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Abstract: This paper explores the use of deep learning 
architectures to identify and categorize infrared spectral data with 
the objective of classifying drugs and toxins with a high level of 
accuracy. The model proposed uses a custom convolutional 
neural network to learn the spectrum of 192 drugs and 207 toxins. 
Variations in the architecture and number of blocks were iterated 
to find the best possible fit. A real-time implementation of such a 
model faces a lot of issues such as noise from different sources, 
spectral magnitude off-setting, and wavelength rotation. This 
paper aims to tackle some of these problems. Another common 
issue is the use of extensive pre-processing which makes it difficult 
to automate the entire process. We have aimed to side-step this 
issue with the architecture proposed. The focus is on 2 
applications - detection of drugs and toxins.  The data sets used 
are from different sources, each with its own noise factor and 
sampling rate. Some of the traditional models like Principal 
Component Analysis (PCA) and Support Vector Machines (SVM) 
were also tested on the datasets. The model works with minimal 
input data of two spectra (and three augmentations of the same) to 
learn the features and classifies the data from a source 
independent of the input. The proposed model showed a 
significant improvement in accuracy when compared to the other 
models currently in use, achieving an overall accuracy of 
96.55\%. The model proposed performs extremely well with a 
minimal sampling rate and shows no loss in accuracy of 
classification even with an increase in the number of classes. The 
research conducted has the scope of being extended to the 
identification of counterfeit drugs which is a growing cause for 
concern. Another application could be in the detection of the 
presence of harmful toxins. 

Keywords: Deep CNNs, Drugs and toxins detection, IR 
Spectroscopy, Spectral classification. 

I. INTRODUCTION 

Deep Learning and the use of predictive technology are 

completely transforming the way we process information. 
With the vast amount of data generated every second, the use 
of deep learning algorithms has seen a significant rise in the 
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last few decades. Speech recognition, audio signal 
processing, and computer vision [1], [2] are some of the areas 
that have seen growing interest. Machine learning provides 
exceptionally good performance in areas where classical 
methods either fail to converge or prove to be 
computationally inefficient. Among the vast possible 
applications, one of the areas with a lot of ongoing research is 
Infrared (IR) spectroscopy. IR Spectroscopy is primarily used 
for the qualitative and quantitative estimation of organic 
compounds. Fourier Transform Infrared Spectroscopy 
(FTIR), which measures the absorbance/transmittance of the 
substance in the range of 4000 to 400cm-1 (wavenumber), has 
now made it possible to generate an IR spectrum of 
compounds with relative ease. Conventional methods to 
analyze such spectra, while accurate, are extremely 
time-consuming. Deep Learning has the scope to reduce the 
analysis time exponentially while maintaining the accuracy of 
results. Here we have focused mainly on two kinds of 
datasets, the toxins, and the drugs. Detection of counterfeit 
and substandard drugs is the need of the hour with an 
ever-increasing list of fake drugs and medicines on the 
market. Most of these drugs cannot be distinguished by their 
physical attributes like appearance, color and/or odor. 
Malaria, pneumonia, and the common illnesses affect more 
than 200,000 children every year, especially in poor countries 
where substandard and fake drugs run rampant. Another 
growing cause for concern in the agricultural sector is the 
increased use of pesticides and fertilizers. In the last few 
decades, crops are showing an increased presence of harmful 
toxins. Examination of the chemical composition of these 
substances, while accurate, is time consuming and requires 
equipment that is not readily available. Hence, there is a need 
for effective identification of the presence of these harmful 
compounds. IR spectrometers measure either of two values - 
absorbance or percentage of transmittance. Since the datasets 
we have used are from various sources, accordingly we have 
both kinds of data. We have applied the relation derived from 
Beer Lambert's Law for homogeneous samples which 
effectively neglects the reflectance. Hence the model is 
capable of handling both kinds of data by converting 
absorbance to transmittance [3] using the relation: 

 
where A = absorbance and T = Percentage Transmission 
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II.  DATA COLLECTION AND PROCESSING 

A. Dataset 
A lot of previous research has used data from their own lab 

facilities and equipment for both train and test samples. As a 
result, the training and testing data used are quite similar.  

Here, we have used data from three different sources, 
resulting in several differences in the data that includes 
sampling rate, and study domain. Our methods use the 
infrared spectrum of drugs and toxins collected from the 
publicly available repositories: SpectraBase [4] and National 
Institute of Standards and Technology (NIST), United States 
[5] for training. For testing the model, we have used the data 
collected from the Spectral Database for Organic Compounds 
(SDBS) by the National Institute of Advanced Industrial 
Science and Technology (AIST), Japan [6]. To digitize the 
spectra images, Web Plot Digitizer [7] is used. The process is 
automated using PyAutoGui-python module to avoid human 
error in axis calibration for different plots having same axis. 
For uniform spacing between data points, X Step with 
interpolation algorithm is chosen. For spectra images of 
SDBS dataset [6] having non-uniform X axis, digitization is 
carried out in parts. For the spectra of NIST dataset [5] in 
JCAMP-DX format, data points are extracted using python 
module-jcamp. While machine learning algorithms have 
demonstrated to be an essential approach to classify based on 
IR spectra in real time, it requires heavy pre-processing [14] 
of data. This is true, regardless of whether we use 
peak-detection or multivariate methods [15], [16] operating 
on whole spectra are taken in as input. The standard 
procedure to classify spectral data includes feature selection, 
smoothing and baseline correction followed by 
dimensionality reduction techniques like principal component 
analysis (PCA) [17]. A variety of automated baseline 
correction methods [18] were proposed like asymmetric least 
squares, penalized least squares and the rolling ball which 
require little or no human intervention. A detailed review of 
all baseline correction methods can be found at Schulze et al 
[19].  

 
Fig (1). Spectra without Baseline correction 

 
Fig (2). Spectra with baseline correction 

III. METHODS 

Inspired by a lot of previous research works, we initially used 
Principal Component Analysis (PCA) [13], [17] to classify 
the spectra. However, the results suggested that the method 
did not generalize well for many classes with limited training 
data. Another popular method used commonly for 
classification is Support Vector Machine (SVM). So next we 
tried an implementation of the same on our data. The results 
were quite much better than PCA but still had scope for 
improvement. So, we turned to Deep Learning based methods 
and implemented a one-dimensional Convolutional Neural 
Network for the task. One of the biggest challenges when it 
comes to implementing CNN networks, is that they are 
extremely data hungry. A generic deep learning model has 
million to tens of millions of parameters to train. Hence, the 
number of training samples can be exponentially large. To 
generate such a large set of data, many popular data 
augmentation techniques are used. Cropping, rotating, 
shearing, and zooming in/out are the most used techniques 
when it comes to image data. In case of numerical data with 
non-categorical variables, the popular data augmentation 
techniques include linear combinations and adding noise from 
a distribution (mostly Gaussian). Here, we have adopted 
linear combinations between the NIST dataset and the 
Bio-Rad dataset in three ratios 1:1, 1:2 and 2:1 (chosen at 
random). Since our end goal was to be able to detect these 
spectra in real time without any pre-processing, the raw 
spectral data was directly fed into the CNN model without any 
prior feature engineering. Additionally, to check the impact of 
number of features on model accuracy, we trained the drugs 
with 716 features while the toxins were trained on 1740 
features, all in the range from 500cm-1 to 4000cm-1. 

A. Principal Component Analysis (PCA) 

This is the basic technique used to visualize and analyze 
data. The data for drugs had 716 features for each drug while 
that of toxins had 1740 features. PCA was used on the dataset 
extracted from Bio-Rad dataset. PCA works by projecting the 
data onto a new coordinate system by trying to maximize the 
variance along each axis.  
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The data was normalized and then the covariance matrix 
was computed. The eigenvectors of the Covariance Matrix 
were considered in the decreasing order of magnitude of 
corresponding eigenvalues as the axis of the new coordinate 
system. The number of components used were varied till 
about 98% of the variance was captured. As seen in the figure 
below, this was obtained taking 60 components for toxins and 
30 components for drugs. The variance obtained on the 
dataset versus the number of components used for both the 
drugs as well as toxins are shown in the figures below. After 
applying PCA on the dataset, the scores for each drug were 
stored. The principal features were extracted, and these were 
used for testing (identification of drugs and toxins). The 
testing was performed on the SDBS dataset. For the testing 
process, the spectra to be identified was projected along the 
principal components and the scores were found out. 

 
Fig (3). Variance captured versus No. of PCA. 

components for toxins. 

 
Fig (4). Variance captured versus No. of PCA.  

components for drugs. 
Two vector norms were evaluated on the testing data, the 

L1 norm (or the Manhattan Norm) and the L2 norm (or the 
Euclidean Norm) and the predicted class of the drug was the 
label with the least norm. As seen from the plots below, the 
accuracy dropped almost exponentially as the number of 
classes of each category were increased. Hence, PCA proved 
to be inadequate for the task. The norm was evaluated 
according to the equation. 

 

 
Fig (5). Accuracy on L1, L2 norm versus number of 

classes for toxins. 
 

 
Fig (6). Accuracy on L1, L2 norm versus number of 

classes for drugs. 

B. Support Vector Machines (SVM) 

  Support Vector Machine [20], [11] is the most popular 
algorithm for classification of numerical data. The algorithm 
revolves around finding an optimal hyper-plane to separate 
the various classes. However, often, the data is not linearly 
separable. Thus, we applied Kernel transformations [21] to 
deal with non-linearity while saving up on computation. The 
four major kernels [22] in use for SVM are. 

 

 

 
 

Kernel SVM models have plenty of hyper parameters to 
tune [24] to arrive at the optimal result. The kernels may be 
Linear, Radial Basis Function, Polynomial or Sigmoid. In 
case of Polynomials, there are two parameter the degree (d) 
and the off-set or bias term c. For Radial Basis Kernels, there 
is a γ which is nothing but 0.5σ

2.  Additionally, SVM has 
another hyper-parameter, the C factor which is like the 
regularization hyper-parameter. To arrive at the best fit, each 
of these parameters need to be tuned in tandem. So, we opted 
for a Grid Search [25] CV to find the optimum model. The C 
parameters were varied in the range (1,1000) on a logarithmic 
scale. The γ-factor was varied from (1,1e-5). Both Radial 
Basis and Linear Kernels were experimented with.  
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The best fit appeared to be for a Linear Kernel with a C 
value of 1 for toxins and Linear Kernel with a C value of 1 for 
drugs. 

 
Fig (7). Accuracy of SVM versus number of  classes for 

toxins. 

 
Fig (8). Accuracy of SVM versus number of classes for 

drugs. 
SVM showed remarkable accuracy of 95% for toxins till 

about 60 classes after which we began to lose accuracy. For 
207 classes, the accuracy dropped to 82.18%. This was a 
significant improvement over PCA but there was still quite a 
scope for improvement. For drugs however, even though the 
accuracy was better than PCA, but low in general, so there 
was large scope of improvement. 

C. Custom Convolutional Neural Network 

Convolutional Neural Networks are well known for their 
capability of capturing and identifying important features 
from the data. The limited accuracy of Support Vector 
Machines (SVMs) for drug and toxin classification task led us 
to the One-Dimensional Convolutional Neural Networks 
(1D-CNN) [26] Approach, which is commonly used for time 
series analysis and as a pre-processing technique in Recurrent 
Neural Networks (RNN) for down sampling. Convolutional 
layers work by extracting hidden patterns in the input data. 
Each kernel works as a feature identifier, filtering out where 
the feature exists in the input data. Max-Pooling Layers 
extract the most prominent of these features [27] by taking the 
max in the local region. Activation Layers provide the needed 
non-linearity to the model. Finally, dense fully connected 
layers which follow these convolutional blocks act as 
classifiers and use the newly engineered flattened feature 
vectors as input for this purpose. 
Training Overview 

The infrared spectra of drugs and toxins were treated as a 
fixed domain sequence of values. Data augmentation 
techniques mentioned earlier were used to increase the size of 
the dataset. The number of classes were set to 207 for toxins 
and 192 for drugs. However, in principle the model 

architecture can take in a lot more classes with negligible loss 
in accuracy. The entire model was split into several 
Convolutional Blocks (CB). The convolutional blocks are 
arranged sequentially to finally extract the feature vector used 
for classification.  Each Convolutional Block consists of a 
1D-CNN with layer. The output is normalized [28] and 
passed through a Leaky ReLU activation layer. Finally, the 
outputs are pooled using Max Pooling (chosen over Averaged 
Pooling for better model performance) [29]. These operations 
can be summarized by the following mathematical equations. 

 
 

 

 

 
 The model was trained using the categorical cross entropy 
[30] function. To back propagate and update the weights after 
each iteration we used the Adamax optimizer [31] with a 
learning rate of 1e-2. Adamax is an adaptation of the popular 
Adam [32] algorithm which uses Batch Gradient Descent. 
The model was iterated over 60 epochs for both drugs and 
toxins with a batch size of 32. Finally, we used connected 
layers and the soft-max activation for the final classification 
step. The complete model architecture entailing all the layers 
is shown in the figure below (Fig (9)). 

 

 
 Once the basic setup was ready, the method underwent a lot 
of experimentation. The number of convolutional blocks can 
be linked to the ability of the model to identify more complex 
features in the data. This might sometimes also lead to 
problems like over-fitting on the training data, wherein the 
model starts to focus on the redundant features of the data 
with more priority because of which, the model does not 
generalize well for the unseen data. We finally settled for 3 
blocks since that performed the most accurately on the unseen 
testing data.  

                                 IV. RESULTS 

The model was trained for 60 epochs and achieved a test 
accuracy of 96.55% with a top 3 accuracy of 97.13% and a top 
5 accuracy of 97.7% for toxins and a test accuracy of 95.46% 
with a top 3 accuracy of 96.68% and a top 5 accuracy of 
96.88% for drugs, which is certainly a significant 
improvement over SVMs. The model achieved 99.6% 
accuracy on the training dataset implying that the model had a 
near perfect fit on the entire input data. The complete results 
for the accuracy are summarized in the tables below. 
Table (1). The trends in the top 1,3 and 5 accuracies for 

toxins versus number of convolutional blocks (CB) 
CNN 

Blocks 
Accuracy 
(Top1) 

Accuracy 
(Top 3) 

Accuracy 
(Top 5) 
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1 90.8 91.95 93.1 
2 92.53 93.68 94.25 
3 96.55 97.7 97.7 
4 95.98 96.55 96.55 
5 96.55 97.13 97.13 
6 94.83 95.4 96.55 

 
Table (1). The trends in the top 1,3 and 5 accuracies for 

drugs versus number of convolutional blocks (CB) 
CNN 

Blocks 
Accuracy 
(Top1) 

Accuracy 
(Top 3) 

Accuracy 
(Top 5) 

1 89.53 90.46 92.43 
2 91.98 92.74 94.12 
3 95.46 96.68 96.88 
4 94.62 95.23 95.23 
5 93.24 94.26 94.34 
6 93.12 93.86 94.06 

 

 
Fig (9). Complete model architecture 

V. CONCLUSION AND FUTURE WORKS 

One of the significant achievements of this model is that 
many of these compounds are very similar in their IR spectra 
in the required range. The variation is only the position of 
certain functional groups. The Convolutional Block 
efficiently captures the hidden patterns and variations in the 
data. A model wise comparison in performance can be seen in 
the table below. Some significant take-aways from the results 
obtained.  
1)    The increasing number of convolutional blocks implies 

an increased ability to extract hidden patterns from the 

input data. However, beyond a threshold (dependent on 
the nature of the dataset), the model tends to overfit and 
does not generalize well. 

2)    An increase in the number of features or wavelengths 
assessed provides only a marginal increase in the 
accuracy (about 1%). The drugs which used 716 features 
gave a top accuracy of 95.5% whereas the toxins using 
1740 features gave a top accuracy of 96.55%.  

3)    Since the sources are different for both train and test, a 
dip in accuracy is generally expected due to changing 
noise factors and sampling rate. However, that is not the 
case and the model is proven to be extremely robust. 

4)    The model requires just two input spectra (can be 
absorbance or transmittance) to learn the class’s 

distinguishing features and classify. This is a huge leap in 
the domain of CNNs which are extremely data 
dependent. 

The research presented in this paper opens the possibility to 
have handheld devices to recognize the presence of drugs and 
toxins in an instant. It also opens paths for novel methods of 
instant counterfeit drug detection. Presence of harmful 
organic toxins in food and other consumables can be 
identified. New classes of drugs can be appended to the input 
dataset with ease and the model can classify with no prior 
pre-processing involved. The model proposed can also be 
extended to other kinds of IR and UV spectral databases with 
minimal tweaks in the proposed architecture to account for the 
varied dataset by the process of transfer learning that has seen 
numerous applications in the field of object detection.  
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