

CPU core 1

Task 2

Task 3
Empty Task 4

Before killing
Task 1

After killing
Task 1

CPU core 2

CPU core 1

Task 2

Task 1
Empty Task 3

CPU core 2

CPU core 1

Task 2

Task 4
Task 3 Task 1

Before adding
Task 4

After adding
Task 4

6

The NAND and AND logic gates are used only for enabling of
the registers that hold the running tasks.

Fig. 8. Logic circuit of Running Tasks module.

For quad-core CPU support, the Running Tasks component
has to be extended so that it holds four tasks rather than only two
tasks. These tasks are the tasks that are supposed to be running in
the CPU cores. The dual-core version of the Running Tasks
component contained two comparators for comparison of the
deadlines between the running_task_for_core_1,
running_task_for_core_2 and the new_task provided from the
Control Unit. The decision logic within the Running Tasks
component needed only one clock cycle in dual-core version.

In quad-core version of the Running Tasks component, there
are five comparators needed. Due to the critical path length
requirements for the combination logic (mainly consisting of the
comparators), the decision logic is performed in two clock cycles.
In order to remember the temporary results from the first clock
cycle, additional (intermediate) registers containing two tasks and
two bits are needed. The first clock cycle is used for performing
two comparisons in parallel – compare running_task_for_core_1
to running_task_core_2, and compare running_task_for_core_3
to running_task_core_4. The tasks with the higher deadline
values are being stored to the intermediate registers and two
additional bits are used for storing the identification of the tasks

within this module. The second clock cycle replicates the original
logic that was used in the Running Tasks component designed for
dual-core CPUs. This means that the deadlines from the
temporary results (stored in intermediate registers) are compared
to each other and to the new task provided from the Control Unit.
According to these computations, preemption can occur, which
means that one of the running tasks can be preempted and
replaced by a new task. Regardless of the preemption occurrence,
one of those tasks is further provided to the Ready Tasks module
anyway [37].

4.3. Semaphore module

What if two or more CPU cores decide to add a new task or
kill an existing task at the exactly same time (clock cycle)? Let us
call such a situation a conflict. All previous approaches assumed
that there is always one request at a time. This assumption is
totally correct in single-core systems. However, the opposite is
true in multi-core systems. There can be very low probability of
such a situation. For example, if each CPU core uses custom

7

instructions of the coprocessor 1% of time (one instruction of the
scheduling per 100 instructions), then the probability of a conflict
occurrence is 0.01% for dual-core CPUs. So the conflict would
occur very rarely but still it has to be taken into account.

If a conflict occurs, it is resolved dynamically by the
semaphore module. This module is responsible for choosing
which CPU core can use the coprocessor at the corresponding
time. The second core will use the coprocessor 2 clock cycles
later and thus, it must be stalled for 2 clock cycles in that case.

The Semaphore module for dual-core CPU systems consists
mainly of multiplexers for selecting the instruction. In addition to
that, there is only one D Flip-Flop (DFF) added for remembering
whether the last conflict-winning core was CPU core 1 or CPU
core 2. In the case of a conflict occurrence, the multiplexer is also
controlled by the output of the DFF. The best-case execution time
is one clock cycle. However, it is important to keep in mind that
the main target is hard real-time systems, where the worst-case
execution time should be taken in consideration instead of the
best case or average execution time. The worst-case execution
time of the semaphore approach is four clock cycles because in
the worst-case scenario, a conflict occurs every clock cycle. Fig. 9
shows the logic circuit that implements Semaphore module
handling conflicts for two CPU cores.

Fig. 9. Semaphore module circuit for dual-core systems.

For quad-core systems, the situation is much more
complicated because there are more possible combinations of the
conflicts that may occur. Even bigger conflicts (i.e. three or more
CPU cores intending to use the coprocessor at the same time) can
occur too. There are eleven possible combinations of conflicts in
total, represented by the CPU core numbers. There exist six
versions of conflicts when two CPU cores are in conflict: CPU
core 1 and CPU core 2 conflict named as 1-2, CPU core 1 and
CPU core 3 named as 1-3, CPU core 1 and CPU core 4 named as
1-4, CPU core 2 and CPU core 3 named as 2-3, CPU core 2 and
CPU core 4 named as 2-4, CPU core 3 and CPU core 4 named as
3-4. These four versions of conflicts can occur when three CPU
cores are trying to use the scheduler at the same time: CPU core
1, CPU core 2 and CPU core 3 conflict named as 1-2-3, CPU core
1, CPU core 2 and CPU core 4 conflict named as 1-2-4, CPU core
1, CPU core 3 and CPU core 4 conflict named as 1-3-4 and CPU
core 2, CPU core 3 and CPU core 4 conflict named as 2-3-4. The

last possible combination is when all four CPU cores are trying to
use the scheduler at the same time, which is named as 1-2-3-4.

There are two requirements for the semaphore module,
primary and secondary. The primary requirement is that there is
specified a maximum possible number of delays (CPU stalls)
caused by the conflicts and that this number is relatively low.
Such a requirement is crucial because the scheduler is intended
for real-time systems. The secondary requirement is fairness from
the point of view of the CPU cores – each CPU core has
approximately the same amount of possibilities to win to use the
scheduler instantly [37].

The proposed solution for the new Semaphore module
consists of a 2-bit counter that is used for representation of four
states. These four states are called: 1234, 2143, 3412 and 4321.
Each of these states implicitly specifies the priority order that is
used for selecting a winner whenever any of the eleven possible
conflicts occurs. For example, the 1234 state means that the CPU
core 1 has higher priority than core 2, CPU core 2 has higher
priority than core 3, and CPU core 3 has higher priority than core
4. Whenever a conflict occurs, the state is changed to the next one
by incrementing the 2-bit counter. We decided to reduce the total
number of 24 possible permutations or priority orders to only 4
orders defined by the four states because in this way, the state
machine responsible for decision of which CPU wins the conflict
is much simpler, resulting in simpler design and smaller
hardware. The four orders were chosen so that these orders are
symmetric, fair and they are rotating after every conflict.
Whenever a conflict occurs, the order is changed to the next order
by updating the state machine moving from the current state to
the next state.

The states are specified by 2-bit counter in the following way
[37]:

• value “00” represents state/order 1234. The next value
is “01”.

• value “01” represents state/order 2143. The next value
is “10”.

• value “10” represents state/order 3412. The next value
is “11”.

• value “11” represents state/order 4321. The next value
is “00”.

All combinations of conflicts with respect to the actual state
and the corresponding winners are listed in Table I. Each line of
the table represents a possible scenario of conflicting CPU cores.
The columns represent the four possible orders, where one of
them is selected at a given time depending on the current state of
the state machine. One can observe that both requirements for the
Semaphore are met because the maximum possible number of
losses for any CPU core is three in a row (i.e. the CPU core can
lose 0, 1 2 or 3 times at most), and the winning of CPU cores is
evenly distributed. Due to the rotating behavior of states/orders, it
is guaranteed that one instruction will take 2M clock cycles in the
worst-case scenario (the case when all CPU cores want to use the
scheduler all the time), where M is the number of CPU cores. The
best-case scenario is 2 clock cycles. Thus, for quad-core CPUs,
one instruction can take 2 to 8 clock cycles depending on the
occurrence of the conflicts.

TABLE I. TABLE OF WINNERS FOR QUAD-CORE SEMAPHORE

8

 1234 2143 3412 4321

1-2 1 2 1 2

1-3 1 1 3 3

1-4 1 1 4 4

2-3 2 2 3 3

2-4 2 2 4 4

3-4 3 4 3 4

1-2-3 1 2 3 3

1-2-4 1 2 4 4

1-3-4 1 1 3 4

2-3-4 2 2 3 4

 1234 2143 3412 4321

1-2-3-4 1 2 3 4

Based on the description above, Fig. 10 shows a block
diagram of the Semaphore module for quad-core CPUs. This
module consists of Conflict Detector module, Winner Selector
module, AND gate, two D-FFs, and three multi-bit multiplexers.
Both, Conflict Detector and Winner Selector modules, need from
the input instructions only the bit that specifies, whether the
instruction is valid (i.e. whether the CPU core is trying to use the
task scheduler or not). The Winner Selector module performs the
decision, which CPU instruction is selected among the currently
valid instructions. The decision is represented by signals SEL1,
SEL00 and SEL01, which are used as control inputs for the
multiplexers that select one of the CPU instructions and provides
the selected instruction to the output called instr. The instr output
is used by the Running Tasks module.

Fig. 10. Block diagram of Semaphore module.

Fig. 10 also shows that the Semaphore module provides four
1-bit output signals to the CPU cores, each for one CPU core.
These signals are called stall_core_# and they are used for
informing the particular CPU core that its request to use the task
scheduler has been rejected due to a conflict with another CPU
core. The CPU core that receives the “stall” signal should wait
until the conflict is resolved. Eventually, the CPU can execute
other instructions while waiting for the conflict to be resolved.
The core_#_instr_valid and stall_core_# signals are used as a
handshaking mechanism between the CPU and the scheduler.

Fig. 11 shows the logic circuit that represents the Conflict
Detector module. The whole circuit consists of six 2-input NAND
gates and one 6-input NAND gate. The module detects the
situation, when at least two CPU cores want to use the scheduler
at the same clock cycle. Therefore, whenever there are at least
two inputs driven by logic 1, then the output conflict shall be
logic 1. If it is not the case or only one CPU core has a valid
instruction, then the output value shall be logic 0.

9

Fig. 11. Logic circuit of Conflict Detector module.

The Winner Selector module is displayed in Fig. 12. The SEL1
output is generated by three 2-input NOR gates and one 3-input
NOR gate. The SEL00 and SEL01 outputs require two 2-input
NAND gates each. This circuit contains two inverters for
generating negated inputs too. The Winner Selector module
performs the same decision logic that was described in Table I.

Fig. 12. Logic circuit of Winner Selector module.

4.4. Ready Queue module

The Ready Queue module is responsible for storing and
sorting of all tasks that are ready for execution. This module is
implemented as a sequential circuit, which always provides on the
output the task with the earliest deadline among all tasks stored in
this circuit. Thus, the task with the smallest deadline value
associated to this task is always at the beginning (and output) of
the Ready Queue. The Ready Queue module can accept a request
for a inserting a new task into the queue but only one at a time.
Alternatively, the task with the earliest deadline (i.e. at the
beginning of the queue) can be popped, which means that this
task is removed from the queue and the rest of the queue is
updated. Whenever either a new task is inserted or the output task
is removed, the queue has to reorganize in such a way that a new
task with the earliest deadline is selected for the queue output (i.e.
the queue keeps updating/reorganizing).

The Ready Tasks module alone represents the core EDF
functionality, which is responsible for answering the question:
Which task has the earliest deadline? This is the task that is

supposed to be selected for execution. Even when the scheduler
has already the Running Tasks module that is supposed to contain
the tasks that are selected for the execution, the Running Tasks
module needs to know, which task among all ready tasks is the
best candidate for execution next. For this selection, the Ready
Tasks module provides the answer.

As it was already mentioned in Section 3, there exist multiple
architectures for implementation of sorting MIN/MAX queues. In
[26-28], the Ready Tasks module was implemented using Shifts
Registers architecture. In this paper, the proposed Ready Tasks
module is implemented by Heap Queue architecture, which is
much more efficient architecture that should result in much better
task scheduler in terms of chip area, power consumption and
timing as well. The Heap Queue is layered into levels similar way
as the Rocket Queue architecture. The difference is that while the
Rocket Queue architecture consists of duplicating levels and
merged levels, the levels used in the Heap Queue architecture are
all duplicating ones only. This means that each level is
duplicating the number of items that can be stored within such s
level. For example, the first level has capacity of one item, the
second level two items, the third level four items, the fourth level
eight items, and the next level contains sixteen items.

The duplicating levels of Rocket Queue and Heap Queue
architectures form a binary tree that realizes a heapsort algorithm
displayed in Fig. 13 [18].

Fig. 13. Heapsort algorithm based on a binary tree [18].

Another difference between Rocket Queue and Heap Queue is
that the Rocket Queue architecture is storing all data into
registers, which is not true for the Heap Queue architecture. Items
that are inserted into Heap Queue are stored in dual-port random
access memories. Similarly, the numbers used for tree balancing
are stored in RAM instead of registers too. The tree balancing is a
feature that was developed for Rocket Queue in order to ensure
that whenever a new item is inserted into the queue, the items are
reorganized in such a manner that the tree of filled cells (i.e. the
cells filled with an item) is balanced. The tree balancing feature is
very common for binary trees in informatics theory too [33, 34].

Fig. 14 depicts the Heap Queue architecture layered into
levels. Each level consists of one Control Unit (CU) and various
number of Item Storage units (IS). One IS unit can be used for
preserving of one item and one number that is used for the tree
balancing feature. Each subsequent level contains two times more

10

IS units than the previous one. The Control Units communicate
with other Control Units from neighboring levels. This
communication is used for propagation of instruction from upper
levels below and for items exchanges between levels. Since one
Control Unit manages several IS units, the selection of particular
IS unit is performed according to address provided by the Control
Unit. The first three levels use registers for implementation of the
IS units due to too small memory sizes. All the other levels are
using dual-port RAM memories for implementation of IS units.
The Control Unit of the first level serves as an interface of the
whole queue to the external environment. It provides the first item
(stored in the IS of level 1) as an output, which represents the
item with the minimum/maximum sorting value among all items
inserted into the queue [33, 34].

One can also notice that the Control Unit performs a
combination of several Sorting Nodes employed in heapsort
algorithm displayed in Fig. 13. The reason is that each Sorting
Unit would require to instantiate its own comparator, and since
comparators are relatively resource expensive, the merging of
several Sorting Units into a single Control Unit saves significant
portion of combinational logic within the queue [30, 31].

Fig. 14. Top level module for quad-core version of the scheduler [33, 34].

Since the Heap Queue architecture uses RAM memory instead
of registers, it is no longer possible to find and remove any item
within the queue in a reasonable (and constant) time. The reason
is that with registers, the Rocket Queue architecture is able to read
all registers within the same level simultaneously in one clock
cycle [30, 31]. However, with RAM memory it would be needed
to sequentially read the memory one item per clock cycle.
Therefore, the Heap Queue architecture allows removing only the
first item (at the top of the queue) from the queue. Depending on
the usage of the MIN/MAX queue, this limitation may be
acceptable or not. Thus, the Heap Queue architecture is suitable

only for those cases, where only the item with the MIN/MAX
sorting values are needed to be removed (e.g. scheduling of hard
real-time tasks and Dijkstra’s algorithm). For other cases, the
Rocket Queue architecture remains to be the optimum solution for
hardware acceleration (e.g. Worst-fit memory allocation
algorithm) [33, 34].

The Heap Queue architecture is very similar to the DP RAM
Heapsort architecture [18]. However, the major difference
between these two architectures is that the DP RAM Heapsort
architecture lacks any tree balancing techniques, which can cause
data overflows if items are inserted without simultaneous item
removals. The Heap Queue has reused the tree balancing
technique from the Rocket Queue architecture [30, 31]. Thus, the
Heap Queue architecture represents a combination of Rocket
Queue and DP RAM Heapsort architectures into a novel
architecture that uses the best advantages from both former
architectures [33, 34].

The items used in Heap Queue consist of two values – ID and
DATA. The ID is used for identification of the item and the DATA
is used for sorting the items within the queue. The EDF algorithm
sorts tasks, where each task has its unique ID and one deadline
value. Therefore, the implementation of EDF algorithm is
achieved when Heap Queue item represents one EDF task, which
means:

• ID of the item in Heap Queue is used as the task ID in

EDF-based Ready Tasks module.
• DATA of the item in Heap Queue is used as the deadline

value in EDF-based Ready Tasks module.
• schedule_task operation of EDF is using the INSERT

instruction of Heap Queue.
• kill_task operation of EDF is using the POP instruction of

Heap Queue.

5. Verification

The proposed task scheduler and its variations were described
in SystemVerilog language and then, verified by simulations in a
form of a coprocessor unit. The following variations of the
scheduler were verified:

• Proposed task scheduler based on Heap Queue for dual-
core CPUs

• Proposed task scheduler based on Heap Queue for
quad-core CPUs

• Existing task scheduler based on Systolic Array
• Existing task scheduler based on Shift Registers for

dual-core CPUs

Besides SystemVerilog language, a simpler version of
Universal Verification Methodology (UVM) was used for the
verification phase as well. Since the interface of our coprocessor
unit is relatively simple, the UVM usage could be simplified too.
In this case, one transaction in UVM is just one instruction
performed in two clock cycles and thus, there is no need to use
agents for interfacing the device under test (DUT). We used only
one test procedure generating constrained random inputs,
predictor and scoreboard. The test procedure is generating

11

millions of instructions with fixed opcode and UID but with
randomized sorting values. The predictor is a module that predicts
the DUT output according to the inputs (it behaves just like a
DUT but at higher level of abstraction similar to high-level
software languages). The description of the predictor is pure
sequential and high level. The predictor uses SystemVerilog
queue structure and sort() function for ordering the items in the
queue. The testbench used for the verification is shown in Fig. 15.

The correct behavior of all the designed coprocessors was
verified through 1 000 000 test iterations, each consisting of 510
instructions randomly generated by the test procedure. In this test,
50% of instructions were schedule_task and the other 50% of
instructions were kill_task. Full capacity of the Ready Tasks
module was used in these tests. The following configuration
parameters were used for the coprocessor verification: 8-bit ID
values, Ready Queue Capacity set to 255 and 32-bit width of
random deadline values.

Fig. 15. Test bench architecture.

6. Synthesis results

We have performed an FPGA synthesis of four task schedulers
in total. Two of them are the proposed task schedulers based on
Heap Queue (Proposed Solution CPU2 is a version designed for
two CPU cores and Proposed Solution CPU4 is designed for four
CPU cores). The other two solutions are existing schedulers,
Existing SA Solution CPU1 and Existing SR Solution CPU2 from
[26-28]. The Existing SA Solution CPU1 is based on Systolic
Array architecture and supports only one CPU core. The Existing
SR Solution CPU2 is based on Shift Registers architecture and
supports two CPU cores using the semaphore approach [26-28].
The target device for the synthesis was Intel FPGA Cyclone V
(5CSEBA6U23I7), and the clock frequency of 100 MHz was
targeted. A comparison has been performed for Adaptive Logic
Module (ALM) consumption.
 In Table II, the comparison of ALM consumption for various
maximum numbers of tasks is presented, where all four
schedulers are compared. The Ready Queue Capacity number
represents the configuration of Ready Queue in the scheduler,
which defines the maximum number of tasks that can be stored
into Ready Queue of the scheduler. The Ready Queue capacity is
varying from 31 to 32767 and bit width of task ID is always the
minimum possible (e.g. 5 bits for 31 tasks or 6 bits for 63 tasks).
The total number of tasks that can be stored into the scheduler are
increased by two for the Proposed Solution CPU2 and by four for
the Proposed Solution CPU4 due to the storage of tasks in the
Running Tasks module. The deadline bit-width is 32 for all
schedulers. The synthesis of the existing solution was not
successful for higher Ready Queue Capacities due to too high

consumption of the ALM resources.

TABLE II. CONSUMPTION OF ALM RESOURCES

Ready
Queue

Capacity

Proposed
Solution

CPU2

Proposed
Solution

CPU4

Existing SA
Solution

CPU1

Existing SR
Solution

CPU2

31 1 544 1 624 2 458 3 629

63 1 968 2 058 4 874 6 906

127 2 296 2 391 10 119 13 754

255 2 913 3 011 21 757 26 255

511 3 403 3 503 - -

1023 3 801 3 906 - -

2047 4 312 4 418 - -

4095 4 492 4 600 - -

8191 5 092 5 191 - -

16383 5 592 5 702 - -

32767 6 163 6 283 - -

In Table III, the comparison of RAM bits consumption for

various maximum numbers of tasks is presented, where all four
schedulers are compared. The existing scheduler based on
Systolic Array does not consume any RAM bits in FPGA because
this architecture simply does not use any memories as storage of
scheduled tasks, but only registers. One can see that the
consumption of RAM bits for the proposed task schedulers is
increasing exponentially. This is expected because the Ready
Queue Capacity is increasing exponentially as well. Thus, the
memory consumption scales in fact linearly with respect to this
parameter.

TABLE III. CONSUMPTION OF RAM RESOURCES

Ready Queue
Capacity

Proposed
Solution CPU2

Proposed
Solution CPU4

Existing
Solutions

31 912 912 0

63 2184 2184 0

127 4864 4864 0

255 10344 10344 0

511 21584 21584 -

1023 44600 44600 -

2047 91680 91680 -

4095 187976 187976 -

8191 384568 384568 -

16383 785960 785960 -

32767 1605144 1605144 -

12

In addition to the FPGA synthesis, we also performed ASIC

synthesis for the same task schedulers (except for Existing SR
Solution CPU2), in order to analyze their scalability when
implemented in ASIC as well. For this purpose, we decided to use
28 nm TSMC High Performance Mobile process with 2 GHz
clock frequency and 0.9 V power supply voltage. The chip area
(in µm2) results are displayed in Table IV. The results show that
the proposed task schedulers require lower chip area than the
existing Systolic Array task scheduler as long as the Ready Queue
Capacity is 63 or more.

Since the Heap Queue architecture is using SRAM-based
memories of various depths, too small memories are synthesized
into flip-flops. One flip-flop bit is significantly less efficient than
one SRAM bit in terms of chip area and power consumption. The
Heap Queues with smaller capacity are using mostly flip-flop
based memories, which causes that the overall results are
relatively poor. However, as queue capacity is increasing, most of
the memory bits are realized by SRAM. Therefore, the Heap
Queue outperforms other architectures the most when higher
queue capacity is selected.

TABLE IV. CHIP AREA CONSUMPTION

Ready Queue
Capacity

Proposed
Solution CPU2

Proposed
Solution CPU4

Existing SA
Solution CPU1

31 12 007 12 215 11 167

63 21 597 21 782 23 271

127 39 877 40 061 48 097

255 45 990 46 202 98 945

511 62 545 62 767 203 085

1023 81 177 81 390 415 358

2047 133 647 133 873 850 377

4095 236 564 236 794 1 738 448

The following table (Table V) shows the total power

consumption for the synthesized task schedulers with respect to
the Ready Queue Capacity. The total power consumption
represents a sum of static power consumption (i.e. leakage power)
and dynamic power consumption. For the dynamic power
consumption, it is assumed that the queues are actively used once
every 20 clock cycles (i.e. every 20th instruction of CPU is a valid
instruction of the tested coprocessor). The results are presented in
microwatts (μW).

TABLE V. TOTAL POWER CONSUMPTION

Ready Queue
Capacity

Proposed
Solution CPU2

Proposed
Solution CPU4

Existing SA
Solution CPU1

31 2 357 2 392 3 129

63 4 148 4 184 6 417

127 6 883 6 925 13 069

Ready Queue
Capacity

Proposed
Solution CPU2

Proposed
Solution CPU4

Existing SA
Solution CPU1

255 8 171 8 214 26 953

511 9 866 9 909 55 045

1023 11 721 11 760 111 747

2047 18 206 18 243 234 515

4095 30 765 30 807 478 279

The overall comparison of the synthesized task schedulers is

presented in Table VI. One can conclude that the proposed task
schedulers are more efficient in terms of chip area costs in ASIC
implementation and ALM consumption in FPGA than the existing
task scheduler. The resource costs of the proposed scheduler
designed for four CPU cores are only negligibly higher than the
costs of the scheduler designed for two CPU cores. However, the
performance gain caused by running four tasks in parallel instead
of only two tasks is significant, as the total performance can be
increased by 100%. Both proposed task schedulers are better than
the existing task scheduler offering higher performance due to the
fact that the proposed task schedulers are compatible with running
of two or four CPU tasks in parallel, increasing the performance
of the whole real-time system to 200% (when two CPU cores are
used) or to 400% (for four CPU cores).

If we compare the proposed HW-implemented task schedulers
with software implementation of EDF, it is clear that the proposed
schedulers execute EDF instructions in constant and much shorter
time regardless of the number of tasks that are scheduled within
the system, which is impossible for software implementations of
EDF schedulers.

From the results presented in Table VI, it is expected that the
proposed solution is also applicable and scalable in terms of chip
area costs for even higher amount of CPU cores too. However,
the design effort due to design complexity, the maximum number
of CPU stalls in a row, the worst-case execution time and critical
path length (which affects the maximum clock frequency) are the
most limiting factors for scaling to more than four CPU cores.

TABLE VI. OVERALL COMPARISON OF THE SCHEDULERS

Criterion
Scheduler Version

software
scheduler

existing
SA scheduler

proposed
 schedulers

Chip Area
Costs

no 100% 46% *

Best Case
Execution Time

tens of clock
cycles

2 clock cycles 2 clock cycles

Worst Case
Execution Time

thousands of
clock cycles

2 clock cycles 2 clock cycles

CPU Cores 1 1 2 or 4

CPU
Throughput 80% to 98% 100% 200% or 400%

* applies for the Ready Queue Capacity parameter of 255.

13

7. Discussion and conclusion

Two different improvements of hardware-implemented EDF-
based task schedulers were proposed and presented: resource cost
decrease caused by usage of Heap Queue sorting architecture for
implementation of Ready Queue in the scheduler and overall real-
time system performance increase caused by providing a support
for CPUs that can execute two or four real-time tasks
simultaneously.

The synthesis results show that the change of sorting
architecture of Ready Queue module from Systolic Array to Heap
Queue can reduce the resource costs of the task scheduler by 84%
of ALMs in FPGA and 84% of chip area in ASIC, depending on
the scheduler capacity.

The second improvement is the added support of CPUs that
can run two or four tasks (programs) in parallel. Due to the
parallelism offered by such CPUs, the overall real-time system
performance is significantly improved at a cost of negligible
increase of resource costs needed to implement this support. In
multi-core systems, a conflict can occur whenever at least two
CPU cores attempt to use the coprocessor at the same clock
period. Our research was focused on solving this problem
efficiently in terms of both performance, determinism and chip
area costs. The architecture is based on semaphore approach that
solves conflicts whenever they occur by selecting one core as a
winner and locking the scheduler for the selected core, while the
other cores are losers that are stalled in the meantime. Each core
is stalled at most three times in a row because the selection of the
winner and loser is always switched deterministically. This
ensures fairness of the approach in any cases too. The semaphore
approach can be theoretically further used for even more CPU
cores (e.g. 8 or 16), however, the design and timing complexity of
the semaphore is not very well scalable for such extensions at the
moment. The proposed solution is definitely not suitable for
larger numbers of CPU cores (e.g. 16 or more).

In terms of timing, all presented schedulers were synthesized
for 100 MHz clock frequency in FPGA and 2 GHz clock
frequency in 28 nm ASIC. These schedulers perform each
instruction (task schedule or task kill) in constant time, regardless
of the current amount of tasks present in the scheduler and the
scheduler capacity (i.e. the maximum number of tasks). Both
response time and throughput are two clock cycles. Compared to
the software implementation of EDF algorithm, this is a huge
benefit in terms of scheduling performance and system
determinism.

According to the synthesis results, it has been shown that the
proposed task scheduler improvements based on using new Heap
Queue architecture and support of two or four CPU cores can be
used for significant improvement of performance, determinism
and reliability of task schedulers used in systems and applications
that belong to safety-critical and hard real-time domain.
Consequently, the whole real-time system using such an
improved task scheduler would be improved too. For example,
more tasks could be executed without causing deadline misses, or
these tasks could contain more time-consuming features, while
the execution on time would be still guaranteed by the improved
task scheduler and due to the fact that more powerful CPUs could
be used.

The proposed task schedulers were designed in a form of
coprocessor units that can be implemented either together with an

open-source CPU (e.g. RISC-V CPUs) on a single ASIC chip, or
the coprocessor can be implemented in FPGA that is closely
connected to an existing CPU (typically called FPGA SoC). The
proposed architecture of task scheduling coprocessors is designed
to be versatile. The architecture remains unchanged regardless of
what application is the scheduler used for, provided that the
maximum number of tasks and deadline bit width parameters are
large enough.

The proposed task schedulers are not intended to fully replace
existing software implementations of operating systems, rather to
be combined with these software solutions in a reasonable way.
This means that selected functions of software-implemented
operating systems can call the instructions of the proposed
coprocessors that implement the hardware-accelerated task
scheduling. The proposed schedulers do not distinguish between
periodic, aperiodic and sporadic tasks. All tasks are scheduled and
prioritized according to their deadlines only, regardless of
whether the task is periodic or not. The periodical behavior is
supposed to be handled on higher level (in software part of the
OS). Thus, whenever a new task is scheduled using the
schedule_task instruction, it is expected to be executed only once
from the view of the proposed HW-implemented task scheduler.
Periodic tasks can be achieved by software extension of the HW-
implemented task scheduler by periodic usage of the
schedule_task instruction in the software part of the operating
system. Task synchronization and sharing mechanisms are not
considered within the proposed HW-implemented task scheduler
neither, and it is expected to handle these problems by software
part of the OS. The software part can use the kill_task instruction
to temporarily deschedule a running task followed by a
schedule_task instruction using a new deadline for the task. In
this way, any running task that is blocked by other tasks with later
deadlines can be easily rescheduled in order to become
unblocked.

From reliability point of view, the hardware implemented
features can be used for increased reliability of real-time systems,
as they can perform the same algorithm that can be implemented
in software. Thus, a redundancy can be performed by combining
the software implementation with hardware realization relatively
easily as well [38, 39].

Acknowledgement

This work was supported in part by the Slovak Research and
Development Agency under grant APVV-15-0254 and by the
Slovak Republic under grant VEGA 1/0905/17.

REFERENCES

[1] R. Mall, Real-Time Systems: Theory and Practice, 2nd edition,
2008, ISBN 978-81-317-0069-3.

[2] C. A. O'Reilly, A. S. Cromarty, “Fast” is not “Real-time” in
designing effective real-time AI systems, SPIE Vol. 5~8 Application
of Artificial Intelligence II, pp. 249-257, 1985, doi:
10.1117/12.948443.

[3] J. A. Stankovic, K. Ramamritham, Tutorial hard real-time systems,
Computer Society Press, 1988.

14

[4] G.C. Buttazzo, Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications, 2011, doi:
https://doi.org/10.1007/978-1-4614-0676-1.

[5] S. Heath, Embedded Systems Design, Newnes, 2003, ISBN:
0750655461.

[6] I. Lee, J. Y.-T. Leung, S. H. Son, Handbook of Real-Time and
Embedded Systems, Chapman & Hall/CRC, 2007, ISBN:
9781584886785.

[7] M. Joseph, Real-time Systems Specification, Verification and
Analysis, Prentice Hall International, London, 2001.

[8] P. Marwedel, Embedded System Design: Embedded Systems
Foundations of Cyber-physical Systems, 2010, ISBN 9400702566.

[9] M. Pohronská, Utilization of FPGAs in Real-Time and Embedded
Systems, in M. Bielikova, ed.,Proceedings in Informatics and
Information Technologies Student Research Conference,
Vydavateľstvo STU, 2009.

[10] C. Ferreira, A. S. R. Oliveira, Hardware Co-Processor for the OReK
Real-Time Executive, 2010.

[11] C. Ferreira, A. S. R. Oliveira, RTOS Hardware Coprocessor
Implementation in VHDL, 2009.

[12] A. B. Lange, K. H. Andersen, U. P. Schultz, A. S. Sorensen,
HartOS - a Hardware Implemented RTOS for Hard Real-time
Applications, 2012, s. 207-213.

[13] S. Liu, Y. Ding, G. Zhu, Y. Li, Hardware scheduler of Real-time
Operating. in: Advanced Science and Technology Letters Vol.31,
2013, s. 159-160.

[14] G. Bloom, G. Parmer, B. Narahari, R. Simha, Real-Time Scheduling
with Hardware Data Structures, 2010.

[15] M. Varela, R. Cayssials, E. Ferro, E. Boemo, Real-time scheduling
coprocessor for NIOS II processor, Proc. VIII Southern Conf.
Programmable Logic, 2012, pp. 1-6, doi:
10.1109/SPL.2012.6211775.

[16] R. Chandra, O. Sinnen, Improving Application Performance with
Hardware Data Structures, 2010 IEEE International Symposium on
Parallel & Distributed Processing, Workshops and Phd Forum
(IPDPSW), Atlanta, GA, 2010, pp. 1-4, doi:
10.1109/IPDPSW.2010.5470740.

[17] S. W. Moon, Scalable Hardware Priority Queue Architectures for
High-Speed Packet Switches, IEEE Transactions on Computers,
2000, pp. 203-212, doi: 10.1109/RTTAS.1997.601359.

[18] W. M. Zabołotny, Dual port memory based heapsort implementation
for fpga, Proceedings of SPIE, 2011, doi: 10.1117/12.905281.

[19] Y. Tang, N. W. Bergmann, A Hardware Scheduler Based on Task
Queues for FPGA-Based Embedded Real-Time Systems, IEEE
Transactions on Computers, 2015, pp. 1254-1267, doi:
10.1109/TC.2014.2315637.

[20] J. Starner, J. Adomat, J. Furunas, L. Lindh, Real-Time Scheduling
Co-Processor in Hardware for Single and Multiprocessor Systems,
Proceedings of the EUROMICRO Conference, 1996, pp. 509-512,
doi: 10.1109/EURMIC.1996.546476.

[21] S. E. Ong, S. C. Lee, SEOS: Hardware Implementation of Real-
Time Operating System for Adaptability, Computing and
Networking (CANDAR), 2013 First International Symposium,
2013, pp. 612-616, doi: 10.1109/CANDAR.2013.110.

[22] K. Kim, D. Kim, Ch. Park, Real-Time Scheduling in Heterogeneous
Dual-core Architectures, Proceedings of the 12th International
Conference on Parallel and Distributed Systems, 2006, doi:
10.1109/ICPADS.2006.90.

[23] L. Kohutka, Hardware task scheduling in real-time systems in
IIT.SRC 2015, Student Research Conference, 2015.

[24] L. Kohutka, M. Vojtko, T. Krajcovic, Hardware Accelerated
Scheduling in Real-Time Systems, Engineering of Computer Based
Systems Eastern European Regional Conference, 2015, pp. 142-142,
doi: 10.1109/ECBS-EERC.2015.32.

[25] L. Kohutka, V. Stopjakova, Hardware Accelerated Task Scheduling
in Real-Time Systems, Adept, 2016.

[26] L. Kohutka, V. Stopjakova, Hardware-Accelerated Task Scheduling
in Real-Time Systems: Deadline Based Coprocessor for Dual-Core
CPUs, International Symposium on Design and Diagnostics of
Electronic Circuits and Systems, 2016.

[27] L. Kohutka, V. Stopjakova, Task scheduler for dual-core real-time
systems, 23rd International Conference Mixed Design of Integrated
Circuits and Systems, 2016, pp. 474-479, doi:
10.1109/MIXDES.2016.7529789.

[28] L. Kohútka, V. Stopjaková, Improved Task Scheduler for Dual-Core
Real-Time Systems, 2016 Euromicro Conference on Digital System
Design (DSD), Limassol, 2016, pp. 471-478, doi:
10.1109/DSD.2016.44.

[29] F. Klass, U. Weiser, Efficient systolic arrays for matrix
multiplication, in Proc. Int. Conf. Parallel Processing, Austin, Tex.,
Aug. 1991, vol. III, pp. 21-25.

[30] L. Kohutka, V. Stopjakova, Rocket Queue: New Data Sorting
Architecture for Real-Time Systems, 20th IEEE International
Symposium on Design and Diagnostics of Electronic Circuits and
Systems (DDECS), 2017, pp. 207-212, doi:
10.1109/DDECS.2017.7934573.

[31] L. Kohutka, V. Stopjakova, A New Efficient Sorting Architecture
for Real-Time Systems, 6th Mediterranean Conference on Embedded
Computing (MECO), 2017, pp. 1-4, doi:
10.1109/MECO.2017.7977221.

[32] C. L. Liu and James W. Layland, Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment, J. ACM 20,
1, 1973, pp. 46-61, doi:https://doi.org/10.1145/321738.321743.

[33] L. Kohutka, L. Nagy, V. Stopjaková, A Novel Hardware-
Accelerated Priority Queue for Real-Time Systems, 2018 21st
Euromicro Conference on Digital System Design (DSD), Prague,
2018, pp. 46-53, doi: 10.1109/DSD.2018.00023.

[34] L. Kohutka, V. Stopjakova, Heap Queue: A Novel Efficient
Hardware Architecture of MIN/MAX Queues for Real-Time
Systems, 2018 IEEE 21st International Symposium on Design and
Diagnostics of Electronic Circuits & Systems (DDECS), Budapest,
2018, pp. 5-8, doi: 10.1109/DDECS.2018.00008.

[35] K. Churnetski, Real-time scheduling algorithms, task visualization,
Computer Science Department Rochester Institute of Technology,
2006.

[36] A. Mohammadi, S. G. Akl, Scheduling Algorithms for Real-Time
Systems, School of Computing, Kingston, Ontario, 2005, doi:
10.1.1.536.9002.

[37] L. Kohútka, V. Stopjaková, Extension of hardware-accelerated real-
time task schedulers for support of quad-core processors, 2017 5th
IEEE Workshop on Advances in Information, Electronic and
Electrical Engineering (AIEEE), Riga, 2017, pp. 1-6, doi:
10.1109/AIEEE.2017.8270538.

[38] D. E. Rosenheim, R. B. Ash, Increasing reliability by the use of
redundant machines, IRE Trans. on electronic computers, vol. EC-8,
pp. 125-130, 1959.

[39] B. J. Flehinger, Reliability improvement through redundancy at
various system levels, IBM J. Res. Develop., vol. 2, pp. 148-158,
1958, doi: https://doi.org/10.1147/rd.22.0148.

