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ABSTRACT
Traditional IP networks are complex and hard to manage.
The vertical integration of the infrastructure, with the con-
trol and data planes tightly coupled in network equipment,
makes it a challenging task to build and maintain efficient
networks in an era of cloud computing. Software-Defined
Networking (SDN) breaks this coupling by segregating net-
work control from routers and switches and by logically cen-
tralizing it in an external entity that resides in commodity
servers. This way, SDN provides the flexibility required
to dynamically program the network, promoting the “soft-
warization” of networking.

In this article we introduce this new paradigm and show
how it breaks the status quo in networking. We present the
most relevant building blocks of the infrastructure and dis-
cuss how SDN is leading to a horizontal industry based on
programmable and open components. We pay particular at-
tention to use cases that demonstrate how IT companies such
as Google, Microsoft, and VMware are embracing SDN to
operate efficient networks and offer innovative networking
services.

1. INTRODUCTION
Traditional computer networks are complex and very

hard to manage [1]. To express the desired policies,
network operators need to configure each individual net-
work device, one by one, either manually or with the use
of low-level scripts. In addition to configuration com-
plexity, network environments have to endure the dy-
namics of faults and adapt to load changes. Enforcing
the required policies in such a dynamic environment is
highly challenging. Current networks are also vertically
integrated. The control plane (that decides how to han-
dle network traffic) and the data plane (that forwards
traffic according to the decisions made by the control
plane) are bundled inside the networking devices. This
is a fundamental obstacle that has led to the slow pace
of innovation of networking infrastructure.

Software-Defined Networking (SDN) [2] is an emerg-
ing paradigm that promises to change the current state
of affairs. SDN breaks the vertical integration by sep-
arating the network’s control logic from the underly-
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Figure 1: Simplified view of an SDN

ing routers and switches that forward the traffic. Net-
work switches become simple forwarding devices and
the control logic is implemented in a logically central-
ized controller, simplifying policy enforcement. While
the controller can be implemented as a distributed sys-
tem, network applications have access to a centralized
programmatic model (a global network view), making
it easier to reason about network behavior. A simplified
view of this architecture is shown in Figure 1.

The separation of the control plane and the data
plane can be realized by means of a well-defined pro-
gramming interface between the switches and the SDN
controller. The controller exercises direct control over
the state in the data-plane elements via this well-defined
southbound interface. The most notable example of
such interface is OpenFlow [3, 4]. An OpenFlow switch
has one or more tables of packet-handling rules. Each
rule matches a subset of the traffic and performs certain
actions on the packets (dropping, forwarding to specific
port(s), modifying headers, among others). Depending
on the rules installed by a control application, an Open-
Flow switch can – instructed by the controller – behave
like a router, switch, firewall, load balancer, or perform
other roles.

An important consequence of the software-defined net-
working principles is the separation of concerns intro-
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duced between the definition of network policies, their
implementation in switching hardware, and the forward-
ing of traffic. This separation allows modularity by
breaking the network control problem into tractable
pieces, and making it easier to create and introduce new
abstractions in networking [5]. This is key to simplify
network management and to facilitate innovation.

Although SDN and OpenFlow started as an academic
experiment [3], they gained significant traction in the
industry over the past few years. Most vendors of com-
mercial switches now include OpenFlow support in their
equipment. The ideas behind SDN have matured and
evolved from an academic exercise to a commercial suc-
cess. The world’s largest IT companies have recently
joined SDN consortia such as the ONF [4] and the Open-
Daylight initiative [6] as an indication of the importance
of SDN from an industrial perspective.

In this article we introduce Software-Defined Net-
working and show how this paradigm differentiates from
traditional networking (Section 2). We present the most
relevant building blocks of the SDN infrastructure (Sec-
tion 3) and discuss how SDN is leading to a change in
the networking industry (Section 4). To attest the suc-
cess of SDN and its take up by the industry we present
four demonstrative use cases (Section 5): Google’s B4
and Microsoft’s SWAN traffic engineering solutions [7],
VMware’s network virtualization platform [8, 9], and
Statesman, a network state management service de-
ployed by Microsoft in its data centers [10]. We con-
clude by speculating on what the future may yield for
SDN (Section 6).

2. SOFTWARE-DEFINED NETWORKING
The term SDN was originally coined to represent the

ideas and work around OpenFlow at Stanford Univer-
sity [11]. A software-defined network is a network archi-
tecture with four pillars:

1. The control and data planes are decoupled. Con-
trol functionality is removed from network devices
that become simple (packet) forwarding elements.

2. Forwarding decisions are flow-based, instead of des-
tination-based. A flow is broadly defined by a set
of packet field values acting as a match (filter) cri-
terion and a set of actions (instructions). The flow
abstraction allows unifying the behavior of differ-
ent types of network devices, including routers,
switches, firewalls, and other middleboxes.

3. Control logic is moved to an external entity, the
SDN controller. The controller is a software plat-
form that runs on commodity server technology
and provides the essential resources and abstrac-
tions to facilitate the programming of forwarding
devices based on a logically centralized, abstract

network view. Its purpose is therefore similar to
that of a traditional operating system, but for net-
working resources.

4. The network is programmable through software ap-
plications running on top of the SDN controller.
This is a fundamental characteristic of SDN, con-
sidered its main value proposition.

Following the concepts introduced in [5], an SDN can
be defined by three fundamental abstractions: (i) for-
warding, (ii) distribution, and (iii) specification. Ide-
ally, the forwarding abstraction should allow any for-
warding behavior desired by the network application
(the control program) while hiding details of the un-
derlying hardware. OpenFlow is one realization of such
abstraction, which can be seen as the equivalent to a
“device driver” in an operating system. The distribu-
tion abstraction should shield SDN applications from
the vagaries of distributed state, logically centralizing
the network control, guaranteeing its consistency. Its
realization requires a common distribution layer, which
in SDN resides in the controller. The last abstraction is
specification, which should allow a network application
to express the desired network behavior without being
responsible for implementing that behavior itself.

3. SDN BUILDING BLOCKS
An SDN architecture can be depicted as a composi-

tion of different layers, as shown in Figure 2. Each layer
has its own specific function.
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Figure 2: A layered view of SDN

3.1 Network infrastructure
An SDN infrastructure, similarly to a traditional net-

work, is composed of a set of networking equipment
(switches, routers, and middlebox appliances). The main
difference resides in the fact that those traditional phys-
ical devices are now simple forwarding elements with-
out (or with limited) embedded control or software to
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take autonomous decisions. The network intelligence
is removed from the data plane devices to a logically-
centralized control system. An OpenFlow-enabled for-
warding device is based on a pipeline of flow tables
where each entry of a flow table has three parts: (1) a
matching rule, (2) actions to be executed on matching
packets, and (3) counters that keep statistics of match-
ing packets.

3.2 Southbound interfaces
Southbound interfaces are the connecting bridges be-

tween control and forwarding elements, thus being the
crucial instrument for clearly separating control and
data plane functionality. OpenFlow is the most widely
deployed open southbound standard for SDN. It pro-
vides a common specification to implement OpenFlow-
enabled forwarding devices, and for the communication
channel between data and control plane devices. The
OpenFlow protocol provides three information sources
for controllers. First, event-based messages are sent by
forwarding devices to the controller when a link or port
change is triggered. Second, flow statistics are gener-
ated by the forwarding devices and collected by the con-
troller. Third, packet-in messages are sent by forward-
ing devices to the controller when they do not known
what to do with an incoming packet or because there
is an explicit “send to controller” action in the matched
entry of the flow table. These information channels are
the essential means to provide flow-level information to
the controller.

OVSDB [12] is another type of southbound API, de-
signed to provide advanced management capabilities for
Open vSwitches [13]. Beyond OpenFlow’s capabilities
to configure flows and thus influence forwarding behav-
ior, OVSDB allows the creation of tunnels, turning on or
off certain features, get configuration data, etc. OVSDB
is therefore a complementary protocol to OpenFlow for
Open vSwitch.

3.3 Network hypervisor
Long standing virtualization primitives such as VLANs,

NAT, and MPLS provide only limited forms of network
virtualization. These solutions are also anchored on a
box-by-box basis configuration. The programmability
offered by an SDN has the means to provide full network
virtualization – not only isolation of virtual networks,
but also topology and addressing virtualization.

FlowVisor [14] was the earliest attempt to virtualize
an SDN. This platform acts as a proxy between the con-
troller and the forwarding devices to provide an abstrac-
tion layer that slices an OpenFlow data plane, allowing
multiple controllers each to control its share (its slice) of
a single physical infrastructure. The isolation properties
provided by FlowVisor thus allow several networks to
co-exist. OpenVirteX [15] extends FlowVisor to provide

not only isolation of network control, but also topology
and address virtualization. Contrary to these platforms
that virtualize an SDN, VMware’s Network Virtualiza-
tion Platform (described in more detail in Section 5)
provides full virtualization in data centers without re-
quiring SDN-based hardware (the only requirement is
that all servers are virtualized).

3.4 Controller
The controller is the fundamental element in an SDN

architecture, as it is the key supporting piece for the
control logic (applications) to generate the network con-
figuration based on the policies defined by the network
operator. Similar to a traditional operating system, the
control platform abstracts the lower-level details of the
interaction with forwarding devices.

There is a diverse set of controllers with different de-
sign and architectural choices [2]. Existing controllers
can be categorized based on many aspects. From an
architectural point of view, one of the most relevant
is if they are centralized or distributed. A centralized
controller (such as NOX [16]) is a single entity that
manages all forwarding devices of the network. Nat-
urally, it represents a single point of failure and may
have scaling limitations. Contrary to a centralized de-
sign, a distributed controller (such as Onix [17]) can be
scaled up to meet the requirements of potentially any
environment, from small to large-scale networks.

3.5 Northbound interface
The north and southbound interfaces are two key ab-

stractions of the SDN ecosystem. The southbound in-
terface has already a widely accepted proposal (Open-
Flow), but a common northbound interface is still an
open issue. At this moment it may still be a bit too
early to define a standard northbound interface, as use-
cases are still being worked out [18]. Anyway, it is to
be expected a common (or a de facto) northbound in-
terface to arise as SDN evolves.

3.6 Programming languages
OpenFlow resembles an assembly-like machine lan-

guage, essentially mimicking the behavior of forwarding
devices, forcing developers to spend too much time on
low-level details rather than on the problem to solve.
Raw OpenFlow programs have to deal with hardware
behavior details such as overlapping rules, the priority
ordering of rules, and data-plane inconsistencies that
arise from in-flight packets whose flow rules are under
installation. The use of these low-level languages makes
it difficult to reuse software, to create modular and ex-
tensive code, and leads to a more error-prone devel-
opment process. Abstractions provided by high level
network programming languages [19] can significantly
help address many of the challenges of these lower-level
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instruction sets.

3.7 Network applications
Network applications can be seen as the “network

brains”. They implement the control-logic that will be
translated into commands to be installed in the data
plane, dictating the behavior of the forwarding devices.
Take a simple application as routing as an example. The
logic of this application is to define the path through
which packets will flow from a point A to a point B. To
achieve this goal a routing application has to, based on
the topology input, decide on the path to use and in-
struct the controller to install the respective forwarding
rules in all forwarding devices on the chosen path, from
A to B.

Existing SDN applications either perform traditional
functionality such as routing, load balancing, and se-
curity policy enforcement, or explore novel approaches,
such as reducing power consumption [20]. Other ex-
amples include fail-over and reliability functionalities
to the data plane, end-to-end QoS enforcement, net-
work virtualization, mobility management in wireless
networks, among many others [2]. The variety of net-
work applications, combined with real use case deploy-
ments, is expected to be one of the major forces on
fostering a broad adoption of SDN.

4. AN INDUSTRY CHANGE
SDN is leading to a profound change in the network-

ing industry. The emergence of this new paradigm gave
rise to analogies with the computer industry [21]. In the
1980s, computers were based on specialized hardware,
specialized operating systems and specialized applica-
tions, all from the same vender (Figure 3). This indus-
try was thus vertically integrated, closed, proprietary,
and small. The pace of innovation was relatively slow.
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Figure 3: Change in the computer industry

The development of the microprocessor has provoked
a fundamental change, leading to the commoditization
of computers. The microprocessor and the creation of
open interfaces to program it led, over time, to the de-

velopment of many Operating Systems. In addition, the
open interfaces to program on the operating systems
led to a myriad of applications developed by hundreds
to thousands of different companies. In summary, the
commoditization of hardware and the creation of open
interfaces “horizontalized” the computer industry, in-
creasing its pace of innovation and ultimately resulting
in a huge industry.

Something similar is happening in networking today
(Figure 4). The networking industry was, until re-
cently, based on specialized hardware, specialized con-
trol planes and specialized control programs. As com-
puters in the 1980s, this naturally led to a vertically in-
tegrated industry, closed, proprietary, with a slow pace
of innovation.
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Figure 4: Change in the networking industry

The availability of merchant switching chips is lead-
ing to the commoditization of networking equipment, a
trend comparable to the one originated by the micropro-
cessor. The advent of open interfaces to the switches,
such as OpenFlow, has led to the emergence of a large
number of controllers and network control applications.
This trend shows no sign of decreasing, and the materi-
alization of open northbound APIs will arguably foster
the emergence of an even larger number of network ap-
plications. As with compute, the hardware commoditi-
zation and the availability of open interfaces to program
it are leading to a “horizontalization” of the networking
industry. Indeed, we are already experiencing a surge
in network innovation (network virtualization is a good
example) and the emergence of a significant number of
networking start-ups.

4.1 Is such change really happening?
In one word, we claim: yes. Table 1 shows a (non-

exhaustive) list of a) switches with OpenFlow support,
b) SDN controllers and c) applications. As is clear, the
trend illustrated in the rightmost part of Figure 4 is
being fulfilled. Most vendors of commercial switches
already include OpenFlow support in their equipment.
Also, the number of controllers is already significant, as
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is the number of control programs.
The world’s largest IT companies are now part of a

number of SDN consortia, which is demonstrative of its
impact in the industry. The Open Networking Foun-
dation (ONF) [4], for instance, is an organization ded-
icated to the promotion and adoption of SDN through
open standards development. Its signature accomplish-
ment is the introduction of the OpenFlow standard.
The ONF already has over 150 member companies in-
cluding dozens of start-ups exclusively dedicated to SDN
technology. Another good example of this trend is the
OpenDaylight initiative [6], a collaborative open source
project hosted by The Linux Foundation. The goal of
the project is to design and implement an open source
SDN platform. For this purpose its members – which
already add up to more than 40 – commit to donate
software and engineering resources for the project.

5. USE CASES
Another indication of the importance of SDN from

an industrial perspective is its adoption by IT compa-
nies such as Google, Microsoft, and VMware. The use
cases we present in this section are paradigmatic in that
respect.

5.1 Traffic engineering
The wide area network (WAN) that connects the dat-

acenters of cloud providers is critical for the perfor-
mance of Internet services. WAN links are very expen-
sive, and to guarantee the required performance WAN
routers consist of high-end, specialized equipment. To
compound the problem, providers are unable to fully
leverage their high investment on the infrastructure.
Given the extreme lack of efficiency of these inter-datacenter
networks they are provisioned for an average utilization
of 30-40%.

Recognizing this problem, Google and Microsoft have
deployed large-scale SDN infrastructures for boosting
the utilization of their inter-datacenter links. These
systems – Google’s B4 [7] and Microsoft’s SWAN [22]
– leverage on SDN to substantially increase the utiliza-
tion of their WAN links. In particular, the logical cen-
tralization of network control enables centralized traf-
fic engineering and simpler traffic prioritization, mak-
ing it possible to have these links used up to nearly
100% utilization without impairing the quality of ser-
vice. Besides avoiding link usage inefficiencies, the net-
work equipment used in these solutions is built from
merchant switch silicon, further reducing costs and in-
creasing flexibility.

5.2 Network management
Datacenter operators have developed, over the years,

automated systems for managing their traffic and in-
frastructure, in order to keep their networks running

smoothly. Management applications are sophisticated
in their own right. More challenging still, the different
applications that continuously run in these networks (it
is common to have, for instance, a traffic engineering
application alongside another to mitigate link failures)
can conflict with each other.

Statesman [10] is an SDN-based solution deployed
in Microsoft Azure datacenters that provides a state
management abstraction aimed to solve this problem.
Specifically, this service introduces two main ideas to
simplify the design and deployment of network man-
agement applications. First, it maintain different views
of network state to prevent conflicts and invariant vi-
olations. Applications cannot change the state of the
network directly. Instead, each application applies its
own logic to the network’s observed state to generate
proposed states that may change one or more state vari-
ables. Statesman merges all proposed states into one
target state while ensuring safety and performance in-
variants. Second, Statesman uses a dependency model
to capture the domain-specific dependencies among state
variables.

5.3 Network virtualization
As mentioned before, networking has long supported

virtualized primitives such as virtual links (tunnels such
as MPLS) or broadcast domains (VLANs to slice L2
networks). Traditional network virtualization technolo-
gies do not provide full network virtualization and re-
quire significant manual network management on a box-
by-box basis. As a consequence, current network pro-
visioning can take months, while compute provisioning
takes only minutes.

VMware has recently started offering a network vir-
tualization solution using SDN principles, the Network
Virtualization Platform (NVP) [8] (commercialized as
NSX [9]). NVP is designed for multi-tenant datacenters
and has been deployed in dozens of production environ-
ments over the last few years. NVP is an edge-based
implementation that does not require SDN-based hard-
ware. The only requirement is for the datacenter com-
puting resources controlled by NVP to be fully virtual-
ized. In NVP a centralized controller cluster is responsi-
ble for configuring the virtual switches in the hypervisor
of every host (OpenvSwitch [13]) with the appropriate
logical forwarding. The solution then leverages on a
set of tunnels between every pair of host-hypervisors to
forward traffic.

6. THE FUTURE OF SDN
We conclude this article with our view on some im-

portant challenges faced by SDN. The way they will be
addressed will certainly shape its future.

First, we expect the SDN software stack to evolve in
at least two ways: in offering new network abstractions
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Table 1: List of switches with OpenFlow support, controllers and applications
Switch Manufacturers Controllers Applications

Arista Networks Beacon Access control
Big Switch Networks Floodlight Energy-efficient network
Brocade Networks Mul Integrated security
Cisco NOX Load balancing
Dell ONIX Mitigation of DoS attacks
Extreme Networks ONOS Network monitoring
HP Open Daylight Network virtualization
Huawei OpenContrail Network-as-a-Service
IBM POX QoS policy enforcement
Juniper ProgrammableFlow Traffic engineering
NEC Rosemary Traffic steering
NetGear Ryu User mobility
Pica8 Trema VM migration

and in increasing its security and resilience. The work
around the Frenetic project [19] has pointed the direc-
tion for the former, but new abstractions will eventually
arise, including for network monitoring, traffic engineer-
ing, security, and others. We also expect the security
and dependability of the infrastructure to be an increas-
ing focus of concern in the future [23].

The initial deployment of SDNs has been mostly fo-
cused in data center environments. It is only natural for
SDN to expand to other, less homogeneous, environ-
ments, ranging from carrier-grade backbones and cel-
lular networks to inter-domain routing (e.g., Internet
exchange points).

The problem of migration from traditional networks
to SDN and the emergence of hybrid deployments is
a related challenge. Panopticon [24] is one example of
an architecture and methodology that implements SDN
inside enterprise legacy networks. We anticipate other
such solutions to appear to increase the pace of SDN
adoption.

Finally, the integration of Network Function Virtu-
alization (NFV) with SDN is another important chal-
lenge. NFV is an emergent concept that proposes the
use of virtualization technologies to virtualize network
node functions, therefore enabling middlebox function-
ality to run on virtual machines. Its integration with
SDN is increasingly being considered fundamental by
the networking industry – it is one of the main goals
of the OpenDaylight project, for instance – as a pro-
moter of the softwarization of the complete networking
infrastructure.
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