
CloudLSTM: A Recurrent Neural Model for
Spatiotemporal Point-cloud Stream Forecasting

Chaoyun Zhang,1* Marco Fiore,2 Iain Murray,3 Paul Patras3

1 Tencent Lightspeed & Quantum Studios
2 IMDEA Networks Institute

3 The University of Edinburgh
vyokkyzhang@tencent.com, marco.fiore@imdea.org, i.murray@ed.ac.uk, paul.patras@ed.ac.uk

Abstract
This paper introduces CloudLSTM, a new branch of recurrent
neural models tailored to forecasting over data streams gener-
ated by geospatial point-cloud sources. We design a Dynamic
Point-cloud Convolution (DConv) operator as the core com-
ponent of CloudLSTMs, which performs convolution directly
over point-clouds and extracts local spatial features from sets
of neighboring points that surround different elements of the
input. This operator maintains the permutation invariance of
sequence-to-sequence learning frameworks, while represent-
ing neighboring correlations at each time step – an impor-
tant aspect in spatiotemporal predictive learning. The DConv
operator resolves the grid-structural data requirements of ex-
isting spatiotemporal forecasting models and can be easily
plugged into traditional LSTM architectures with sequence-
to-sequence learning and attention mechanisms. We apply our
proposed architecture to two representative, practical use cases
that involve point-cloud streams, i.e., mobile service traffic
forecasting and air quality indicator forecasting. Our results,
obtained with real-world datasets collected in diverse scenar-
ios for each use case, show that CloudLSTM delivers accurate
long-term predictions, outperforming a variety of competitor
neural network models.

Introduction
Point-cloud stream forecasting aims at predicting the future
values and/or locations of data streams generated by a geospa-
tial point-cloud S , given sequences of historical observations
(Shi and Yeung 2018). Example data sources include mo-
bile network base stations that serve the traffic generated by
ubiquitous mobile services at city scale (Zhang et al. 2019),
sensors that monitor the air quality of a target region (Cheng
et al. 2018), or moving crowds that produce individual tra-
jectories. Unlike traditional spatiotemporal forecasting on
grid-structural data, like precipitation nowcasting (Shi et al.
2015) or video frame prediction (Wang et al. 2018), point-
cloud stream forecasting needs to operate on geometrically
scattered sets of points, which are irregular and unordered,
and encapsulate complex spatial correlations. While vanilla
Long Short-term Memories (LSTMs) have modest abilities
to exploit spatial features (Shi et al. 2015), convolution-based

*This work was conducted while the author was with The Uni-
versity of Edinburgh.
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Forecasting over grids

... ...

Forecasting over point clouds by grid transformation

... ...

t-M+1 t t+1 t+J

Forecasting over point clouds

... ...

Figure 1: Different approaches to geospatial data stream forecasting:
predicting over inputs that are inherently grid-structured, e.g., video
frames using ConvLSTM (top); mapping of point-clouds to grids,
e.g., mobile network traffic collected at different base stations, to en-
able forecasting using existing neural models (middle); forecasting
directly over point-cloud streams using historical information (as
above, but w/o pre-processing), as proposed in this paper (bottom).

recurrent neural network (RNN) models, such as ConvL-
STM (Shi et al. 2015) and PredRNN++ (Wang et al. 2018),
are limited to grid-structural data inputs, and thus inappropri-
ate to handle scattered point-clouds.

Learning the spatiotemporal features that are relevant to the
forecasting task, from the location information embedded in
such irregular data sources, is in fact challenging. Existing ap-
proaches that tackle the point-cloud stream forecasting prob-
lem can be categorized into two classes, both bearing signifi-
cant shortcomings: (i) methods that transform point-clouds
into data structures amenable to processing with mature solu-
tions, such as the grids exemplified in Figure1 (Zhang et al.
2019); and (ii) models that ignore the exact locations of each
data source and inherent spatial correlations (Liang et al.
2018). The transformations required by the former not only
add data preprocessing overhead, but also introduce spatial
displacements that distort relevant correlations among points
(Zhang et al. 2019). The latter are largely location-invariant,
while recent literature suggests spatial correlations should be
revisited over time, to suit series prediction tasks (Shi et al.

2017). In essence, overlooking dynamic spatial correlations
risks leading to modest forecasting performance.

Contributions. In this paper, we introduce Convolutional
Point-cloud LSTMs (CloudLSTMs), a new branch of recur-
rent neural network models tailored to geospatial point-cloud
stream forecasting. The CloudLSTM builds upon a Dynamic
Point-cloud Convolution (DConv) operator, which takes raw
point-cloud streams (both data time series and spatial coordi-
nates) as input, and performs dynamic convolution over these,
to learn spatiotemporal features over time, irrespective of the
topology and permutations of the point-cloud. This eliminates
the need for input data structure preprocessing, and avoids
the distortions thereby introduced. The proposed CloudL-
STM takes into account the locations of each data source and
performs dynamic positioning at each time step, to conduct
a deformable convolution operation over point-clouds (Dai
et al. 2017). This allows revising the spatiotemporal correla-
tions and the configuration of the data points over time, and
guarantees the location-invariant property is met at different
steps. Importantly, the DConv operator is flexible, as it can be
easily plugged into different existing neural network models,
such as RNNs, LSTMs, Seq2seq learning (Sutskever et al.
2014), and attention mechanisms (Luong et al. 2015).

We evaluate our proposed architectures on four benchmark
datasets, covering two spatiotemporal point-cloud stream
forecasting applications: (i) base station-level forecasting of
data traffic generated by mobile services (Zhang and Patras
2018; Bega et al. 2019), leveraging metropolitan-scale mo-
bile traffic measurements collected in two European cities for
38 popular mobile apps; and (ii) forecasting six air quality
indicators on two city clusters in China (Zheng et al. 2015).
These tasks represent important use cases of geospatial point-
cloud stream forecasting. We combine our CloudLSTM with
Seq2seq learning and an attention mechanism, then under-
take a comprehensive evaluation on all datasets. The results
demonstrate that our architecture can deliver precise long-
term point-cloud stream forecasting in different settings, out-
performing 13 different benchmark neural models in terms
of four performance metrics, without any data preprocessing
requirements. To our knowledge, the proposed CloudLSTM
is the first dedicated neural architecture for spatiotemporal
forecasting that operates directly on point-cloud streams.

Related Work
Spatiotemporal Forecasting. Convolution-based RNN ar-
chitectures have been widely employed for spatiotemporal
forecasting, as they simultaneously capture spatial and tem-
poral dynamics of the input. Shi et al., incorporate convo-
lution into LSTMs, building a ConvLSTM for precipitation
nowcasting (Shi et al. 2015). This approach exploits spatial
information, which in turn leads to higher prediction accuracy.
The ConvLSTM is improved by constructing a subnetwork
to predict state-to-state connections, thereby guaranteeing
location-variance and flexibility of the model (Shi et al. 2017).
PredRNN (Wang et al. 2017) and PredRNN++ (Wang et al.
2018) evolve the ConvLSTM by constructing spatiotempo-
ral cells and adding gradient highway units. These improve
long-term forecasting performance and mitigate the gradient
vanishing problem in recurrent architectures. Although these

solution work well for spatiotemporal forecasting, they can
not be applied directly to point-cloud streams, as they require
point-cloud-to-grid data structure preprocessing (Zhang et al.
2019). STGCN takes a different approach to forecasting, by
relying on graph convolutional and convolutional sequence
learning layers, to capture spatial/temporal dependencies (Yu,
Yin, and Zhu 2018); this approach can prove superior, yet
forecasting performance can still be improved significantly,
as we will demonstrate.
Feature Learning on Point-clouds. Deep neural networks
for feature learning on point-cloud data are advancing rapidly.
PointNet performs feature learning and maintains input per-
mutation invariance (Qi et al. 2017a). PointNet++ upgrades
this structure by hierarchically partitioning point-clouds and
performing feature extraction on local regions (Qi et al.
2017b). VoxelNet employs voxel feature encoding to limit
inter-point interactions within a voxel (Zhou and Tuzel 2018).
This effectively projects cloud-points onto sub-grids, which
enables feature learning. Li et al., generalize the convolution
operation on point-clouds and employ X -transformations
to learn the weights and permutations for the features (Li
et al. 2018). Through this, the proposed PointCNN leverages
spatial-local correlations of point-clouds, irrespective of the
order of the input. Although these architectures can learn the
spatial features of point-clouds, they are designed to work
with static data, and thus have limited ability to discover
temporal dependencies.

Convolutional Point-cloud LSTM
Next, we formalize the problem and properties of forecast-
ing over point-cloud-streams. We then introduce the DConv
operator, which is at the core of our proposed CloudLSTM
architecture. Finally, we present CloudLSTM and its variants,
and explain how to combine CloudLSTM with Seq2seq learn-
ing and attention mechanisms, to achieve precise forecasting
over point-cloud streams.

Forecasting over Point-cloud Streams
We formally define a point-cloud containing a set of N
points, as S = {p1, p2, · · · , pN}. Each point pn ∈ S
contains two sets of features, i.e., pn = {νn, ςn}, where
νn = {v1n, · · · , vHn } are value features (e.g., mobile traf-
fic measurements, air quality indexes, etc.) of pn, and
ςn = {c1n, · · · , cLn} are its L-dimensional coordinates. At
each time step t, we may obtain U different channels of
S by conducting different measurements denoted by Sυt =
{S1t , · · · ,SUt }, Sυt ∈ RU×N×(H+L). Here, different U re-
semble the RGB channels in images. We can then formulate
the J-step point-cloud stream forecasting problem, given M
observations, as:

Ŝυt+1, · · · , Ŝυt+J =

argmax
Sυt+1,··· ,S

υ
t+J

p(Sυt+1, · · · ,Sυt+J |Sυt , · · · ,Sυt−M+1). (1)

In some cases, each point’s coordinates may be unchanged,
since the data sources have fixed locations. An ideal point-
cloud stream forecasting model should embrace five key
properties, similar to other point-cloud and spatiotemporal
forecasting problems (Qi et al. 2017a; Shi et al. 2017):

(i) Order invariance: A point-cloud is usually arranged with-
out a specific order. Permutations of the input points should
not affect the forecasting output (Qi et al. 2017a).
(ii) Information intactness: The output of the model should
have exactly the same number of points as the input, without
losing any information, i.e., Nout = Nin.
(iii) Interaction among points: Points in S are not isolated,
thus the model should allow interactions among neighboring
points and capture local dependencies (Qi et al. 2017a).
(iv) Robustness to transformations: The model should be
robust to correlation-preserving transformation operations on
point-clouds, e.g., scaling and shifting (Qi et al. 2017a).
(v) Location variance: Spatial correlations among points
may change over time. Such dynamic correlations should be
revised and learnable during training (Shi et al. 2017).

In what follows, we introduce the Dynamic point-cloud
Convolution (DConv) operator as the core module of the
CloudLSTM, and explain how it satisfies these properties.

Dynamic Convolution over Point-clouds
The Dynamic point-cloud Convolution operator (DConv) gen-
eralizes the ordinary convolution on grids. Instead of com-
puting the weighted summation over a small receptive field
for each anchor point, DConv does so on point-clouds, while
inheriting desirable properties of the ordinary convolution
operation. The vanilla convolution takes Uin channels of 2D
tensors as input, and outputs Uout channels of 2D tensors of
smaller size (if without padding). Similarly, the DConv takes
Uin channels of a point-cloud S, and outputs Uout channels
of a point-cloud, but with the same number of elements as
the input, to fulfill the information intactness property (ii)
discussed previously. For simplicity, we denote the ith chan-
nel of the input set as Siin and the jth channel of the output
as Sjout. Both Siin and Sjout are thus 2D tensors, of shape
(N, (H+L)) and (N, (H+L)).

We also define QKn as a subset of points in Siin, which
includes the K nearest points with respect to pn in the Eu-
clidean space, i.e., QKn = {p1n, · · · , pkn, · · · , pKn }, where pkn
is the k-th nearest point to pn in the set Siin. Note that pn itself
is included in QKn as an anchor point, i.e., pn ≡ p1n. Recall
that each pn ∈ S contains H value features and L coordinate
features, i.e., pn = {νn, ςn}, where νn = {v1n, · · · , vHn } and
ςn = {c1n, · · · , cLn}. Similar to vanilla convolution, for each
pn in Siin, DConv sums the element-wise product over all fea-
tures and points in QKn , to obtain the values and coordinates
of a point p′n in Sjout. Note that dynamic spatial correlations
imply that the value features are related to their positions at
the previous layer/state: hence, we aggregate the coordinate
features c(pkn)

l
i when computing the value features vh

′

n,j .
The resulting mathematical expression of the DConv is

expounded in Eq. 2. We define learnable weightsW as 5D
tensors with shape (Uin,K, (H + L), (H + L), Uout). The
weights are shared across different anchor points in the in-
put map. Each element wm,m

′,k
i,j ∈ W is a scalar weight

for the i-th input channel, j-th output channel, k-th nearest
neighbor of each point corresponding to the m-th value and
coordinate features for each input point, and m′-th value and
coordinate features for output points. Similar to the convo-

0 1

1

0 1

1

Figure 2: DConv operation with a single input channel and K = 6
neighbors. For every p ∈ S1

in, DConv weights its K neighboring
setQKn = {p1n, · · · , p6n} to produce values and coordinate features
for p′n ∈ S1

out. Here, each wk is a set of weights w with index k
(i.e., k-th nearest neighbor) in Eq. 2, shared across different p.

lution operator, we define bj as a bias for the j-th output
map. In the above, h and h′ are the h(′)-th value features of
the input/output point set. Likewise, l and l′ are the l(′)-th
coordinate features of the input/output. σ(·) is the sigmoid
function, which limits the range of predicted coordinates to
(0, 1), to avoid outliers. Before feeding them to the model,
the coordinates of raw point-clouds are normalized to (0, 1)
by ς = (ς − ςmin)/(ςmax − ςmin), on each dimension. This
improves the transformation robustness of the operator.

The K nearest points can vary for each channel at each
location, because the channels in the point-cloud dataset
may represent different types of measurements. For example,
channels in the mobile traffic dataset are related to the traffic
consumption of different mobile apps. Instead, channels in
the air quality dataset capture different air quality indicators
(SO2, CO, etc.). The spatial correlations will vary between
different measurements (channels), due to the diverse nature
of the phenomena producing them. For instance, Facebook or
Instagram usage may show strong spatial correlations during
a large social event spanning several neighborhoods of a city,
as people communicate about the event; whereas Spotify
traffic will probably be unaffected in this case. The same
applies to air quality indicators, which are affected by, e.g.,
the unique geographical dynamics of road traffic over the
street layout. As these spatial correlations must be learnable,
we do not fix the locations of K across channels, but allow
each channel to find the best neighbor set.

We provide a graphical illustration of DConv in Figure 2.
For each point pn, the DConv operator weights its K nearest

Algorithm 1 DConv implementation using 2D conv operator
1: Inputs:

S′in, with shape (N,K, (H + L), Uin).
2: Initialise:

The weight tensorW .
3: Reshape the input map Si′in from shape (N,K, (H+L), Uin) to shape

(N,K, (H + L)× Uin)
4: Reshape the weight tensor W from shape (Uin,K, (H + L), (H +
L), Uout) to shape (1,K, Uin × (H + L), Uout × (H + L))

5: Perform 2D convolution Sout = Conv(Si′in,W) with step 1 without
padding. Sout becomes a 3D tensor with shape (N, 1, Uout×(H+L))

6: Reshape the output map Sout to (N, (H + L), Uout)
7: Apply sigmoid function σ(·) to the coordinates feature in Sout

vh
′
n,j =

∑
i∈Uin

∑
pkn∈QK

n

(∑
h∈H

wh,h
′,k

i,j v(pkn)
h
i +

∑
l∈L

w
(H+l),h′,k
i,j c(pkn)

l
i

)
+ bj ,

cl
′
n,j = σ

(∑
i∈Uin

∑
pkn∈QK

n

(∑
h∈H

wh,l
′,k

i,j v(pkn)
h
i +

∑
l∈L

w
(H+l),l′,k
i,j c(pkn)

l
i

)
+ bj

)
,

Sjout = (p′1, · · · , p′N) =
((

(v1
′

1 , · · · , vH
′

1), (c1
′

1 , · · · , cL
′

1)
)
, · · · ,

(
(v1

′
N , · · · , vH

′
N), (c1

′
N , · · · , cL

′
N)
))
. (2)

neighbors across all features, to produce the values and coor-
dinates in the next layer. Since the permutation of the input
neither affects the neighboring information nor the ranking of
their distances for any QKn , DConv is a symmetric function
whose output does not depend on the input order. This means
that the property (i) discussed earlier is satisfied. Further,
DConv is performed on every point in set Siin and produces
exactly the same number of features and points for its output;
property (ii) is therefore naturally fulfilled. In addition, oper-
ating over a neighboring point set, irrespective of its layout,
allows capturing local dependencies. It also improves robust-
ness to global transformations (e.g., shifting and scaling),
jointly with the normalization over the coordinate features.
Overall, the design meets the desired properties (iii) and (iv).
More importantly, DConv learns the layout and topology of
the cloud-point for the next layer, which changes the neigh-
boring set QKn for each point at output Sjout. This attains the
“location-variance” property (v), allowing the model to per-
form a dynamic positioning tailored to each channel and time
step. This is essential in spatiotemporal forecasting neural
models, which must capture spatial correlations that change
over time (Shi et al. 2017).

DConv Implementation
The DConv can be efficiently implemented using a standard
2D convolution operator, by data shape transformation. We
assume a batch size of 1 for simplicity. Recall that the input
and output of DConv, S ′in and Sout, are 3D tensors with shape
(N, (H+L), Uin) and (N, (H+L), Uout), respectively. Note
that for each pn in Siin, we find the set of top K nearest
neighbors QKn . Combining these, we transform the input into
a 4D tensor Si′in, with shape (N,K, (H+L), Uin). To perform
DConv over Si′in, we split the operator into the steps outlined
in Algorithm 1. This enables to translate the DConv into a
standard convolution operation, which is highly optimized
by existing deep learning frameworks.

Relations with PointCNN & Deformable Conv
The DConv operator builds upon the PointCNN (Li et al.
2018) and deformable convolution neural network (DefCNN)
on grids (Dai et al. 2017), but introduces several variations
tailored to point-cloud structural data. PointCNN employs the
X -transformation over point-clouds, to learn the weight and
permutation on a local point set using multilayer perceptrons
(MLPs), which introduces extra complexity. This operator
guarantees the order invariance property, but leads to infor-
mation loss, since it performs aggregation over points. In our
DConv operator, the permutation is maintained by aligning
the weight of the ranking of distances between point pn and

QKn . Since the distance ranking is unrelated to the order of
the inputs, the order invariance is ensured in a parameter-free
manner, without extra complexity and loss of information.

Further, the DConv operator can be viewed as the DefCNN
(Dai et al. 2017) over point-clouds, with the differences that
(i) DefCNN deforms weighted filters, while DConv deforms
the input maps; and (ii) DefCNN employs bilinear interpola-
tion over input maps with a set of continuous offsets, while
DConv instead selectsK neighboring points for its operations.
Both DefCNN and DConv have transformation flexibility, al-
lowing adaptive receptive fields on convolution.

DConv Complexity Analysis
We study the complexity of DConv by separating the oper-
ation into two steps: (i) finding the neighboring set QKn for
each point pn ∈ S, and (ii) performing the weighting com-
putation in Eq. 2. We discuss the complexity of each step
separately. For simplicity and without loss of generality, we
assume the number of input and output channels are both
1. For step (i), the complexity of finding K nearest neigh-
bors for one point is close to O(K · L logN),1 if using KD
trees (Bentley 1975). For step (ii), it is easy to see from Eq. 2
that the complexity of computing one feature of the output p′n
isO((H+L) ·K). Since each point has (H+L) features and
the output point set Sjout hasN points, the overall complexity
of step (ii) becomesO(N ·K·(H+L)2). This is equivalent to
the complexity of a vanilla convolution operator, where both
the input and output have (H + L) channels, and the input
map and kernel have N and K elements, respectively. This
implies that, compared to the convolution operator whose
inputs, outputs, and filters have the same size, DConv intro-
duces extra complexity by searching the K nearest neighbors
for each point O(K · L logN). Such complexity does not
increase much even with higher dimensional point-clouds.

The CloudLSTM Architecture
The DConv operator can be plugged straightforwardly into
LSTMs, to learn both spatial and temporal correlations over
point-clouds. We formulate the Convolutional Point-cloud
LSTM (CloudLSTM) as:

it = σ(Wsi©∗ Sυt +Whi©∗ Ht−1 + bi),

ft = σ(Wsf ©∗ Sυt +Whf ©∗ Ht−1 + bf),

Ct = ft � Ct−1 + it � tanh(Wsc©? Sυt +Whc©? Ht−1 + bc),

ot = σ(Wso©∗ Sυt +Who©∗ Ht−1 + bo),

Ht = ot � tanh(Ct). (3)

1L� log(n) is required to guarantee efficiency. Practical point-
clouds are of dimension 2 or 3 and we have significantly more than
3 points in the dataset. Hence this condition holds.

Input gate

Forget gate

Output gate

CloudLSTM CloudLSTM CloudLSTM

CloudLSTM CloudLSTM CloudLSTM

CloudCNN CloudCNN CloudCNN

...

...
CloudLSTM CloudLSTM CloudLSTM

CloudLSTM CloudLSTM CloudLSTM...

...

CloudCNN CloudCNN CloudCNN

Encoder

Decoder

Embedding

Embedding

Attention

Attention

Figure 3: The inner structure of the CloudLSTM cell (left) and the overall Seq2seq CloudLSTM architecture (right). We denote by (·)ν and
(·)ς the value and coordinate features of each input, while these features are unified for gates.

Similar to ConvLSTM (Shi et al. 2015), it, ft, and ot, are
input, forget, and output gates respectively. Ct denotes the
memory cell and Ht is the hidden states. Note that it, ft,
ot, Ct, and Ht are all point-cloud representations. W and
b represent learnable weight and bias tensors. In Eq. 3, ‘�’
denotes the element-wise product, ‘©? ’ is the DConv oper-
ator formalized in Eq. 2, and ‘©∗ ’ a simplified DConv that
removes the sigmoid function in Eq. 2. The latter only op-
erates over the gates computation, as the sigmoid functions
are already involved in outer calculations (first, second, and
fourth expressions in Eq. 3). We show the structure of a basic
CloudLSTM cell Figure 3 (left).

We combine our CloudLSTM with Seq2seq learning
(Sutskever et al. 2014) and the soft attention mechanism (Lu-
ong et al. 2015), to perform forecasting, given that these neu-
ral models have been proven to be effective in spatiotemporal
modelling on grid-structural data (e.g., (Shi et al. 2015; Zhang
et al. 2018)). We show the overall Seq2seq CloudLSTM in
the right part of Figure 3. The architecture incorporates an
encoder and a decoder, which are different stacks of CloudL-
STMs. The encoder encodes the historical information into a
tensor, while the decoder decodes the tensor into predictions.
The states of the encoder and decoder are connected using
the soft attention mechanism via a context vector (Luong
et al. 2015). We denote the j-th and i-th states of the encoder
and decoder as Hj

en and Hi
de. The context tensor for state

i at the encoder is represented as ci =
∑
j∈M ai,jH

j
en =

ei,j/
∑
j∈M ei,j , where ei,j is a score function, which can be

selected among many alternatives. In this paper, we choose
ei,j = vTa tanh(Wa ∗ [Hj

en;H
i
de]). Here [·; ·] is the concate-

nation operator and ‘∗’ is the convolution function. Both Wa

and va are learnable weights. The Hi
de and ci are concate-

nated into a new tensor for the following operations.

Before feeding the point-cloud to the model and generating
the final forecasting, the data is processed by point-cloud
Convolutional (CloudCNN) layers, which perform the DConv
operations. Their function is similar to the word embedding
layer in natural language processing tasks (Mikolov et al.
2013), which helps translate the raw point-cloud into tensors
and vice versa. In this study, we employ a two-stack encoder-
decoder architecture, and configure 36 channels for each
CloudLSTM cell, as further increasing the number of stacks
and channels did not entail significant gain.

We also combine DConv with RNN and Conv. GRU, in-
troducing novel Conv. Point-cloud RNN (CloudRNN) and
Conv. Point-cloud GRU (CloudGRU). Like CloudLSTM, the
CloudRNN and CloudGRU employ a Seq2seq architecture,
but without attention mechanism.

Experiments
To evaluate the performance of our architectures, we employ
measurement datasets of traffic generated by 38 mobile ser-
vices and recorded at individual network antennas, and of 6
air quality indicators collected at monitoring stations. We use
the proposed CloudLSTM to forecast future mobile service
demands and air quality indicators in the target regions. We
provide a comprehensive comparison with 12 baseline deep
learning models, over four performance metrics. All models
are implemented using TensorFlow (Abadi et al. 2016) and
TensorLayer (Dong et al. 2017). We train all architectures
with a computing cluster with two NVIDIA Tesla K40M
GPUs. We optimize all models by minimizing the mean
square error (MSE) between predictions and ground truth
using the Adam optimizer (Kingma and Ba 2015).

Datasets and Preprocessing
We conduct experiments on two spatiotemporal point-cloud
stream forecasting tasks over 2D geospatial environments. As
the data sources have fixed locations in these applications, the
coordinate features are omitted in the final output. However,
such features would be necessarily included in different use
cases, such as crowd mobility forecasting.
Mobile Traffic Forecasting. We experiment with large-scale
multi-service datasets collected by a major operator in two
large European metropolitan areas with diverse topology
and size during 85 consecutive days. The data describes the
volume of traffic generated by devices associated to each of
the 792 and 260 antennas in the two target cities, respectively.
The antennas are non-uniformly distributed over the urban
regions, thus they form 2D point-clouds over space. The
traffic volume at each antenna is expressed in Megabytes and
aggregated over 5-minute intervals, which leads to 24,482
traffic snapshots. These snapshots are gathered independently
for each of 38 popular mobile services.
Air Quality Forecasting. We investigate air quality forecast-
ing performance using a public dataset (Zheng et al. 2015),
which comprises six air quality indicators (i.e., PM2.5, PM10,

Table 1: The mean±std of MAE, RMSE, PSNR, and SSIM across all models considered, evaluated on two datasets collected in different cities
for mobile traffic forecasting.

Model City 1 City 2
MAE RMSE PSNR SSIM MAE RMSE PSNR SSIM

MLP 4.79±0.54 9.94±2.56 49.56±2.13 0.27±0.12 4.59±0.59 9.44±2.45 50.30±2.28 0.33±0.14
CNN 6.00±0.62 11.02±2.09 48.93±1.60 0.25±0.12 5.30±0.51 10.05±2.06 49.97±1.87 0.32±0.14

3D-CNN 4.99±0.57 9.94±2.44 49.74±2.13 0.33±0.14 5.21±0.48 9.97±2.03 50.13±1.85 0.37±0.16
DefCNN 6.76±0.81 11.72±2.57 48.43±1.82 0.16±0.08 5.31±0.51 9.99±2.13 49.84±1.87 0.32±0.14

PointCNN 4.95±0.53 10.10±2.46 49.43±2.06 0.27±0.12 4.75±0.56 9.55±2.32 50.17±2.16 0.35±0.15
CloudCNN 4.81±0.58 9.91±2.81 49.93±2.21 0.29±0.11 4.68±0.52 9.39±2.22 50.31±2.03 0.36±0.14

LSTM 4.20±0.66 9.58±3.17 50.47±3.29 0.36±0.10 4.32±1.64 9.17±3.03 50.79±3.26 0.42±0.12
ConvLSTM 3.98±1.60 9.25±3.10 50.47±3.29 0.36±0.10 4.09±1.59 8.87±2.97 51.10±3.33 0.42±0.12
PredRNN++ 3.97±1.60 9.29±3.12 50.43±3.30 0.36±0.10 4.07±1.56 8.87±2.97 51.09±3.34 0.42±0.12

STGCN 3.88±1.30 9.11±2.99 50.53±3.10 0.37±0.10 3.99±1.36 8.68±2.27 51.19±3.00 0.43±0.11
PointLSTM 4.63±0.45 9.47±2.55 50.02±2.26 0.34±0.14 4.56±0.54 9.26±2.43 50.52±2.35 0.37±0.15

CloudRNN (K = 9) 4.08±1.66 9.19±3.17 50.45±3.23 0.32±0.12 4.08±1.65 8.74±3.03 51.10±3.26 0.39±0.14
CloudGRU (K = 9) 3.79±1.59 8.90±3.11 50.73±3.29 0.39±0.10 3.90±1.57 8.47±2.96 51.40±3.33 0.45±0.12

CloudLSTM (K = 3) 3.71±1.63 8.87±3.11 50.76±3.30 0.39±0.10 3.86±1.51 8.42±2.94 51.45±3.32 0.46±0.11
CloudLSTM (K = 6) 3.72±1.63 8.91±3.13 50.72±3.29 0.38±0.10 3.84±1.59 8.46±2.96 51.43±3.33 0.45±0.12
CloudLSTM (K = 9) 3.72±1.62 8.88±3.11 50.75±3.29 0.39±0.10 3.89±1.55 8.46±2.96 51.41±3.32 0.46±0.11

Attention CloudLSTM (K = 9) 3.66±1.64 8.82±3.10 50.78±3.21 0.40±0.11 3.79±1.57 8.43±2.96 51.46±3.33 0.47±0.11

NO2, CO, O3 and SO2) collected by 437 air quality monitor-
ing stations in China, over a span of one year. The monitoring
stations are partitioned into two city clusters, based on their
geographic locations, and measure data on an hourly basis.
Clusters A and B have 274 and 163 stations, respectively.

Further details about all datasets can be found in (Zhang
et al. 2020). Before feeding to the models, the measurements
associated to each mobile service and air quality indicator are
transformed into different input channels of the point-cloud S .
All coordinate features ς are normalized to the (0, 1) range. In
addition, for the baseline models that require grid-structural
input (i.e., CNN, 3D-CNN, ConvLSTM and PredRNN++),
the data are transformed into grids (Zhang et al. 2019) using
the Hungarian algorithm (Kuhn 1955). The ratio of training
plus validation, and test sets is 8:2.

Benchmarks and Performance Metrics
We compare the performance of our proposed CloudLSTM
with a set of baseline models, as follows. PointCNN (Li et al.
2018) performs convolution over point-clouds and has been
employed for point-cloud classification and segmentation.
CloudCNN is an original benchmark we introduce, which
stacks the proposed DConv operator over multiple layers for
feature extraction from point-clouds. PointLSTM is another
original benchmark, obtained by replacing the cells in Conv-
LSTM with the X -Conv operator employed by PointCNN,
which provides a fair term of comparison for other Seq2seq
architectures. Beyond these models, we also compare the
CloudLSTM with two of its variations, i.e., CloudRNN and
CloudGRU, which were introduced earlier. Other baseline
models we consider, include MLP (Goodfellow et al. 2016),
CNN (Krizhevsky et al. 2012), 3D-CNN (Ji et al. 2013),
LSTM (Hochreiter and Schmidhuber 1997), ConvLSTM (Shi
et al. 2015) PredRNN++ (Wang et al. 2018). Among these,
the first three are frequently used as benchmarks in mobile
traffic forecasting (Zhang and Patras 2018; Bega et al. 2019).
DefCNN learns the shape of the convolutional filters and has
similarities with the DConv operator proposed in this study

(Dai et al. 2017). LSTM is an advanced RNN frequently em-
ployed for time series forecasting (Hochreiter and Schmidhu-
ber 1997). While ConvLSTM (Shi et al. 2015) can be viewed
as a baseline model for spatiotemporal predictive learning,
the PredRNN++ is the state-of-the-art architecture for spa-
tiotemporal forecasting on grid-structural data and achieves
the best performance in many applications (Wang et al. 2018).
We also employ a spatio-temporal Graph CNN (STGCN) ar-
chitecture to map point-clouds onto graphs, based on the
distance between them, thereby addressing forecasting from
a different perspective (Yu, Yin, and Zhu 2018). Detailed con-
figuration of all models is discussed in (Zhang et al. 2020).

We quantify the accuracy of the proposed CloudLSTM
in terms of Mean Absolute Error (MAE) and Root Mean
Square Error (RMSE). Since the mobile traffic snapshots can
be viewed as “urban images” (Liu et al. 2015), we also select
Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity
Index (SSIM) (Hore and Ziou 2010) to quantify the fidelity
of the forecasts and their similarity with the ground truth, as
suggested by relevant recent work (Zhang et al. 2017). More
details are discussed in (Zhang et al. 2020).

For the mobile traffic prediction task, we employ all neu-
ral networks to forecast city-scale mobile traffic consump-
tion over a time horizon of J = 6 sampling steps, i.e., 30
minutes, given M = 6 consecutive past measurements. For
RNN-based models, i.e., LSTM, ConvLSTM, PredRNN++,
CloudLSTM, CloudRNN, and CloudGRU, we then extend
the number of prediction steps to J = 36, i.e., 3 hours,
to evaluate their long-term performance. In the air quality
forecasting use case, all models receive a half day of mea-
surements, i.e., M = 12, as input, and forecast indicators in
the following 12 h, i.e., J = 12. As for the previous use case,
the number of prediction steps is then extended to J = 72
(3 days), for all RNN-based models.

Result on Mobile Traffic Forecasting
We perform 6-step forecasting for 4,888 instances across
the test set, and report in Table 1 the mean and standard

Table 2: The mean±std of MAE, RMSE, PSNR, and SSIM across all models considered, evaluated on two datasets collected in different city
clusters for air quality forecasting.

Model Cluster A Cluster B
MAE RMSE PSNR SSIM MAE RMSE PSNR SSIM

MLP 113.13±191.89 142.03±240.24 23.54±7.38 0.13±0.10 40.34±22.16 50.81±27.27 24.75±4.02 0.10±0.10
CNN 37.62±8.18 47.67±11.21 28.35±2.38 0.13±0.05 18.59±2.24 23.66±2.76 30.17±1.14 0.34±0.04

3D-CNN 37.09±7.63 48.01±10.36 28.36±2.17 0.32±0.08 19.84±2.20 25.30±2.55 29.58±0.99 0.35±0.05
DefCNN 37.51±8.34 47.69±11.44 28.40±2.41 0.13±0.05 19.46±2.45 25.58±2.80 29.55±1.07 0.26±0.05

PointCNN 39.60±7.63 51.61±10.35 27.63±2.02 0.19±0.04 19.25±2.38 24.60±2.99 29.89±1.20 0.17±0.03
CloudCNN 31.62±8.73 40.68±11.89 29.91±2.89 0.23±0.04 15.11±3.45 19.97±4.33 31.91±2.01 0.38±0.04

LSTM 30.62±8.97 40.83±11.88 29.87±2.79 0.31±0.10 14.38±3.37 19.10±4.29 32.16±2.03 0.41±0.07
ConvLSTM 22.91±8.09 31.62±11.40 31.98±3.24 0.50±0.10 10.39±2.82 14.20±3.87 34.79±2.45 0.60±0.06
PredRNN++ 25.14±8.48 34.38±11.77 31.34±3.13 0.37±0.08 11.43±2.81 15.68±3.85 33.94±2.21 0.50±0.05

STGCN 25.01±8.40 33.98±11.54 31.41±3.08 0.39±0.08 11.22±2.49 15.36±3.59 34.00±2.20 0.52±0.05
PointLSTM 36.64±7.99 47.42±10.64 28.56±2.25 0.31±0.06 18.77±2.18 24.66±2.58 29.79±1.07 0.35±0.07

CloudRNN (K = 9) 33.09±8.23 42.16±11.38 29.53±2.66 0.13±0.07 14.82±3.75 19.70±4.54 31.93±2.18 0.14±0.06
CloudGRU (K = 9) 22.12±8.02 30.65±11.25 32.22±3.38 0.53±0.09 9.58±2.82 13.41±3.78 35.26±2.57 0.68±0.07

CloudLSTM (K = 3) 20.84±7.88 29.16±11.06 32.64±3.40 0.57±0.10 9.12±2.75 12.95±3.72 35.59±2.62 0.69±0.07
CloudLSTM (K = 6) 21.31±7.52 29.71±10.61 32.48±3.29 0.55±0.10 9.38±2.85 13.20±2.79 35.42±2.60 0.68±0.07
CloudLSTM (K = 9) 21.72±7.83 30.14±11.05 32.36±3.34 0.54±0.10 9.73±2.84 13.58±3.77 35.20±2.56 0.66±0.07

Attention CloudLSTM (K = 9) 21.72±7.78 30.04±10.95 32.38±3.29 0.56±0.10 9.38±2.69 13.41±3.78 35.26±2.57 0.69±0.07

deviation (std) of each metric. We also investigate the effect
of a different number of neighboring points (i.e.,K = 3, 6, 9),
as well as the influence of the attention mechanism. The
metrics are computed over 5,000 sample points and the Z-
scores are always well above the significance threshold.

Observe that RNN-based architectures in general ob-
tain superior performance, compared to CNN-based mod-
els and the MLP. In particular, our proposed CloudLSTM,
and its CloudRNN, and CloudGRU variants outperform all
other architectures, achieving lower MAE/RMSE and higher
PSNR/SSIM on both urban scenarios. This suggests that the
DConv operator learns features over geospatial point-clouds
more effectively than vanilla convolution and PointCNN, as
well as than the graph-based STGCN structure. In addition,
CloudLSTM performs better than CloudGRU, which in turn
outperforms CloudRNN.

Interestingly, the forecasting performance of the Cloud-
LSTM seems fairly insensitive to the number of neighbors
(K); it is therefore worth using a smallK in practice, to reduce
model complexity. Further, we observe that the attention
mechanism improves the forecasting performance, as it helps
capturing better dependencies between input sequences and
vectors in decoders, which is an effect also confirmed by
other NLP tasks.

Results where the prediction horizon is extended to up to
J = 36 steps, i.e., 3 hours (long-term forecasting), for all
RNN-based architectures are available in (Zhang et al. 2020).

Results on Air Quality Forecasting
We employ all models to deliver 12-step air quality forecast-
ing on six indicators, given 12 snapshots as input. Results
over 1,350 samples are in Table 2. Also in this use case, the
proposed CloudLSTMs attain the best performance across all
4 metrics, outperforming state-of-the-art methods (ConvL-
STM) by up to 12.2% and 8.8% in terms of MAE and RMSE,
respectively. Unlike in the mobile traffic forecasting results, a
lower K yields better prediction performance, though the dif-
ference appears subtle. Again, the CloudCNN always proves

superior to the PointCNN, indicating that CloudCNNs are bet-
ter feature extractors over point-clouds. Overall, the results
demonstrate the effectiveness of the CloudLSTM models for
modeling spatiotemporal point-cloud stream data, regardless
of the tasks to which they are applied.

Note that we conduct our experiments using strict variable-
controlling methodology, i.e., only changing one factor while
keep the remaining the same. Therefore, it is easy to study
the effect of each factor. For example, taking a look at the per-
formance of LSTM, ConvLSTM, PredRNN++, PointLSTM
and CloudLSTM, which employ dense layers, and CNN,
PointCNN and D-Conv as core operators but using LSTM as
the RNN structure, it is clear that the D-Conv contributes sig-
nificantly to the performance improvements. Further, by com-
paring CloudRNN, CloudGRU and CloudLSTM, it appears
that CloudRNN� CloudGRU < CloudLSTM. Similarly, by
comparing the CloudLSTM and Attention CloudLSTM, we
see that the effects of the attention mechanism are not very
significant. Therefore, we believe the core operator > RNN
structure > attention, ranked by their contribution.

Conclusions
We introduce CloudLSTM, a dedicated neural model for spa-
tiotemporal forecasting tailored to point-cloud data streams.
The CloudLSTM builds upon the DConv operator, which
performs convolution over point-clouds to learn spatial fea-
tures while maintaining permutation invariance. The DConv
simultaneously predicts the values and coordinates of each
point, thereby adapting to changing spatial correlations of
the data at each time step. DConv is flexible, as it can be
easily combined with various RNN models (i.e., RNN, GRU,
and LSTM), Seq2seq learning, and attention mechanisms.
We consider two application case studies, where we show
that our proposed CloudLSTM achieves state-of-the-art per-
formance on large-scale datasets collected in urban regions.
CloudLSTM gives a new perspective on point-cloud stream
modelling, and it can be easily extended to higher dimension
point-clouds, without requiring changes to the model.

Acknowledgments
This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under
grant agreement no.101017109 “DAEMON”, and from the
Cisco University Research Program Fund (grant no. 2019-
197006).

References
Abadi, M.; et al. 2016. TensorFlow: A System for Large-Scale
Machine Learning. In OSDI, volume 16.

Bega, D.; et al. 2019. DeepCog: Cognitive Network Manage-
ment in Sliced 5G Networks with Deep Learning. In Proc.
IEEE INFOCOM.

Bentley, J. L. 1975. Multidimensional binary search trees used
for associative searching. Communications of the ACM 18(9):
509–517.

Cheng, W.; et al. 2018. A neural attention model for urban air
quality inference: Learning the weights of monitoring stations.
In AAAI Conference on Artificial Intelligence.

Dai, J.; Qi, H.; Xiong, Y.; Li, Y.; Zhang, G.; Hu, H.; and Wei,
Y. 2017. Deformable convolutional networks. In IEEE ICCV.

Dong, H.; et al. 2017. TensorLayer: A Versatile Library for
Efficient Deep Learning Development. In Proc. ACM Multi-
media, 1201–1204.

Goodfellow, I.; Bengio, Y.; and Courville, A. 2016. Deep
Learning. MIT Press. http://www.deeplearningbook.org.

Hochreiter, S.; and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9(8): 1735–1780.

Hore, A.; and Ziou, D. 2010. Image quality metrics: PSNR
vs. SSIM. In Proc. IEEE International Conference on Pattern
Recognition (ICPR), 2366–2369.

Ji, S.; et al. 2013. 3D convolutional neural networks for human
action recognition. IEEE Trans. Pattern Analysis and Machine
Intelligence 35(1): 221–231.

Kingma, D.; and Ba, J. 2015. Adam: A method for stochastic
optimization. ICLR .

Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Ima-
genet classification with deep convolutional neural networks.
In NeurIPS.

Kuhn, H. W. 1955. The Hungarian method for the assignment
problem. Naval Research Logistics (NRL) 2(1-2): 83–97.

Li, Y.; Bu, R.; Sun, M.; Wu, W.; Di, X.; and Chen, B.
2018. PointCNN: Convolution on X -transformed points. In
NeurIPS.

Liang, Y.; et al. 2018. GeoMAN: Multi-level Attention Net-
works for Geo-sensory Time Series Prediction. In IJCAI,
3428–3434.

Liu, L.; Wei, W.; Zhao, D.; and Ma, H. 2015. Urban resolution:
New metric for measuring the quality of urban sensing. IEEE
Transactions on Mobile Computing 14(12): 2560–2575.

Luong, T.; Pham, H.; and Manning, C. D. 2015. Effective
Approaches to Attention-based Neural Machine Translation.
In Conference on Empirical Methods in Natural Language
Processing.

Mikolov, T.; et al. 2013. Distributed representations of words
and phrases and their compositionality. In NeurIPS.

Qi, C. R.; Su, H.; Mo, K.; and Guibas, L. J. 2017a. PointNet:
Deep learning on point sets for 3d classification and segmen-
tation. In IEEE CVPR.

Qi, C. R.; Yi, L.; Su, H.; and Guibas, L. J. 2017b. PointNet++:
Deep hierarchical feature learning on point sets in a metric
space. In NeurIPS.

Shi, X.; Chen, Z.; Wang, H.; Yeung, D.-Y.; Wong, W.-K.; and
Woo, W.-c. 2015. Convolutional LSTM network: A machine
learning approach for precipitation nowcasting. In NeurIPS.

Shi, X.; Gao, Z.; Lausen, L.; Wang, H.; Yeung, D.-Y.; Wong,
W.-k.; and Woo, W.-c. 2017. Deep learning for precipitation
nowcasting: A benchmark and a new model. In NeurIPS.

Shi, X.; and Yeung, D.-Y. 2018. Machine Learning for Spa-
tiotemporal Sequence Forecasting: A Survey. arXiv preprint
arXiv:1808.06865 .

Sutskever, I.; Vinyals, O.; and Le, Q. V. 2014. Sequence to
sequence learning with neural networks. In NeurIPS.

Wang, Y.; Long, M.; Wang, J.; Gao, Z.; and Philip, S. Y. 2017.
PredRNN: Recurrent neural networks for predictive learning
using spatiotemporal LSTMs. In NeurIPS.

Wang, Y.; et al. 2018. PredRNN++: Towards A Resolution
of the Deep-in-Time Dilemma in Spatiotemporal Predictive
Learning. In ICML.

Yu, B.; Yin, H.; and Zhu, Z. 2018. Spatio-temporal graph
convolutional networks: a deep learning framework for traffic
forecasting. In Proceedings of the 27th International Joint
Conference on Artificial Intelligence, 3634–3640.

Zhang, C.; Fiore, M.; and Patras, P. 2019. Multi-Service Mo-
bile Traffic Forecasting via Convolutional Long Short-Term
Memories. In IEEE International Symposium on Measure-
ments & Networking (M&N).

Zhang, C.; Ouyang, X.; and Patras, P. 2017. ZipNet-GAN:
Inferring fine-grained mobile traffic patterns via a generative
adversarial neural network. In ACM CoNEXT, 363–375.

Zhang, C.; and Patras, P. 2018. Long-Term Mobile Traffic
Forecasting Using Deep Spatio-Temporal Neural Networks.
In Proc. ACM MobiHoc.

Zhang, C.; Patras, P.; and Haddadi, H. 2019. Deep learning
in mobile and wireless networking: A survey. IEEE Comms.
Surveys & Tutorials .

Zhang, C.; Fiore, M.; Murray, I.; and Patras, P. 2020. CloudL-
STM: A Recurrent Neural Model for Spatiotemporal Point-
cloud Stream Forecasting. [Online] http://homepages.inf.ed.
ac.uk/ppatras/pub/cloudlstm-extended.pdf

Zhang, L.; et al. 2018. Attention in Convolutional LSTM for
Gesture Recognition. In NeurIPS.

Zheng, Y.; et al. 2015. Forecasting fine-grained air quality
based on big data. In ACM KDD.

Zhou, Y.; and Tuzel, O. 2018. VoxelNet: End-to-end learning
for point cloud based 3D object detection. In IEEE CVPR.

