
International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-10 Issue-3, February 2021

115

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.C22350210321
DOI:10.35940/ijeat.C2235.0210321
Journal Website: www.ijeat.org



Abstract: Today with the growth of the internet, the use of
social networks, mobile telephony, connected and communicating
objects. The data has become so big, hence the need to exploit that
data has become primordial. In practice, a very large number of
companies specializing in the health sector, the banking and
financial sector, insurance, manufacturing industry, etc… are

based on traditional databases which are often well organized of
customer data, machine data, etc ... but in most cases, very large
volumes of data from these databases, and the speed with which
they must be analyzed to meet the business needs of the company
are real challenges. This article aims to respond to a problem of
generating NoSQL MongoDB databases by applying an approach
based on model-driven engineering (Model Driven Architecture
Approach). We provide Model to Model (using the QVT model
transformation language), and Model to Code transformations
(using the code generator, Acceleo). We also propose vertical and
horizontal transformations to demonstrate the validity of our
approach on NoSQL MongoDB databases. We have studied in
this article the PSM transformations towards the implementation.
PIM to PSM transformations are the subject of another work.

Keywords : MDA, NoSQL, Document-oriented Databases,
MongoDB.

I. INTRODUCTION

Since their creation, databases, small or large, have

become an essential entity and inseparable from any
application or website. The basics of most popular relational
data at the time had their DBMSs available by default in
computer systems. With the expansion of the number of
Internet users and the multitude of terminals and connected
objects, relational databases are no longer able to support
large data to store, extract, move and copy, especially if they
are distributed over multiple servers. Hence the need for a
new generation of advanced databases, compatible with the
geographic extent of huge networks of servers, known as
clusters, and capable of handling large amounts of data. Fig.1

Manuscript received on February 09, 2021.
Revised Manuscript received on February 18, 2021.
Manuscript published on February 28, 2021.
* Correspondence Author

Dr. Aziz Srai*, Research Doctor at LASTIMI Laboratory, Mohammadia
School of engineering, Mohamed V University city of Rabat, Morocco.:
aziz.srai.dev@gmail.com

Prof. Fatima Guerouate, Research Professor at LASTIMI Laboratory,
Mohammadia School of engineering, Mohamed V University city of Rabat,
Morocco. Email: guerouate@gmail.com

Prof. Hilal Drissi Lahsini, Research Professor at LASTIMI Laboratory,
Mohammadia School of engineering, Mohamed V University city of Rabat,
Morocco. Email: Hilaldrissi@gmail.com

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

shows the evolution of information systems and data
exchanged from the creation of computer networks to the new
generation of the Web, allowing Internet users to contribute to
the exchange of information and to interact in a simple way,
both in terms of content and structure of the pages, in
particular creating the social Web.

Fig. 1. Exponential expansion of data exchanged on the

Internet.
 Today, the ubiquity of the Internet connection is a reality
(the cars we drive, the watches we wear, our small household
medical devices, our refrigerators and freezers, our
smartphones and laptops). In addition, digital data produced
by humans, including video footage, photos and more, attains
large volumes per day. These data currently stored in
databases that have been designed specifically for them are
managed by large database management software, playing the
role of intermediaries between the databases on the one hand
and the applications and their users on the one hand. Other,
we are talking here about non-relational databases, called
NoSQL. In this paper we propose the integration of an MDA
approach in the context of NoSQL databases in particular the
case of MongoDB document-oriented databases. This paper
is organized as follows: we begin in the first section with an
introduction. The section 2 discusses the works that are
related to our theme. Section 3 presents the concepts of the
MDA approach (Model Driven Approach). Sections 4 and 5
present our proposed solution to develop E-learning platform.
The final section concludes this paper, and outlines future
work.

II. RELATED WORKS

 Previously, several research projects have been proposed
in the context of integrating the MDA approach into NoSQL
databases.

The Integration of the MDA Approach in
Document-Oriented NoSQL Databases, the case

of Mongo DB
Aziz Srai, Fatima Guerouate, Hilal Drissi Lahsini

mailto:aziz.srai.dev@gmail.com
mailto:guerouate@gmail.com
mailto:Hilaldrissi@gmail.com
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijeat.C2235.0210321&domain=www.ijeat.org

The Integration of the MDA Approach in Document-Oriented NoSQL Databases, the case of Mongo DB

116

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.C22350210321
DOI:10.35940/ijeat.C2235.0210321
Journal Website: www.ijeat.org

In [Chevalier, 2015], the authors defined a set of rules for
mapping a star schema into two NoSQL models:
column-oriented and document-oriented. Other studies [Li et
al., 2010] and [Vajk et al., 2013] have studied the process of
transforming relational databases into a NoSQL model. [Li et
al, 2010] proposed an approach to transform a relational
database into HBase (column oriented system). [Vajk et al.,
2013] defined a correspondence between a relational model
and a document-oriented model using MongoDB. [Li et al.,
2014] propose a MDA-based process to transform UML class
diagram into column-oriented model specific to HBase.
[Gwendal et al., 2016] describe the mapping between a
conceptual UML model and graphical databases via an
intermediate graphical metamodel. In this work,
transformation rules are specific to graphical databases used
as a framework for managing complex data with many
connections. Generally, this type of NoSQL system is used in
social networks where data is highly connected. According to
our knowledge, no work has studied the transformation of a
uml diagram to a NoSQL MongoDB database, nor the
generation of a NoSQL MongoDB database through a PSM
transformation to an implementation.

III. MODEL DRIVEN ENGINEERING

 Since the end of the 90s, Model Driven Engineering (MDE)
has been regarded as an undisputed approach to dealing with
the complexity of distributed systems and this is based on two
very important principles in software development which are:
abstraction and automation. The abstraction is based on the
representation of systems as a model to facilitate
understanding of the architecture and behavior of these
systems. This approach is completely model-based. These
models will serve as a starting point in the process of
specification, development and analysis. They can be used to
understand, evaluate, communicate, and produce code. These
automated transformations increase productivity and decrease
development costs. The MDE emphasizes domain-specific
models, which may be more useful for specifying applications
and generating code. In order to model complex systems of
reasonable size, designers need to separate the model into
multiple views, each of which captures a specific system
concern. These different views of the model are governed by
viewpoints and are used to facilitate the tasks of designing,
analyzing and developing software.
Model Driven Engineering (MDE) is a branch of software
engineering concerned with the development, maintenance
and evolution of models within computer systems.
The first software architecture following these principles is
called MDA (Model Driven Architecture). It was proposed by
the Object Management Group (OMG), to succeed the Object
Management Architecture. This architecture, proposed in
2000, is the variation of Model Engineering within the OMG.
We could summarize the approaches of MDA and
Model-driven engineering as follows:
1. The concept of model;
2. The concept of metamodel;
3. The concept of model transformation.
The "model" is a simplified representation of a studied
system. The system being the entity that is modeled in order to
study, understand and use it for predictive purposes in a
controlled context other than the real context. [Minsky 1965]
proposed the following definition: "For an observer B, an

object A * is a model of an object A, since B can use A * to
answer questions of interest to him about A". [Popper 1973]
thus summarizes three characteristics common to all models:
1. A model must have a character of resemblance to the real
system;
2. A model should be a simplification of the real system;
3. A model is an idealization of the real system.
Particularly in the context of the model-driven engineering,
these three characteristics can be expressed by the
relationship “is a representation of” between the model and

the system studied ([Hill 1996] [Atkinson and Kuhne, 2003]
[Seidewitz 2003] [Bézivin 2004]). A model is not assumed
be perfect or contain all the information about the system
being studied. It is simply considered "good enough" for a
certain purpose [Favre 2004].
However, this definition is not sufficient within the
framework of the model-driven engineering because it does
not make it possible to make a model "productive". This is
why some authors use the following definition [Kleppe et al.,
2003]:
"A model is a description of a (or part of a) system written in a
well-defined language".
The notion of well-defined language indirectly appeals to the
second principle of the model-driven engineering, namely the
notion of metamodel.
As for the concept of model, several definitions exist in the
literature:
“A metamodel is a model that defines a language to express a
model” [OMG 2002].
“A metamodel is a specification model for a class of studied
systems, where each studied system in that class is itself a
valid model expressed in a certain modeling language”

[Kleppe et al., 2003].
Contrary to popular belief, the metamodel in this context is
not a model of models, as it might be when we were talking
about statistical methods. Rather, we could define the
metamodel as the model of a modeling language. This
definition is based on the following typical relation, of the
notion of metamodel: "a model conforms to a metamodel".
In an identical way to what we have seen for the notion of
metamodel, the transformation takes different forms
depending on the technical spaces or levels of abstraction
studied:
 For databases, we find the migration scripts.
 For the XML language: the transformations are expressed

in eXtensible Stylesheet Language (XSLT).
 For language theory: transformations are handled by

compilation and more particularly by code generation.
 For models (M2M, "Model to Model"): there are languages

such as ATLAS Transformation Language (ATL) or QVT
(Query View Transform).

Among the most popular meta-modeling languages are the
Meta Object Facility, UML, Eclipse Modeling Framework
specification. In the case of EMF, for example, transforming
models amounts to running a metaprogram. It is, in effect, a
modeling and code generation platform.

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-10 Issue-3, February 2021

117

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.C22350210321
DOI:10.35940/ijeat.C2235.0210321
Journal Website: www.ijeat.org

Fig .2 . models of the MDA approach.

IV. BIG DATA

 Big Data is a type of data base with specific characteristics.
In this section, we present the three rules that have been
widely used to define Big Data. These are the "3V", "4V" and
"5V" rules.
 "3V" Rule: A description of Big Data was established in a

2001 research report by Gartner Group analyst Douglas
Laney [Douglas, 2001]. She defines the issues inherent in
data growth as three-dimensional. These are Volume,
Variety and Velocity. In 2012, Gartner1 gave a more
detailed definition of Big Data as follows:

Definition 1. “Big Data is big data, very varied, generated and

processed at high speed. These data require efficient and
innovative forms of information processing to enable better
decision-making ” [Douglas, 2001].
 “4V” rule: The analysis firm IDC (International Data

Corporation) defined, in a 2011 report [Gantz and Reinsel,
2011], four dimensions to characterize Big Data, namely:
Volume, Variety, Velocity and Value.

Definition 2. "Big Data Technologies describe a new
generation of technologies and architectures designed to
economically extract value from large volumes of very varied
data, allowing their capture and analysis at high speed"
[Gantz and Reinsel , 2011].
 “5V” rule: Two new Vs appeared in 2013 in a research

article [Demchenko et al., 2013] where the SNE group
(System and Network Engineering) proposes a broader
definition for Big Data through the rule of 5V.

Definition 3. “Big Data Technologies aim to process large
volume, high velocity and wide variety data to extract value,
ensure high veracity of original data and obtain information
that requires innovative forms of data processing, in order to
improve decision-making and process control ” [Demchenko
et al., 2013].
The definitions associated with the dimensions used in the
above rules are as follows:
 Volume: represents the size of all the data to be processed.
 Variety: refers to the variety of sources, types and formats

of data.
 Velocity: corresponds to the speed at which data is

collected and processed.
 Value: equivalent to the profit that can be derived from the

use of Big Data.
 Veracity: covers the quality and reliability of the data; this

is the qualitative dimension of Big Data.

Currently 90% of DBMS are relational. But faced with the
characteristics of Big Data, relational systems encounter
limits. The main problems with these systems are: Horizontal
scaling: a relational DB was primarily designed for single
server configurations [Kumar et al., 2015]; scaling this
database involves distributing it across multiple servers. This
poses financial (the cost of servers) and technical constraints
(the number of servers is generally limited to 10). In addition,
managing tables on different servers remains a complex task.
The definition of a model during the creation of the database
and before data entry: in a Big Data context, the user must be
able to easily integrate new data. Relational DBMSs do not
offer this flexibility; the relational model is difficult to
incrementally change without affecting performance or taking
the DB offline. Thus, storage technologies have had to
evolve to introduce new DBMSs which are capable of
handling large, varied data and which can evolve very
quickly. These are the NoSQL DBMS [Han et al, 2011]
presented in the next section.

V. NOSQL DATABASES

 The term NoSQL refers to a type of database management
system that goes beyond the relational systems associated
with the SQL language by accepting more complex data
structures. According to their physical models, the databases
managed by these systems are divided into four categories:
columns, documents, graphs and key-value [Angadi et al.,
2013]. Each of them offering specific features. For example,
in a document-oriented DB like MongoDB, the data is stored
in tables whose rows can be nested. This data organization is
coupled with operators that provide access to nested data
[Kumar et al., 2015].
The choice of the most suitable DBMS category for a given
application is linked to the nature of the processing (requests)
applied to the data. But this choice is not exclusive since, in
each category, the DBMS can provide all types of processing,
sometimes at the cost of a certain cumbersome or more
extensive programming.
In what follows, we present the data models adopted by each
category of NoSQL DBMS.

A. Column-oriented model

 The column-oriented model is a structured model where
data is organized into families of columns, which is equivalent
to the concept of a table in the relational model. The lines
have an identifier called the line key and are made up of a set
of values; each is associated with a column. Thus, finding a
value amounts to going through the sequence: row key ->
family of columns -> column.
 Although the column-oriented model is similar to the
relational model, the organization of the data in the two
models is different [Abadi et al., 2008]. In opposition to what
is found in a relational database where the columns are static
and present in each row, in a column-oriented database the
columns are dynamic and appear only in the rows concerned.
In other words, each row has a different number of columns
and you can add new columns to it at any time; we thus gain in
extensibility at the level of the data model.

The Integration of the MDA Approach in Document-Oriented NoSQL Databases, the case of Mongo DB

118

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.C22350210321
DOI:10.35940/ijeat.C2235.0210321
Journal Website: www.ijeat.org

Fig. 3. Organization of a family of columns in a

column-oriented database.
In addition, the column-oriented model has the advantage of
improving storage efficiency and avoiding space
consumption compared to the relational model. Indeed, due to
their design by allocation of blocks, in a relational DBMS, an
empty column will still consume space. In a column-oriented
DBMS, the cost of storing an empty column is 0. Cassandra,
HBase and Accumulo are examples of DBMS where data is
stored in a column-oriented model.

Fig. 4. Meta-model for Column-oriented database

[Erraissi et al et al., 2019].

B. Document-oriented database

 Document-oriented databases are used to manage
semi-structured data. This is data that does not follow a fixed
structure and carries the structure within it. However,
markings in the semi-structured data make it possible to
organize the information. Due to the lack of a clear structure,
these data are not suitable for relational databases since their
information cannot be organized in tables.
 Document-oriented databases create a simple pair: a key is
assigned to a specific document. This document, which can
for example be formatted with XML, JSON or YAML
contains the information itself. Since the database does not
require a specific schema, it is also possible to integrate
different types of documents in a single document store.
Changes to documents do not have to be communicated to the
database.

1) Operation of document-oriented databases
 In theory, it is possible to place data of different formats and
without a consistent schema in a document-oriented database.
In practice, a file format is generally used for documents and
the information is integrated into a fixed structure. This makes
it easier to work with the information and the database. This
organization makes it possible, for example, to process
database search queries more efficiently. In general, a
document-oriented database can perform the same actions as
a relational system: information can be inserted, modified,
deleted and searched. To be able to perform these actions,
each document receives a unique identifier. How it is
designed is in principle not important. It is possible to use
both a sequence of characters and a full path to address the
document. When searching for information, it is the
documents themselves that are analyzed: this means that the
corresponding data is not looked for in several columns of the
database and is extracted directly from the documents.
2) Advantages and disadvantages of document-oriented
databases
 In classic relational databases, a field must exist for each
information and in each entry. When the information is not
available, the cell remains empty and must be created.
Document-oriented databases are much more flexible: the
structure of different documents does not have to be
consistent. The database can even host large volumes of
unstructured data.
Furthermore, it is very easy to integrate new information:
whereas with a relational database, it is necessary to insert a
new information point in all the data sets, in the case of a
document store, it is sufficient to embed the new entry in only
a few datasets. In other documents, additional content can be
added, but it is not essential.
Moreover, in the case of document stores, the information is
not shared between several tables linked to each other.
Everything is in one place which can lead to better
performance. However, document-oriented databases can
only exploit this speed advantage as long as you don't try to
endow them with relational elements: references cannot be
used in the concept of document stores. If you try to link
documents together, then the system becomes very complex
and impractical. In the case of strongly linked data volumes, a
relational database is therefore more appropriate.
3) The most famous document-oriented databases
For web application development in particular, databases play
a huge role for documents. Due to the high demand resulting
from web development, many database management systems
(DBMS) are now available in the market. The following list
presents the most famous:
 BaseX: this open source project uses Java and XML.
 BaseX comes with a graphical user interface.
 CouchDB: The Apache Software Foundation released the
open source software CouchDB. This database management
system is coded in Erlang, uses JavaScript and is used in
particular in Ubuntu and in Facebook applications.

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-10 Issue-3, February 2021

119

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.C22350210321
DOI:10.35940/ijeat.C2235.0210321
Journal Website: www.ijeat.org

 Elasticsearch: This search engine works on the basis of a
document-oriented database. To do this, JSON documents are
used.
 eXist: The open source eXist database management system
runs through a Java virtual machine and can therefore be used
independently of an operating system. The documents used
are mainly in XML format.
 MongoDB: MongoDB is the most popular NoSQL
database. The software is coded in C ++ and uses documents
similar to JSON.
 SimpleDB: With SimpleDB (encoded in Erlang), Amazon

has developed its own database management system for
corporate cloud services. The provider charges a fee for
its use.

Fig. 5. Organization of a collection in a

document-oriented database.

Fig .6. Meta-model for Document-oriented database
[Erraissi et al et al., 2019].

C. Graph-oriented model

 This model organizes data in the form of nodes and
relationships. Nodes and arcs can carry a set of properties
expressed as key-value pairs.

 This model is useful for storing and querying complex,
tightly related data; this is the case, for example, with data
from social networks.

Fig. 7. Organisation des données dans une BD
orientée-graphes.
 The most common graph-oriented DBMS are Neo4j,
OrientDB and FlockDB.

Fig .8. Meta-model for Graph-oriented database [Erraissi
et al et al., 2019].

D. Key-value oriented model

 This is the most basic NoSQL model and was the
forerunner in NoSQL DBMS. It organizes data in the form of
key-value pairs, where the key is the single point of entry that
accesses the data. The column, document and graph oriented
data models presented previously are evolutions of the
key-value model. Due to their simplified access model that
exclusively uses the key, DBMSs that adopt the key-value
model, such as Redis and Riak, achieve high performance in
terms of data access time. However, they only offer simplified
functionalities in terms of query expression [Angadi et al.,
2013]. Thus, these DBMS are mainly used in contexts where
the requirements in terms of requests are very low.

The Integration of the MDA Approach in Document-Oriented NoSQL Databases, the case of Mongo DB

120

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.C22350210321
DOI:10.35940/ijeat.C2235.0210321
Journal Website: www.ijeat.org

Fig .9. An example of key-value based data model [Bo Hu

et al., 2014].

Fig .10. Meta-model for Key/Value database [Erraissi et

al et al., 2019].
1) metamodel document-oriented databases
The authors in [Ait Brahim et al., 2019] have proposed an
algorithm to represent document-oriented databases; the
proposed algorithm is represented below:
Definition 1. A mongodb database is defined by (N,
CLL) where:
- N is the name of the base, - CLL = { 1,…, } is a set of
collections.
Definition 10. A mongodb database is defined by (N,
CLL) where:
- N is the name of the base,
- CLL = { 1,…, } is a set of collections.
Definition 2. ∀ i ∈ [1..n], the scheme of a collection ∈
CLL is a pair (N, FL) where:
 - .N is the name identifying the collection,
- .FL = ∪ ∪ { } is the set of atomic fields
= { 1 ,…, } and complexes = { 1 ,…, } which
will be used to define the documents of , where:
- ∀ i ∈ [1..r], the diagram of an atomic field ∈ is a
couple (N, Ty) where:
- .N is the name identifying the field,
- .Ty is the type of field.
- ∀ j ∈ [1..s], the scheme of a complex field ∈ is a
couple (N, FL ’) where:
- .N is the name identifying the field,
- .FL ’is the set of nested fields in where FL’⊂FL.
 - is a special field which must exist in each document of
 in order to uniquely identify it in the collection. This field
has a fixed name noted _id.

VI. PROPOSED METHODOLOGY

To generate document-oriented NoSQL databases platform
through an MDA approach we have considered the class
diagram Fig. 11. We consider the class diagram illustrated
in this figure sufficient to apply the MDA approach on
document-oriented NoSQL databases, and letting the paper
quite understandable and clear.

Fig. 11. Class diagram used in the generation of
document-oriented NoSQL databases.

Then we have defined the metamodel for document oriented
NoSQL platforms illustrated in Fig. 12 :

Fig. 12 . MongoDB Metamodel.

We have defined also the different transformation rules from
the PSM model to implementation in Acceleo Query
Language (AQL) illustrated in Fig. 13:

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-10 Issue-3, February 2021

121

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.C22350210321
DOI:10.35940/ijeat.C2235.0210321
Journal Website: www.ijeat.org

Fig. 13 . Generation of Mongo document-oriented NoSQL
databases with Acceleo.

VII. RESULT AND DISCUSSION

After all the transformation we have done, we have
generated the code to implement a NoSQL database
complemented with MongoDB document, we are preparing in
a future work a transformation which generalizes the model to
model transformations (PIM to PSM) with the transformation
language QVT. Remember that the context of this work is a
model to Text transformation (PSM to implementation).

Fig. 13 . PSM model for MongoDB generated from
Acceleo.

Fig. 14 . Implementation model for MongoDB

document-oriented NoSQL database.

VIII. CONCLUSION

 In this paper, we have provided an automatic approach that
guides and eases the task of implementing a MongoDB
document-oriented NoSQL database. This approach is based
on MDA notably known as a framework for automatic model

transformations. Our approach provides a set of
model-to-implementation (M2T) transformations using
Acceleo as a code generator. As part of future work, we plan
to complete our transformation process in order to take into
account the different NoSQL databases such as
column-oriented databases (Cassandra), Graph-Oriented
Bases (Neo4j), and key-value data (DynamoDB).

REFERENCES

1. Kim, S.D., Min, H.G., Her, J.S., Chang, S.H.: Dream : a practical
product line engineering using model driven architecture. In:
Proceedings of the Third International Conference on Information
Technology and Applications (ICITA 2005) (2005).

2. A. Srai et al, 2017, " MDA approach for CodeIgniter PHP Framework
", The 2 nd Scientific Day on Computer Science, Optimization and
Systems’ Modelization (CSOSM’17), March 9, 2017- Faculty of
science, Kenitra.

3. J. A. Monte-Mor, E. O. Ferreira, H. F. Campos, A. M. da Cunha, and L.
A. V. Dias, “Applying MDA Approach to Create Graphical User

Interfaces”, Eighth International Conference on Information

Technology: New Generations, Las Vegas, NV, IEEE, (2011) April
11-13 , p.p. 766-771.

4. X. Blanc, MDA en action : Ingénierie logicielle guidée par les modèles.
1st edition, 270 pages, 2005.

5. Czarnecki, K., Helsen, S., Classification of Model Transformation
Approaches, in online proceedings of the 2nd OOPSLA’03 Workshop

on Generative Techniques in the Context of MDA. Anaheim, October,
2003.

6. Gharavi, V., Mesbah, A., Deursen, A. V., Modelling and Generating
AJAX Applications: A Model-Driven Approach. Proceeding of the7th
International Workshop on Web-Oriented Software Technologies,
New York, USA (Page: 38, Year of publication: 2008, ISBN:
978-80-227-2899-7).

7. Cong, X., Zhang, H., Zhou, D., Lu, P., Qin, L., A Model-Driven
Architecture Approach for Developing E-Learning Platform ,
Entertainment for Education. Digital Techniques and Systems Lecture
Notes in Computer Science, Volume 6249/2010, 111-122, DOI:
10.1007/978-3-642-14533-9_12, 2010.

8. Frédéric J., & Ivan, K. (2006). Transforming models with ATL.
Proceedings of MoDELS 2005 Workshops, LNCS 3844, (pp. 128 –
138), Springer-Verlag Berlin Heidelberg.

9. Liliana Favre, Liliana Martinez, Claudia Pereira, “Modernizing

software in science and engineering: From C/C++ applications to
mobile platforms,” Conference: ECCOMAS Congress 2016 European

Congress on Computational Methods in Applied Sciences and
Engineering, DOI: 10.7712/100016.2402.4906.

10. EMF, Eclipse Modeling Framework, viewed September
2014.http://eclipse.org/modeling/emf/.

11. Acceleo, viewed September 2014. https://eclipse.org/acceleo/.
12. Object Management Group (OMG). Model Driven Architecture.

Retrieved December 12, 2013, from http://www.omg.org/mda/.
13. [Bézivin, 2004], "Sur les principes de base de l'ingénierie des

modèles", DOI: 10.3166/objet.10.4.145-157.
14. [Kleppe et al., 2003], "MDA Explained: The Model Driven

Architecture: Practice and Promise". Addison-Wesley Longman
Publishing Co., Inc.75 Arlington Street, Suite 300 Boston, MAUnited
States, ISBN:978-0-321-19442-8.

15. Daniel, G., Sunyé, G., Cabot, J.: UML to GraphDB: Mapping
conceptual schemas to graph databases. In: Comyn-Wattiau, I.,
Tanaka, K., Song, I.-Y., Yamamoto, S., Saeki, M. (eds.) ER 2016.
LNCS, vol. 9974, pp. 430–444. Springer, Cham (2016).
doi:10.1007/978-3-319- 46397-1_33.

16. Li, Y., Gu, P., Zhang, C.: Transforming UML class diagrams into
HBase based on meta-model. In: ISEEE (2014).

17. Vajk, T., Feher, P., Fekete, K., Charaf, H.: Denormalizing data into
schema-free databases. In: CogInfoCom (2013).

18. Li, C.: Transforming relational database into HBase: A case study. In:
ICSESS (2010).

http://www.omg.org/mda/

The Integration of the MDA Approach in Document-Oriented NoSQL Databases, the case of Mongo DB

122

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.C22350210321
DOI:10.35940/ijeat.C2235.0210321
Journal Website: www.ijeat.org

19. Chevalier, M., El Malki, M., Kopliku, A., Teste, O., Tournier, R.:
Implementing multidimensional data warehouses into NoSQL. In:
ICEIS (2015).

20. Ait Brahim, Amal and Tighilt Ferhat, Rabah and Zurfluh, Gilles MDA
process to extract the data model from a document-oriented NoSQL
database. (2019) In: ICEIS 2019: 21st International Conference on
Enterprise Information Systems, 3 May 2019 - 5 May 2019 (Heraklion,
Greece).

21. [Abdelhedi et al et al., 2017] ,MDA-Based Approach for NoSQL
Databases Modelling, Springer International Publishing AG 2017 L.
Bellatreche and S. Chakravarthy (Eds.): DaWaK 2017, LNCS 10440,
pp. 88–102, 2017. DOI: 10.1007/978-3-319-64283-3_7.

22. Allae Erraissi et al., International Journal of Advanced Trends in
Computer Science and Engineering, 8(3), May - June 2019, 646 – 653.

23. D. M. Blei, A. Y. Ng, M. I. Jordan, “Latent Dirichlet allocation,”

Journal of Machine Learning Research, 2003, 3: 993-1022.
24. B. Evelson and N. Norman, “Topic overview: business intelligence,”

Forrester Research, 2008.
25. P. Zikopoulos and C. Eaton, “Understanding big data: Analytics for

enterprise class hadoop and streaming data,” McGraw-Hill Osborne
Media, 2011.

26. [Bo Hu et al., 2014], A Key-Value based Application Platform for
Enterprise Big Data, 2014 IEEE DOI
10.1109/BigData.Congress.2014.71.

27. Abadi, D. J., Madden, S. R., & Hachem, N. (2008). Column-stores vs.
row-stores: How different are they really? In Proceedings of the 2008
ACM SIGMOD international conference on Management of data (pp.
967-980). ACM.

28. Angadi, A. B., Angadi, A. B., & Gull, K. C. (2013). Growth of New
Databases & Analysis of NOSQL Datastores. International Journal of
Advanced Research in Computer Science and Software Engineering,
3, 1307-1319.

29. Han, J., Haihong, E., Le, G., & Du, J. (2011, October). Survey on
NoSQL database. In Pervasive computing and applications (ICPCA),
2011 6th international conference on (pp. 363-366). IEEE.

30. Kumar, R., Charu, S., & Bansal, S. (2015). Effective way to handling
big data problems using NoSQL Database (MongoDB). Journal of
Advanced Database Management & Systems, 2(2), 42-48.

31. Demchenko, Y., Ngo, C., & Membrey, P. (2013). Architecture
framework and components for the big data ecosystem. Journal of
System and Network Engineering, 1-31.

32. Gantz, J., & Reinsel, D. (2011). Extracting value from chaos. IDC
iview, 1142(2011), 1-12.

33. Douglas, L., 2001. 3d data management: Controlling data volume,
velocity and variety. Gartner. Retrieved, 6, 2001.

AUTHORS PROFILE

Dr. Aziz Srai*, is a research Doctor at LASTIMI
Laboratory, Mohammadia School of engineering,
Mohamed V University city of Rabat, Morocco.:
aziz.srai.dev@gmail.com

Prof. Fatima Guerouate, is a Research Professor at LASTIMI Laboratory,
Mohammadia School of engineering, Mohamed V University city of Rabat,
Morocco. Email: guerouate@gmail.com

Prof. Hilal Drissi Lahsini, is a Research Professor at LASTIMI Laboratory,
Mohammadia School of engineering, Mohamed V University city of Rabat,
Morocco. Email: Hilaldrissi@gmail.com

mailto:aziz.srai.dev@gmail.com
mailto:guerouate@gmail.com
mailto:Hilaldrissi@gmail.com

