
 

 

RED-based Scheduler on Chip for Mixed-Criticality Real-Time Systems

Lukáš Kohútka, Lukáš Nagy, Viera Stopjaková 

Institute of Electronics and Photonics 

Slovak University of Technology in Bratislava 

Bratislava, Slovakia 

lukas.kohutka@stuba.sk 
 

Abstract—Real-time embedded systems that combine 

processes of various criticalities (i.e. mixed-criticality real-time 

systems) represent an emerging research that faces many issues. 

This paper describes a new ASIC design of a coprocessor that 

realizes process scheduling for mixed-criticality real-time 

systems. The solution proposed in this paper uses Robust Earliest 

Deadline (RED) algorithm. Due to the on-chip implementation of 

the scheduler, all scheduler operations always take two clock 

cycles to execute. The proposed solution was verified by 

simulations that applied millions of random inputs. Chip area 

costs are evaluated by synthesis into ASIC using 28 nm TSMC 

technology. The proposed RED-based scheduler is compared 

with an existing EDF-based scheduler that supports hard real-

time processes only. Even though the RED-based scheduler costs 

more chip area, it can handle any combinations of process 

criticalities, variations of process execution times and deadlines, 

achieves higher CPU utilization and can be used for scheduling of 

non-real-time, soft real-time and hard real-time processes 

combined within one system. 

Keywords—process scheduling, mixed-criticality, ASIC, RED. 

I.  INTRODUCTION 

Mixed-criticality real-time systems are subject to very 
active research, as demonstrated in the review from Burns and 
Davis [1]. It is a global trend in microelectronics that results 
from increasing integration of more transistors on chip within 
to safety-critical applications. Certification of safety-critical 
systems usually expects process isolation to separate critical 
processes from non-critical processes using a separated 
hardware. However, process isolation forces systems to be 
under-utilized and to use pessimistic analysis of worst-case 
execution time for each process. On the other hand, average 
execution time is usually significantly smaller than the worst-
case time [1-3]. 

Mixed-criticality real-time systems can support any 
combinations of critical and non-critical processes without 
using of process isolation. No process isolation is used in 
order to increase CPU utilization, achieved by execution of 
non-critical or low-priority processes (also known as best-
effort processes) within the slack time that is available 
whenever a high-priority or safety-critical process is finished 
sooner than it is predicted according to the worst-case 
execution time analysis. This situation statistically keeps 
happening very often. The main issue is that best-effort 
processes and safety-critical processes have typically 
conflicting requirements [4-7]. 

II. RELATED WORK 

Earliest Deadline First (EDF) is one of the most popular 
scheduling algorithms for real-time systems, which is 
guaranteed to always set-up the best possible schedule in 
systems that use only hard RT processes [8, 9]. EDF algorithm 
keeps all processes sorted based on deadlines of these 
processes. Thus, the process with the earliest deadline (i.e. 
lowest deadline value) is selected for execution. The processes 
that are ready for execution are stored in a structure called 
“ready queue”. Process queues can be implemented by various 
sorting architectures, such as shift registers architecture [10] or 
systolic array architecture [11]. 

In our previous work published in [12-15], we already 
presented novel RT process schedulers implemented in a form 
of coprocessors. We used a modified EDF algorithm with 
support to kill processes according to their ID. Beside our 
research, there are other solutions presented too. One solution 
employs EDF algorithm with the maximum number of 
processes being 64 [16], and the other approach uses priorities 
instead of deadlines, which is less efficient for real-time 
systems in terms of CPU utilization [17]. There are other 
solutions based on priorities or static scheduling [18-22] as 
well. However, these solutions are suitable for systems having 
hard RT processes only. 

Because different types of processes are combined together 
in mixed-criticality real-time systems, a robust scheduler that 
can schedule all types of processes is required. Such a 
scheduler can be implemented on chip by using Robust 
Earliest Deadline (RED) algorithm, which can handle all types 
of processes and their combinations [1]. 

The RED algorithm can be viewed as an extension of the 
EDF algorithm. Both these algorithms are ordering processes 
according to process deadlines, as displayed in Fig. 1. EDF 
accepts all requests to add and schedule a newly created 
process, but RED also checks whether any of the scheduled 
processes can miss a deadline and if yes, then the most 
suitable process is temporarily rejected and moved to Reject 
queue. Thanks to this, it is guaranteed that every hard RT 
process always meets its deadline and as many soft RT 
processes as possible meet their deadlines as well. If one of 
the ready processes is finished sooner than the worst-case 
timing analysis predicts, and there is enough free time to 
reclaim and finish any of the rejected processes on time, then 
RED applies its reclaiming policy for reclaiming one of the 
rejected processes back from Reject Queue to the Ready queue 
[1, 2]. 



 

 

 
Fig. 1. EDF (a) and RED (b) scheduling algorithms [1]. 

III. PROPOSED RED-BASED SCHEDULER 

1. Top module 

The proposed scheduler has a top module, which 
represents a coprocessor unit, as shown in Fig. 2, and it is 
composed of 3 sub-modules: Ready Queue, Reject Queue and 
Control Unit. The top module has only one input (except clock 
and reset, of course), called INSTR. The INSTR input 
represents one coprocessor instruction provided from CPU. 
There are 2 types of instructions supported by this 
coprocessor: process insertion and process kill. The top 
module has only 1 output, called PROCESS_TO_RUN, which 
represents the process that was selected by the scheduler for 
execution in CPU.  

 
Fig. 2. RED scheduler top module. 

2. Ready Queue 

 Ready Queue is a subcomponent that contains all ready 
processes (i.e. processes that are ready for execution), 
including the currently running process. The process with the 
lowest deadline is selected for execution. This subcomponent 
uses an existing priority-queue architecture that is called Shift 
Registers. Shift Registers consist of process cells, each 
containing one process comparator, control logic and a register 

to remember one process. Each process cell can exchange 
processes with adjacent cells. All process cells get the same 
instruction simultaneously from one common bus, driven from 
the input of Ready queue. 

The Ready Queue subcomponent is extended with so-
called “Overload Analysis” feature by applying these changes 
to Shift Registers: 

1. Add a register for storing execution time in every 
process cell. 

2. Add combination logic to detect overloads in every 
process cell. 

3. Add combination logic to combine overload outputs 
from all process cells to create one single bit 
(overload). 

4. Add combination logic to choose a victim in case of 
overload state (i.e. process rejection feature). 

Step 1 – a new register (called execution time register) is 
added to each process cell within the Ready queue. This 
register represents the remaining worst-case execution time for 
the corresponding process cell plus the sum of the remaining 
worst-case execution times for all processes scheduled to be 
executed sooner than the actual process (i.e. all processes to 
the right in the queue). When a new process is inserted to one 
process cell, the value to be stored in execution time register is 
calculated by adding the worst-case execution time (WCET) 
of the new process and the value given by the execution time 
register from the process cell to the right from the actual 
process cell, where the new process is going to be inserted. In 
addition to this, the WCET value is also added to the actual 
values in the execution time registers in all process cells to the 
left (i.e. for all processes with higher deadline values). 
Whenever a process is supposed to be removed from the 
queue, all processes located in the process cells to the left 
from the process to be removed have to decrease their values 
in their execution time registers by the current execution time 
of the process that is removed. 

Step 2 – a combinational logic is added to every process 
cell, which is responsible for calculation of overload bit for the 
given process cell. This logic is testing whether WCET of the 
new process and the value stored in the execution time register 
of the corresponding process cell are together higher than 
deadline of this process. If it is higher, then execution of the 
new process sooner than the execution of the process stored in 
the current process cell may cause that the deadline of the 
current process is not met. Such a situation is being referred as 
“overload” and an overload bit of the process cell is ‘1’.  

Step 3 – one OR gate outside of the process cells but still 
inside the Ready queue subcomponent is added. This OR gate 
receives as inputs all the individual overload bits generated by 
the process cells (i.e. step 2). Therefore, if one or more 
overload bits are ’1’, then the OR gate output is ’1’. Thus, 
there is an “overload” in the system in such a case. This 
overload bit is given to the Control Unit subcomponent, using 
RDQ_TO_CU interface. 

Step 4 – a combinational logic is added, which performs a 
decision to choose one “victim process” from all processes 



 

 

located in Ready Queue. The victim process is removed from 
the Ready Queue and inserted to Reject Queue. 

3. Control Unit 

This subcomponent controls the other two subcomponents, 
i.e. Reject Queue and Ready Queue. Instructions from CPU 
are given to Control Unit, which further forwards instructions 
to Ready Queue. If no instruction is obtained from CPU, 
Control Unit can automatically move processes between 
Reject Queue and Ready Queue in order to maximize the 
portion of processes that are in Ready Queue but also to avoid 
system overloads by moving processes to Reject Queue.  

Whenever the system is overloaded, the Control Unit gives 
an order to move one process (i.e. the victim) from Ready 
Queue to Reject Queue. This is performed by removing the 
process in Ready Queue and inserting the same process to 
Reject Queue. The selection of victim process is done 
according to priority values and position of the processes 
within the Ready Queue. The process that has the lowest 
priority value within those processes that are scheduled before 
the first process reporting the overload bit is selected as a 
victim process. 

On the other hand, when the system is not overloaded and 
the Reject Queue contains at least one process, the Control 
Unit is trying to reclaim one process among the rejected ones 
by moving the process from Reject Queue back to the Ready 
Queue, if possible. This process is selected by the Reject 
Queue itself. Of course, the overload state needs to be 
evaluated after reclaiming the process again. If overload was 
detected again, then Control Unit must redo the reclaiming by 
moving the selected process from Ready Queue back to Reject 
Queue. However, if overload was not detected, then the 
reclaiming was successful and the reclaimed process may 
remain in Ready Queue. 

There are four criticality levels available in the proposed 
process scheduler. These criticality levels are considered 
during the abovementioned process rejection and process 
reclaiming. These criticalities are encoded into two bits, using 
the following encoding: 

 “00” – non-RT process or soft RT process of low 
priority 

 “01” – soft RT process of medium priority 

 “10” – soft RT process of high priority 

 “11” – hard RT process (i.e. safety-critical) 

4. Reject Queue 

Reject Queue is a subcomponent that functions as a queue 
containing all rejected processes inside. The rejected processes 
are stored in Reject Queue so that they can be reclaimed (i.e. 
moved back to Ready Queue) without causing system to be 
overloaded. The rejected processes are being ordered in such a 
way that the process that has the highest priority and the latest 
deadline is available via output of the Reject Queue. This 
queue is implemented by Shift Registers, just like the Ready 
Queue. However, the Shift Registers architecture is configured 
as MAX Queue, not MIN Queue. The Shift Registers are 
ordering processes according to a combination of process 

deadline and process priority. The primary ordering criterion 
is process priority. Then, those processes that have the same 
priority are subsequently ordered according to process 
deadlines, i.e. deadlines are the secondary ordering criterion. 

IV. VERIFICATION AND SYNTHESIS RESULTS 

The functionality of the proposed solution in a form of a 
coprocessor unit has been verified by applying more than one 
million of simulation iterations. Every such iteration contained 
more than 500 coprocessor instruction that were generated 
pseudo-randomly. 50% of these instructions insert a new 
process, while the other 50% are killing a process. 

The proposed RED scheduler and original EDF scheduler 
were synthesized in TSMC 28nm high performance mobile 
(HPM) technology using Cadence Genus tool. The proposed 
scheduler used clock frequency of 500 MHz. The synthesis 
used a power supply equal to 0.9 V. The chip areas of the EDF 
scheduler and RED scheduler are demonstrated in Table I. 
Both schedulers use the lowest-possible number of bits for 
process ID. The total power consumption of both schedulers 
using the same parameters is presented in Table II. 

TABLE I.  CHIP AREA OF EDF AND RED SCHEDULERS 

Number of 
Processes 

EDF Chip Area 
[µm2] 

RED Chip 
Area [µm2] 

Overhead 

8 1702 13214 +676,38% 

16 3637 28531 +684,47% 

24 5979 50218 +739,91% 

32 9085 69389 +663,78% 

40 13307 92389 +594,29% 

48 19387 108522 +459,77% 

56 26787 130421 +386,88% 

64 33340 146146 +338,35% 

TABLE II.  POWER CONSUMPTION OF EDF AND RED SCHEDULERS 

Number of 
Processes 

EDF Power 
Consumption 

[µW] 

RED Power 
Consumption 

[µW] 
Overhead 

8 2044 12121 +493,00% 

16 3809 25913 +580,31% 

24 6356 43373 +582,39% 

32 9881 66559 +573,61% 

40 14711 77434 +426,37% 

48 20693 93948 +354,01% 

56 28263 115748 +309,54% 

64 36535 124162 +239,84% 

The overall comparison of the EDF-based and the novel 
RED-based schedulers is presented in Table III. 



 

 

TABLE III.  EDF AND RED SCHEDULERS OVERALL COMPARISON 

Criterion 
Selected Scheduler 

EDF RED 

Chip area A (4.38 – 8.40) x A 

Power P (3.40 – 5.82) x P 

Execution time  2 clock cycles 2 clock cycles 

Hard RT processes yes yes 

Soft RT processes no yes 

Non-RT processes yes yes 

Mixed-criticality 
supported 

no yes 

The proposed RED scheduler has higher chip area than the 
EDF scheduler. However, the RED scheduler supports mixed-
criticality and all process types. 

V. CONCLUSION 

We proposed a new ASIC architecture and implementation 
of a scheduler that can be used for complex mixed-criticality 
real-time systems. The research presented in this paper was 
focused on scalable reusing and extension of existing EDF 
schedulers based on Shift Registers architecture. The proposed 
scheduler can perform the scheduling in two clock cycles and 
uses an existing RED algorithm by extending EDF algorithm 
with process rejection and process reclaiming functionality. 
All real-time processes are categorized according to four 
criticality levels among the real-time processes and non-real-
time processes are divided to 1024 priority levels. Thus, there 
are 1028 levels of criticality/priority in total. This level is set 
when processes are created. The RED scheduler is able to 
efficiently schedule any combination of hard RT, soft RT and 
non-RT processes. Therefore, the proposed RED scheduler is 
much more suitable for mixed-criticality RT systems. 

The proposed coprocessor has still acceptable chip area 
that scales linearly with growing number of processes to be 
handled by the scheduler. In comparison to the existing 
software-based schedulers, the ASIC implementation is able to 
perform all operations with constant and significantly lower 
latency and with constant and much higher throughput, 
causing higher determinism of a system that would use the 
proposed scheduler. The proposed scheduler can be integrated 
to existing software-based operating systems as well. 

ACKNOWLEDGMENT 
This work was supported in part by the Ministry of 

Education, Science, Research and Sport of the Slovak 
Republic under grant VEGA 1/0905/17, and ECSEL JU under 
project PROGRESSUS (876868). 

REFERENCES 
[1] A. Burns and R. Davis, “Mixed-Criticality Systems - A Review”, 10th 

edition, University of York, UK, Jan. 2018. 

[2] R. Arbaud, D. Juhász, A. Jantsch, “Resource Management for Mixed-
Criticality Systems on Multi-Core Platforms with Focus on 

Communication,” 21st Euromicro Conference on Digital System 
Design, 2018 IEEE. doi: 10.1109/DSD.2018.00108. 

[3] R. Ernst, M. di Natale, “Mixed-Criticality Systems - A History of 
Misconceptions ?”, in IEEE Design and Test, vol. 33 issue 5, Oct. 2016. 
doi: 10.1109/MDAT.2016.2594790. 

[4] O. Kotaba, J. Nowotsch, M. Paulitsch, S. M. Petters, H. Theiling, 
”Multicore in Real-Time Systems - Temporal Isolation Challenges due 
to Shared Resources”, CISTER technical report, 2014. 

[5] M. Neukirchner, P. Axer, T. Michaels, R. Ernst, “Monitoring of 
Workload Arrival Functions for Mixed-Criticality systems”, in 34th 
Real-Time Systems Symp., 2013 IEEE. doi: 10.1109/RTSS.2013.17. 

[6] M. Neukirchner, S. Quinton, R. Ernst, K. Lampka, “Multimode 
Monitoring for Mixed-Criticality Real-Time Systems”, in 2013 Int. 
Conf. on Hardware/Software Co-Design and System Synthesis, 2013 
IEEE. doi: 10.1109/CODESISSS.2013.6659021. 

[7] G. Giannopoulou, N. Stoimenov, P. Huang, L. Thiele, B. Dupont de 
Dinechin, “Mixed-criticality scheduling on clusterbased manycores with 
shared communication and storage resources”, in Real-Time Systems, 
vol. 52, 2016 Springer. doi: 10.1007/s11241-015-9227-y.  

[8] G. Buttazzo, “Hard Real-Time Computing Systems: Predictable 
Scheduling Algorithms and Applications,” 2011.  

[9] M. Caccamo and G. Buttazzo, "Optimal scheduling for fault-tolerant and 
firm real-time systems," Proceedings Fifth International Conference on 
Real-Time Computing Systems and Applications (Cat. No.98EX236), 
Hiroshima, Japan, 1998, pp. 223-231. 

[10] G. Bloom, G. Parmer, B. Narahari, and R. Simha, “Shared Hardware 
Data Structures for Hard Real-Time Systems,” Proceedings of the tenth 
ACM international conference on Embedded software, 2012. 

[11] S.W. Moon, “Scalable Hardware Priority Queue Architectures for High-
Speed Packet Switches,” IEEE Transactions on Computers, 2000.  

[12] L. Kohutka, M. Vojtko, and T. Krajcovic, “Hardware Accelerated 
Scheduling in Real-Time Systems,” Engineering of Computer Based 
Systems Eastern European Regional Conference, 2015.  

[13] L. Kohutka, V. Stopjakova, “Hardware-Accelerated Task Scheduling in 
Real-Time Systems: Deadline Based Coprocessor for Dual-Core CPUs,” 
International Symposium on Design and Diagnostics of Electronic 
Circuits and Systems, 2016. 

[14] L. Kohutka, V. Stopjakova, “Task Scheduler for Dual-Core Real-Time 
Systems,” International Conference on Mixed Design of Integrated 
Circuits and Systems, 2016. 

[15] L. Kohutka, V. Stopjakova, “Improved Task Scheduler for Dual-Core 
Real-Time Systems,” Euromicro Conference on Digital System Design, 
2016. 

[16] Y. Tang, and N.W. Bergmann, “A Hardware Scheduler Based on Task 
Queues for FPGA-Based Embedded Real-Time Systems,” IEEE 
Transactions on Computers, 2015. 

[17] J. Starner, J. Adomat, J. Furunas, and L. Lindh, “Real-Time Scheduling 
Co-Processor in Hardware for Single and Multiprocessor Systems,” 
Proceedings of the EUROMICRO Conference, 1996. 

[18] C. Ferreira, and A.S.R. Oliveira, “Hardware Co-Processor for the OReK 
Real-Time Executive,” 2010. 

[19] S.E. Ong, and S.C. Lee, “SEOS: Hardware Implementation of Real-
Time Operating System for Adaptability,” Computing and Networking 
(CANDAR), 2013 First International Symposium, 2013. 

[20] K. Kim, D. Kim, and Ch. Park, “Real-Time Scheduling in 
Heterogeneous Dual-core Architectures,” Proceedings of the 12th 
International Conference on Parallel and Distributed Systems, 2006.  

[21] D. Derafshi, A. Norollah, M. Khosroanjam and H. Beitollahi, "HRHS: A 
High-Performance Real-Time Hardware Scheduler" in IEEE 
Transactions on Parallel & Distributed Systems, vol. 31, no. 04, pp. 897-
908, 2020. doi: 10.1109/TPDS.2019.2952136.  

[22] A. Norollah, D. Derafshi, H. Beitollahi and M. Fazeli, "RTHS: A Low-
Cost High-Performance Real-Time Hardware Sorter, Using a 
Multidimensional Sorting Algorithm," IEEE Transactions on Very Large 
Scale Integration (VLSI) Systems, vol. 27, no. 7, pp. 1601-1613, 2019.  

 


