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ABSTRACT 
The accurate identification of initial and final foot contacts is a crucial prerequisite for obtaining a reliable 
estimation of spatio-temporal parameters of gait. Well-accepted gold standard techniques in this field are force 
platforms and instrumented walkways, which provide a direct measure of the foot-ground reaction forces. 
Nonetheless, these tools are expensive, non-portable and restrict the analysis to laboratory settings. 
Instrumented insoles with a reduced number of pressure sensing elements might overcome these limitations, but 
a suitable method for gait events identification has not been adopted yet. The aim of this paper was to present 
and validate a method aiming at filling such void, as applied to a system including two insoles with 16 pressure 
sensing elements (element area = 310 mm2), sampling at 100Hz. Gait events were identified exploiting the sensor 
redundancy and a cluster-based strategy. The method was tested in the laboratory against force platforms on 
nine healthy subjects for a total of 801 initial and final contacts. Initial and final contacts were detected with low 
average errors of (about 20 ms and 10 ms, respectively). Similarly, the errors in estimating stance duration and 
step duration averaged 20 ms and less than 10 ms, respectively. By selecting appropriate thresholds, the method 
may be easily applied to other pressure insoles featuring similar requirements. 
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1.1 INTRODUCTION 

 
The gait cycle represents the functional element of walking, traditionally identified by the initial contact (IC) 

of the foot with the ground and the following IC of the same foot (Della Croce et al., 2018; Whittle, 1993). A direct 
approach to detect these gait events (GEs) is by using force platforms (FPs) and instrumented walkways. These 
provide a direct measure of forces resulting from the foot-ground interaction, thus representing a gold standard 
for GEs detection. However, both devices are non-portable, expensive and require an appropriate laboratory 
environment, therefore constraining the analysis to few strides and/or straight walks (Adkin et al., 2000). 
Moreover, laboratory analysis only allows for the assessment of walking capacity, which should ideally be 
complemented with continuous daily living measures of mobility performance to obtain a thorough assessment 
(World Health Organization, 2007; Rochester et al., 2020). In this perspective, wearable inertial measurement 
units (IMUs) are the key to enable gait analysis in real-world scenarios as GEs can be identified from the 
accelerations and angular velocities signals recorded by two units attached to the ankles/feet (Mariani et al., 
2012; Trojaniello et al., 2014). However, being the latter an indirect method, processing algorithms performance 
may be affected by errors, and it should, therefore, be regarded as a silver standard solution. 

Foot switches are an effective alternative to estimate GEs and their use has been explored in several studies 
over the last decades (Agostini et al., 2013; Bae et al., 2011; Hausdorff et al., 1995; Kong et al., 2009; Skelly et al., 
2001). The foot switch technology, however, generally includes only two or three sensing elements, which require 
a proper positioning under the foot. Due its low spatial sensor resolution, the approach does not allow to identify 
the specific area of the sole-ground contact and, in turn, it may also affect the GEs temporal resolution. This is 
even more true in case of pathological gait (i.e., pronation, supination, equine gait, foot drop, shuffling children 
with cerebral palsy), for which few sensors are not sufficient (Smith et al., 2016). Another attractive option is 
represented by plantar pressure insoles, based on different technologies and sensors configurations (e.g., 
Tekscan® F-Scan® System; Novel® Pedar® System, etc.). However, these devices are specifically conceived for high-
resolution pressure mapping applications and generally include a dense grid of sensors (from 99 to 960 sensing 
elements) which inevitably lead to higher costs and complexity in terms of data management and reading, but 
which are not strictly necessary for simple GEs estimations. 

In this study we propose an original method for GEs detection, based on the use of instrumented insoles, 
each including only sixteen force-sensing resistor elements (pressure insoles, PIs). The implemented algorithm 
exploits the number of sensors by using a cluster-based approach to describe foot-ground contacts in a finer way 
and avoid missed and extra GEs, providing information about foot positioning. The method was tested against 
FPs in the laboratory using data collected on healthy subjects.  

2.1 METHODS 

 

2.1.1 System Description and GEs algorithm 
Two plantar PIs (mod. YETI, 221e S.r.l., Padua, Italy; 16 sensing elements; element area = 310 mm2; fs = 100 

Hz; ground reaction force threshold = 5 N) were used in this study, with a design similar to that adopted by Ciniglio 
et al. 2021. Each sensing element is constituted by a force sensing resistor, exhibiting a resistance value inversely 
proportional to the applied force. The output is expressed as voltage (full-scale voltage value VFS = 2.8 V). Each 
pressure insole is connected to a central processing unit, which also includes a magneto-IMU (Figure 1) that is not 
used for this study. Data is recorded by an ultra-low-power microcontroller and stored in an on-board flash 
storage. 
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Figure 1: Magneto-IMU and pressure insole used for the right foot. 

 
The PI signals processing algorithm is described by the following steps (Figure 2):  
 
(i) Pre-processing. 
 
PI signals are normalised with respect to VFS, expressed in normalised units (nu), and then filtered using a 5-points 
non-linear median filter to have a smoothing effect while enhancing edges (Stork et al., 2003);  
 
(ii) Detection and selection of instants of rising and falling edges. 
 
For each of the filtered PI signals Xi(t), where i=1,..,16 represents the i-th PI signal, a first derivative approach 
(Hopkins, 2001) is applied to detect rising and falling edges. Edges are identified from Ẋi(t) using a peak detection 
approach (Benocci et al., 2009) with an amplitude threshold defined as Th1 = 5n, being n the signal noise 
amplitude as computed in static conditions (in this study, we used Th1 = 0.05 nu). For each PI signal, rising edges 
are identified as positive peaks > Th1 and the corresponding time instants are organized in a vector tRE,i. Similarly, 
falling edges are identified as negative peaks < -Th1 and the corresponding time instants are organized in a vector 
tFE,i. Rising and falling edges are automatically checked, in terms of time distance and amplitude of the PI signal, 
to discard false positives. Figure 2a shows an example of detection of a rising edge and a falling edge;  
 
(iii) Detection and selection of local minima (instants of rising and falling minima). 
 
The identification of the instants of rising and falling minima is performed by applying to Xi(t) a threshold Th2 = 
0.02 nu, using rising and falling edges as reference points (Hausdorff et al., 1995). In particular, each rising minima 
is identified as the first point with Xi(t) < Th2 preceding the considered rising edge instant, while each falling 
minima is identified as the first point with Xi(t) < Th2 after the considered falling edge instant. Rising minima 
instants and falling minima instants were organised in vectors, tRM,i and tFM,i respectively. Figure 2a shows an 
example of detection of one rising minimum and one falling minimum;  
 
(iv) Identification of activation/deactivation clusters. 
 
Once the rising and falling minima instants are detected for all the PI signals, they are organised in chronological 
order in a unique vector (tRM and tFM respectively), also noting the corresponding sensing element number in 
another vector (sRM and sFM). This step is needed to group the instants of rising/falling minima corresponding to 
the same foot contact, i.e. the PI sensing elements which activate/deactivate together when the foot hits the 
ground. An activation cluster is identified imposing that the time distance between consecutive instants of tRM is 
lower than Th3 = 0.4s. Then, a deactivation cluster includes the instants of tFM between two consecutive activation 
clusters. For each cluster, the minima instants and the sensing elements numbers are saved (A_clusterj 
/D_clusterj, where j = j-th activation/deactivation cluster). 

Figure 2b shows an example of one activation cluster and one deactivation cluster. 
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(v) Identification of IC/FC (final contact) intervals and definition of IC/FC events. 
 
A foot-ground contact interval is defined when at least three sensing elements of the PI belonging to the same 
spatial neighbourhood are consecutively activated and deactivated, i.e. correspond to three consecutive minima 
belonging to the same cluster (A_cluster for ICs and D_cluster for FCs). For each PI’s sensing element, the 
neighbourhood consists of those sensing elements which are spatially close to the considered unit (Figure 1) (e.g. 
for the sensing element no. 12, the neighbourhood includes sensing elements 11, 13, 14, 15, 16; further details 
are reported in Appendix B). In fact, it is reasonable to assume that, when an IC or FC occurs, the sensing elements 
which refer to the same anatomically functional area of foot sole are activated or deactivated, respectively.  
Each IC interval is identified starting from the first rising minima of an activation cluster; while each FC interval is 
identified starting from the last falling minima of a deactivation cluster. 

Finally, each IC is assumed to coincide with the rising minimum instant corresponding to the third 
sequentially activated sensing elements within the considered IC interval. Likewise, each FC is assumed to 
coincide with the falling minimum instant corresponding to the third sequentially deactivated sensing elements 
within the considered FC interval. Figure 2c shows an example of one IC interval and one FC interval. 
A workflow of the algorithm can be found in Appendix A. 
 
 
 

 
Figure 2: Principal steps of the algorithm shown for one stance. a) Detection and selection of rising and falling 
edges and local minima (rising and falling minima) for each PI signal; b) Identification of one 
activation/deactivation cluster on PI signals; c) Identification of IC/FC intervals and definition of IC and FC events 
on PI signals. 
 

2.1.2 Experimental setup 
The validation experiments involved nine healthy participants (5 females and 4 males; age 25.4 ± 1.3 years, 

shoe size 40.5 ± 4.1 EU) and took place at the University of Sassari (Italy). All participants signed an informed 
consent approved by the IRB before taking part to the study. PIs were inserted in participants’ shoes and central 
processing units were clipped over the instep (Figure 3). The only specific requirement for the shoes was to avoid 
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knee-high boots. Data from two FPs (AMTI, Massachusetts, USA; fs = 1000 Hz) were acquired through a motion 
capture system also including video recordings (Vicon Vue, fs = 50Hz). Data from PIs and FPs were synchronized 
using an additional central processing unit as external trigger, connected to the motion capture system via cable. 
Each participant was asked to walk for six minutes back and forth at comfortable speed, stepping on the FPs as 
many times as possible. 
 
 

 
Figure 3: a) PI positioning inside the shoe; b) Clip attached to shoe laces; c) Final sensors positioning with 
magneto-IMU fixed to the clip. 
 

2.1.3 Data processing 
For each subject, a preliminary visual inspection of the “good strides” (entire foot on the FP during stance 

phase) was performed using video recordings. Then, FP data were down-sampled to 100 Hz. A pre-processing 
procedure was applied for the synchronisation of PIs measurements (started via BLE protocol, v. 4.1) with the FP 
data, using the time vector provided by the trigger to interpolate the data.  
The GEs detection algorithm results were compared with those obtained from the FPs (ground reaction force 
threshold = 25 N) in terms of average root mean square (RMS) error, bias and standard deviation (SD) error 
computed over the stances of all participants. An example of IC and FC detection from both PI and FP is shown in 
Figure 4. 
 

 
 
Figure 4: Gait events (GEs) detection from both pressure insole (PI) and force plate (FP). 
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3.1 RESULTS 
 

RMS error, bias and SD error obtained from the comparison are reported in Table 1. A total of 801 ICs and 
801 FCs were analysed (89 ICs and FCs on average for each participant), while errors on step duration were 
computed considering 315 steps in total. Average errors were lower than 10 ms for FCs, 20 ms for ICs, 20 ms for 
stance duration, less than 1 ms for step duration. 
 
 
 
Table 1: RMS error, bias, and SD error 

Variable Average RMS Error (ms; frames) Average Bias (ms; frames) Average SD Error (ms; frames) 
IC 22; 2 -21; -2 7; <1 
FC 18; <2 3; <1 12; 1 

Stance duration 18; <2 23; 2 7; <1 
Step duration 10; 1 0; <1 10; 1 

 
 

4.1 DISCUSSION  
 
GEs and temporal parameters obtained from the PIs showed a 100% correspondence with those estimated 

from the FPs. Low average RMS errors were obtained for stance duration (< 20 ms) and for both IC and FC events, 
(22 ms and 17 ms, respectively). IC events, as detected by the proposed method were, on average, anticipated 
with respect to those detected by the FP (average bias = 21 ms), while FC events were marginally delayed. A bias 
of 23 ms was obtained for stance duration. Very low values were obtained for the average SD error (7 ms for ICs, 
12 ms for FCs and 7 ms for stance duration). For step duration, both RMS error and SD error were around one 
sample, while the average bias was zero.  

Similar but slightly larger errors were reported by Catalfamo and colleagues (2008) using a F-Scan Mobile 
Tekscan pressure insole (22 ± 9 ms for ICs and 10 ± 4 ms for FCs). However, it should be noted that the proposed 
algorithm was successful in obtaining lower errors using a pressure insole with a much smaller number of sensing 
elements (16 vs 960) and using a lower sample-frequency (100 Hz vs 200 Hz), with clear advantages in terms of 
cost and efficiency.  

In general, the majority of the methodological studies analysing the performance of different pressure 
insoles, focused on gait parameters other than ICs and FCs and reported larger errors (Agarwal et al., 2020; Braun 
et al., 2015; Carbonaro et al., 2016; Crea et al., 2014). For instance, the average error reported in Carbonaro et 
al. (2016) by comparing a commercial smart shoe including two force sensors (FootMov) against a motion capture 
system was 39 ± 65 ms for stance duration. Often, a direct comparison with the results in the literature was not 
possible due to the lack of a gold standard (Benocci et al., 2009), adoption of manual labelling of the GE detection 
(Roth et al., 2018) or different research objectives (i.e., PI signals used only for activity recognition).  

The low errors found for both ICs and FCs demonstrated that the combined use of low-cost PI and specific 
algorithms for signal processing are a good compromise between more complex solutions, such as high-resolution 
pressure mapping technology, and foot-switch systems with a low number of sensors. A notable feature of the 
proposed method is that it can be applied to other PIs having a sufficient number of sensing elements. The 
minimum sensor number and area would clearly depend on the shoe size of the subjects to analyse (e.g. children), 
however, we found that an activated/deactivated area of about 900 mm2 (area of three sensing unit of the PI) 
guaranteed for good results for both male and female adults. Having a sufficiently high number of sensors allows 
to describe the foot-ground contact in a comprehensive way and virtually recognise all the possible strategies of 
foot-floor contact. Last but not least, the PIs here used can be easily combined with IMUs as part of a multi-sensor 
wearable system, which could provide accurate temporal estimates and a for a more extensive gait assessment 
also in a free-living context. Further studies will focus on overcoming the limitations of having tested the proposed 
method only on healthy subjects and on straight walking. 
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APPENDIX A 

 
In Fig. A1 a detailed description of the algorithm workflow is illustrated. 
 
Definitions: 
𝑋𝑋𝑖𝑖(𝑡𝑡) = pre-processed signal from the i-th sensing element   
#SE = number of sensing elements of the pressure insole 
Ẋ𝑖𝑖(𝑡𝑡)  = first derivative of 𝑋𝑋𝑋𝑋𝑖𝑖[𝑛𝑛]  
𝑡𝑡𝑅𝑅𝑅𝑅,𝑖𝑖 = rising edges instants 
𝑡𝑡𝐹𝐹𝐹𝐹,𝑖𝑖 = falling edges instants 
𝑡𝑡𝑅𝑅𝑅𝑅,𝑖𝑖 = rising minima instants 

Figure A1. Algorithm workflow. 
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𝑡𝑡𝐹𝐹𝐹𝐹,𝑖𝑖 = falling minima instants 
𝑡𝑡𝑅𝑅𝑅𝑅 = rising minima instants of all the sensing units 
𝑡𝑡𝐹𝐹𝐹𝐹 = falling minima instants of all the sensing units 
A_cluster = activation clusters  
D_cluster = deactivation clusters 
 

• Check on temporal distance. This is performed applying a threshold Thd = 0.6 s. If the distance between 
consecutive events is lower than Thd, the second event is discarded in case of rising edges, while the 
first event is discarded for the falling edges. 

• Check on the amplitude reached by 𝑥𝑥𝑖𝑖(𝑡𝑡) after each rising edge instant and before each falling edge 
instant. The amplitude reached in the considered window (10 samples after a rising edge instant or 10 
samples before a falling edge instant) must be at least 0.3 nu, otherwise the event is discarded. 
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 Appendix B 
The neighbourhood of each sensing element is defined as reported in the following table: 
 

 

 
 
 
 
 
 
 
 

Sensing unit number Neighbourhood 
1 2,3,4,6,7 
2 1,3,4,6,7 
3 1,2,4,6,7,8,5 
4 1,2,3,5,7,8,6,9 
5 1,2,3,5,7,8,6,9 
6 1,2,3,4,7,8 
7 1,2,3,4,5,6,8,9 
8 3,4,5,6,7,9,10 
9 5,8,4,7,10,11 

10 9,11,8,5,12 
11 9,10,12,14,13,15,16 
12 10,11,13,14,15,16 
13 11,12,14,15,16 
14 11,12,13,15,16 
15 12,13,14,16,11 
16 12,13,14,15,11 
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