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Abstract— Transport electrification represents one of the 
key aspects of achieving carbon neutrality. Despite the 
decreasing price of electric vehicles, the transition to electric 
vehicles is progressing relatively slowly. The main reasons 
delaying transport electrification are associated with the long 
charging time of electric vehicles, limited charging 
infrastructure, along the so-called range anxiety manifesting 
itself in driver's uncertainty on whether the vehicle can reach 
the target destination successfully. Energy consumption 
prediction plays an important role in reducing range anxiety by 
providing the driver an accurate estimate of the remaining 
range. This paper presents a MATLAB/Simulink model for the 
energy consumption prediction of electric vehicles on a 
designated route. The developed model is a physical model 
relying on longitudinal vehicle dynamics which can be easily 
personalized according to different models of electric vehicles. 
The developed model is tested on a standard FTP75 driving 
cycle using the available data on Tesla Model S. 
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I. INTRODUCTION  

The transportation sector contributes about 23% to the 
global greenhouse gas emissions, and its electrification 
represents one of the key aspects of achieving carbon 
neutrality. The Sustainable Development Scenario compatible 
with the targets of the EV30@30 Campaign aims at reaching 
30% of the market share for electric vehicles by 2030 [1]. 
Although transport electrification is blooming in countries like 
China and Norway, following the slow transition in most 
countries, it becomes questionable whether the 2030 targets 
are realistic. The main reasons delaying transport 
electrification are associated with the relatively high price of 
electric vehicles, long charging time, limited charging 
infrastructure, along so-called range anxiety [2]. Range 
anxiety is related to the limited driving range of electric 
vehicles and sparse charging infrastructure, leading to the 
driver's uncertainty on whether the vehicle can reach the target 
destination successfully. Despite the constant improvement of 
battery technology, the capacity of electric vehicle batteries 
will remain limited by the battery’s weight and cost. 
Therefore, accurate prediction of electric vehicle energy 
consumption represents an important solution alleviating 
range anxiety.  

Extensive literature provides a wide variety of different 
strategies for the energy consumption prediction of electric 
vehicles. In [3], the authors divided the energy consumption 
prediction techniques into two categories, namely: methods 
based on longitudinal vehicle dynamics and statistical 
methods based on measurements of the electric vehicle 
consumption and real-world data. In [4], the authors employed 
a neural network to classify the environment in which the 
electric vehicle is operating and estimate the energy 
consumption using the average conditions. The proposed 

approach neglects the vehicle dynamics, and the authors 
claimed their method to have an accuracy within 20-30% for 
the 800 test scenarios. In [5], the authors analyzed the 
influence of road topography on electric vehicle energy 
consumption using a simplified dynamics model where the 
required power is expressed as a linear function of the road 
slope. It was concluded that road topography needs to be taken 
into account in routing applications aiming to minimize the 
energy consumption of electric vehicles. In [6], the authors 
developed an offline/online method employing open-source 
route information and considering a simplified model of 
longitudinal vehicle dynamics personalized for a Volkswagen 
Lupo. The proposed method was validated through driving 
tests on public roads, where the accuracy of 5 and 10% was 
found for the online and the offline method, respectively. In 
[7], the authors presented a computationally efficient energy 
consumption model personalized for Nissan Leaf which 
provides sufficient accuracy when compared with FASTSim, 
a high-level powertrain model developed by NREL [8]. 
Energy consumption models are also of interest in eco-driving 
and eco-routing applications with different models employed 
in [9]–[12].  

The main disadvantage of statistical methods is that the 
quality of the obtained results depends on the quality of the 
underlying data. Furthermore, the statistical methods usually 
neglect the vehicle dynamics, which play an important role in 
energy consumption. Apart from that, physical models enable 
the identification of the critical vehicle and road parameters 
affecting the energy consumption of electric vehicles. 
Therefore, this paper presents a physical model of the electric 
vehicle developed in MATLAB’s graphical programming 
environment Simulink. The developed model incorporates 
both, the electrical and the mechanical characteristics of the 
electric vehicle which can be personalized to suit different 
models of electric vehicles. The developed model is 
parametrized using the available data on Tesla Model S, and 
its performance is evaluated on a standard FTP75 urban 
driving cycle and a driving cycle obtained for a realistic route. 

II. METHODOLOGY 

Fig. 1 presents a block diagram of the developed Simulink 
model for the energy consumption prediction of electric 
vehicles. The main input of the model represents the driving 
cycle describing the change in the vehicle's velocity over time. 
The driving cycle is used as a referent signal of the speed-
tracking controller contained in the Longitudinal driver block. 
The speed-tracking controller is a proportional-integral (PI) 
controller which generates normalized acceleration and 
braking commands based on the difference between the 
referent and the measured velocity. The PI controller also 
enables the specification of the elevation profile on the 
observed route, whereby the acceleration and braking 
commands become dependent on the road topography, thus 
enabling the application of such controller on realistic routes.  



Fig. 1. Block diagram of the developed model

Fig. 2. Decoupled scheme of the motor drive

 The normalized acceleration and braking commands 
generated by the Longitudinal driver block represent the 
inputs of the Motor drive block with the decoupled diagram 
shown in Fig. 2. Three types of motors are predominantly used 
in the electric vehicle industry, namely: three-phase induction 
motors, synchronous motors with permanent magnets, and 
brushless DC motors. For simplicity, electric vehicles with 
DC motors are considered in this paper. The DC motor is 
controlled by an H-bridge. The normalized acceleration 
command is converted to an appropriate voltage value at the 
input of the H-bridge using a PWM-controlled voltage source. 
The braking command results in a short circuit of the H-bridge 
output, thus interrupting the motor’s supply. To prevent the 
occurrence of an overvoltage caused by a sudden supply loss, 
the H-bridge also contains a flyback diode. By simulating the 
operation of the DC motor following the acceleration and 
braking commands, the change of torque on the motor’s shaft 
and the change of motor’s current as a function of time are 
determined, these two being the main outputs of the Motor 
drive block.  

The torque on the motor shaft represents the main input of 
the Vehicle dynamics block, shown in Fig. 3. The vehicle 
wheels are not directly connected to the engine shaft, rather 
these two are connected through a transmission system. The 
transmission system aims to adjust the speed and torque on the 
engine shaft to their respective levels at the wheels, and it can 
be characterized by its transmission ratio and its efficiency. 
The interaction between the wheels and the road pavement is 
represented by the Magic formula model which allows 
determining the tractive force at the wheels. The tractive force 
𝐹௧  represents the main input of the Vehicle body block 
modelling the longitudinal vehicle dynamics: 

 𝐹௧ = 𝑚𝑎 +
1

2
𝜌௔𝐴௙𝐶ௗ(𝑣 + 𝑤)ଶ + 𝑚𝑔𝑠𝑖𝑛𝛼

+  𝑓௥𝑚𝑔𝑐𝑜𝑠𝛼  
(1) 

where 𝑚 is the total mass of the vehicle including passengers, 
𝑎 is the vehicle acceleration, 𝜌௔ is the external air density, 𝐴௙ 
is the frontal area of the vehicle, 𝐶ௗ is the aerodynamic drag 
coefficient, 𝑣 is vehicle velocity, 𝑤 is the wind speed in the 
opposite direction of the vehicle movement, 𝑔  is the 
acceleration of the Earth's gravity, 𝑓௥ is the rolling resistance 
coefficient, and 𝛼 is the road slope. Knowing the parameters 
in the previous equation, the vehicle velocity resulting from 
the acceleration and braking commands is determined. The 
measured vehicle speed is used through a negative feedback 
loop to form the deviation signal of the PI speed-tracking 
controller contained in the Longitudinal driver block. 

 The change in motor current in time is used to determine 
the change in the state of charge of the battery (SoC) using the 

 
Fig. 3. Decoupled diagram of the mechanical assembly of the vehicle 



Battery block which implements a generic model of the 
lithium-ion batteries predominantly used in the industry. The 
equations for discharging and charging the battery are: 
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where 𝐸଴ is the battery idle voltage, 𝑄 is the maximum battery 
capacity, 𝐴  is the exponential voltage, 𝐵  is the exponential 
battery capacity, 𝐾 is the polarization constant, 𝑖 is the battery 
current, 𝑖∗ is the low frequency dynamic current, and 𝑖௧  is the 
extracted battery capacity. The charge and discharge 
equations allow determining the change in the state of charge 
of the battery in time, and in addition, the Battery block also 
allows determining the change in the output voltage of the 
battery in time. 

 In the next sections, the details of the developed model are 
presented and the results of simulations on one of the test drive 
cycles are presented. In addition, the influence of wind speed 
and road slope on the energy consumption of the vehicle is 
analyzed. 

III. TEST RESULTS 

The parameters of the developed model are customized 
according to Tesla Model S. The maximum output power of 
the motor is set to 280 kW with a maximum torque of 420 Nm. 
The motor is powered by a 100 kWh lithium-ion battery pack 
with a nominal range of 360 kilometers. The wheels and the 
motor are connected through a transmission system with a 
fixed gear ratio of 9.734:1. The weight of the vehicle without 
passengers is equal to 2,200 kg. Fig. 4 demonstrates the 
operation of the implemented Simulink model following a 
standard FTP75 urban driving cycle. As can be seen, the 
simulation yields the change of battery’s voltage, current, and 
state of charge over time. The trip starts with a fully charged 
battery and ends with a state of charge of 95% after traveling 
about 18 kilometers. The average consumption per kilometer 
is somewhat higher than the specified 18.1 kWh/100 km for 
the Tesla Model S, which is expected due to frequent starts  

 
Fig. 4. Battery measurements on a standard FTP75 urban driving cycle 

 
Fig. 5. Effect of wind speed on the energy consumption of electric 

vehicles 

and stops in the urban driving cycle.  

 The results presented in Fig. 4 assume no wind and zero 
slopes along the route which is a bold assumption for realistic 
routes. As described in the previous section, the proposed 
model allows taking into account the change in the wind speed 
and the road slope along the route. Neglecting the effect of 
wind on energy consumption can lead to an underestimate of 
the energy consumption on the route. Increasing the wind 
speed in the driving direction increases the aerodynamic drag 
force which can substantially increase energy consumption. 
As can be seen from Fig. 5, the same driving cycle under 
different wind speeds leads to different energy consumptions 
along the route, proving that wind can severely affect the 
energy consumption of electric vehicles. The same applies to 
the road grade which can severely affect consumption. 

In practice, both the wind speed and the road grade change 
along the route. One such example is demonstrated in Fig. 6. 
The change of wind speed and the road grade along the route 
is generated randomly, and in comparison with the simplified 
scenario which neglects the effects of wind speed and road 
grade, the energy consumption increases by almost 5%. 
Considering the analyzed route is only 18 kilometers long, 
neglecting the effect of wind speed and road grade could lead 
to an overestimation of the vehicle's range. 

In the end, the proposed method needs to be tested using a  

 
Fig. 6. Influence of wind and road grade on the energy consumption of 

electric vehicles 
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Fig. 7. Realistic test route  

realistic route obtained using some of the available routing 
libraries. Following the authors in [6], accurate route 
information can be obtained using OpenStreetMap (OSM) and 
Shuttle Radar Topography Mission (SRTM). 

OSM is a collaborative project to create a geographic map 
of the world freely editable by volunteers. The coverage of 
OSM is constantly increasing, and it is expected that soon 
OSM will become a quality open-source alternative to Google 
Maps. OSM can provide road characteristics including type of 
the road and the speed limit along the route specified by its 
origin and destination. On the other hand, SRTM represents 
an international project coordinated by the US National 
Geospatial-Intelligence Agency (NGA) and the US National 
Aeronautics and Space Administration (NASA). The 
objective of SRTM is to obtain elevation data on a near-global 
scale. Currently, the elevation data is available on a horizontal 
resolution of 30 meters which makes it ideal for routing 
applications. SRTM can be easily applied to determine the 
road grade along the whole route. OSM and SRTM are used 
as data sources for GraphHopper, a user-friendly open-source 
routing library [13]. Using GraphHopper, data has been 
obtained for a route with the origin at Nikšić (42.78, 18.95) 
and the destination at Podgorica (42.45, 19.25). The route 
itself and the elevation profile along the route are shown in 
Fig. 7. GraphHopper returns a segmented route with the 
characteristics of each segment. The driving cycle returned by 
GraphHopper is discontinuous, so some preprocessing needs 
to be done before using it as an input to the model. 
Furthermore, the driving cycle is based entirely on the speed 
limits along the route. Therefore, to simulate traffic and speed 
deviations from the speed limit, Gaussian noise is added to the 
driving cycle. The driving cycle and the energy consumption 
along the route are shown in Fig. 8. The travel time of about 
an hour is typical for the analyzed route and the energy 
consumption is proportional to the energy consumption 
obtained in the first analyzed scenario. The computation time 
of the model for the given route varies between 5 and 10 
seconds over 50 runs, which makes it suitable to estimate the 
energy consumption before a trip.   

IV. DISCUSSION 

 Following the results presented in the previous section, it 
can be seen that the developed model represents a simple and 
efficient solution for the energy consumption prediction of 
electric vehicles. Furthermore, the proposed model allows 
incorporating the effects of road characteristics and climate 
conditions on energy consumption. However, the proposed 
model relies on certain assumptions.  

 
Fig. 8. Energy consumption on the realistic test route 

The main disadvantage of the proposed model is that it 
neglects the efficiency of regenerative braking. In practice, 
energy recovered by regenerative braking depends on the 
vehicle velocity. At lower speeds, only mechanical brakes are 
used, and as the vehicle’s speed increases, the efficiency of 
regenerative braking increases. At high speeds, the energy 
recovered by regenerative braking is constrained by the 
motor’s rated power. In contrast, the proposed model assumes 
that 100% of the braking energy is being recovered. Apart 
from that, the proposed model neglects the auxiliary 
consumption in the vehicle, though this can be easily 
incorporated by superposition of the auxiliary load current to 
the motor current. 

 Regardless of the mentioned drawbacks, the proposed 
model represents a computationally efficient and reliable 
solution for a rough energy consumption estimate on a 
predefined driving cycle.   

V. CONCLUSION 

This paper presented a MATLAB/Simulink model for the 
energy consumption prediction of electric vehicles. The 
developed model is a physical model incorporating the 
mechanical and electrical components of the vehicle. The 
input of the model represents the driving cycle describing the 
change in the vehicle's velocity over time. The driving cycle 
is used as a referent signal for the speed-tracking controller 
which generates acceleration and braking commands, thus 
controlling the motor of the vehicle. Simulating the model 
yields the change of battery’s voltage, current, and state of 
charge, as well as the vehicle speed and distance over time. 
Apart from the driving cycle, the developed model allows the 
specification of the road grade and the wind speed for the 
analyzed trip, thus enabling its use for realistic routes. The 
parameters of the model were personalized according to the 
available data on Tesla Model S. The performance of the 
model was evaluated on a standard FTP75 urban driving cycle 
and on a test driving cycle obtained for a realistic route. 
Furthermore, the effects of wind speed and the road grade on 
the energy consumption of electric vehicles were analyzed. It 
was concluded that neglecting the effects of wind and road 
grade can lead to serious underestimation of the energy 
consumption of electric vehicles on a particular route. 

Further work will include the extension of the developed 
model to account for vehicle and route-related constraints. 
Furthermore, the proposed method will be compared with the 
existing methods for energy consumption prediction in order 
to evaluate its accuracy and computation efficiency. 
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