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Abstract—Beyond 5G mobile networks have to support a wide
range of performance requirements and unprecedented levels of
flexibility. To this end, massive MIMO is a critical technology to
improve spectral efficiency and thus scale up network capacity,
by increasing the number of antenna elements. This also increases
the overhead of Channel State Information (CSI) estimation and
obtaining accurate CSI is a fundamental problem in massive
MIMO systems. In this paper, we focus on scheduling uplink
Sounding Reference Signals (SRSs) that carry pilot symbols
for CSI estimation. Under the large number of users and high
load that are expected to characterize beyond 5G systems, the
limited amount of resources available for SRSs makes the legacy
3GPP periodic allocation scheme largely inefficient. We design
TRADER, an SRS resource allocation framework that minimizes
the age of channel estimates by taking advantage of machine
learning-based short-term traffic forecasts at the base station level.
By anticipating traffic bursts, TRADER schedules SRS resources
so as to obtain CSI for each user right before the corresponding
traffic arrives. Experiments with extensive real-world mobile
network traces show that our solution is efficient and robust in
high load scenarios: with respect to a round robin schedule of
aperiodic SRS, TRADER provides more often CSI within the
coherence time (up to 5× for given scenarios), leading to channel
gains of up to 2 dB.

I. INTRODUCTION

As the fifth generation of mobile networks (5G) is now being
deployed worldwide, opportunities to further improve data
rates, number of simultaneously connected devices, reliability
and latency start being investigated for beyond-5G systems.
The increasing complexity of mobile architectures makes self-
configuration and self-optimizationkey traits, enabled by data-
driven management and control of network components [1].

In this work, we apply a data-driven approach to the specific
problem of efficiently configuring signals for channel state
information (CSI) estimation in massive MIMO systems –
a crucial technology to scale the capacity of beyond-5G
mobile networks. Indeed, acquiring accurate CSI between
each transmitter and receiver antenna pair is paramount to
fully exploit the potential of massive MIMO where at least
64 antennas per base station are used [2]. However, Channel
Quality Indicator (CQI) reports are either too coarse (when
single reports are used for the entire band), or they come with
a prohibitively large overhead (when performed on each sub-
band) under massive MIMO [3]. Instead, for TDD systems
with channel reciprocity, uplink CSI is also valid for the
downlink, and uplink SRS pilots are an effective solution to

obtain accurate CSI for downlink MIMO precoding. Therefore,
when and for which user to schedule SRS resources becomes
a crucial problem in future massive MIMO systems.

In the high-load scenarios with hundreds of active users at a
time that are expected to characterize beyond-5G networks, the
periodic SRS scheduler defined by 3GPP [4] can be inefficient.
On the one hand, the available SRS resources are insufficient
to guarantee that each user equipment (UE) can be scheduled
continuously, and the base station (BS) often has to use stale
CSI. On the other hand, not all active UEs have traffic over
subsequent frames, and a periodic allocation risks to waste
substantial SRS resources for UEs with no traffic to be served.

To make the best use of SRS resources, one should schedule
SRSs just before a burst of traffic starts, as well as during
a burst as frequently as possible. This requires operating
directly at the level of the BS scheduler, where the only
information available is the Modulation and Coding Scheme
(MCS), Physical Resource Blocks (PRB) and Transport Block
Size (TBS) at each Transmit Time Interval (TTI). Such traffic
allocations occur irregularly over very fast timescales of tens of
milliseconds, and must be accurately predicted for every user
independently. However, current solutions proposed in the vast
literature on mobile traffic forecasting typically target much
lower time granularity, in the order of minutes to hours [5], [6].
Even fine-grained prediction mechanism like LinkForecast [7]
and PERCEIVE [8] still aim at predictions over hundreds of
milliseconds to seconds. The only model considering timescales
aligned with our needs operates on traffic that is aggregated at
the BS level rather than the much more challenging case of
per-user traffic [9].

We propose TRADER, a TRAffic-DrivEn Resource alloca-
tion framework that employs per-user TTI-level traffic forecasts
to inform an aperiodic SRS scheduling – an alternative to
the default periodic approach specified by the standard [4].
This aligns with ITU-T recommendations for ML inclusion
in network operational lifecycle [10]. Specifically, TRADER
strives to minimize the age of channel estimates to ensure
both frequent channel measurements within bursts and to
anticipate the start of a burst with an SRS transmission. To this
end, TRADER takes advantage of the time series prediction
capabilities of Long Short-Term Memory (LSTM) neural
networks, by feeding them with traffic allocation information
on the burst size, duration and gap (i.e., the idle time between
subsequent traffic allocations) generated by individual users.

We evaluate the performance of TRADER by using real-978-1-6654-4108-7/21/$31.00 ©2021 IEEE



world LTE traffic traces, which we collect from production
BSs of two different major European mobile network operators.
Specifically, we use passive measurement tools based on
software-defined radios (SDRs), FALCON [11] and OWL [12],
to decode the unencrypted information of the Physical Down-
link Control CHannel (PDCCH) of LTE in a fully privacy-
preserving manner. Our results show that TRADER largely
outperforms a round robin schedule of aperiodic SRS, as it is
capable of triggering more often an SRS right before the user
generates traffic. For example, while a round-robin heuristic
provides a median of 10 frames of anticipation, TRADER is
able to lower this number down to 2, which is the minimum
possible value. Thanks to this, TRADER provides more often
CSI within the coherence time (up to 5× more for given
scenarios), and achieves channel gains up to 2 dB.

II. BACKGROUND, DATASET AND MOTIVATION

A. Sounding Reference Signals

To obtain CSI, mobile networks rely on the CSI-RS for
the downlink and on the SRS for the uplink. In time division
duplexing (TDD) systems with channel reciprocity, uplink SRS
feedback can also be used to estimate the downlink channel [3].
In line with both LTE and 5G specifications, we consider 10 ms
TDD frames subdivided into subframes of 1 ms, and 14 OFDM
symbols per subframe for a 20 MHz channel. Uplink and
downlink share the same frequency band, hence the switching
delay between transmission and reception is accounted for by
using a guard period. Depending on the uplink and downlink
switching periodicity, up to 7 types of TDD frame structure
configurations can be used (see Table 4.2-2 of [4]). The guard
period is announced in a special frame, along with the Downlink
Pilot Time Slot (DwPTS) and the Uplink Pilot Time Slot
(UpPTS), whose main purpose is to carry pilot signals including
the SRS. Specifically, SRS signals are transmitted during the
UpPTS and can span 1, 2 or 4 symbols mapped to the last 6
symbols of the subframe.

The SRS is configured at the Radio Resource Control Layer
(RRC) and can be periodic or aperiodic [4]. Periodic SRS is
scheduled with a periodicity that ranges from 2 ms to 320 ms. In
contrast, an aperiodic SRS has to be actively triggered for each
occurrence. In addition, other parameters can be configured for
the SRS. The cyclic shift allows to send multiple orthogonal
signals, e.g., a cyclic shift equal to 4 allows the BS to configure
4 UEs in the same subframe. The transmissionComb parameter
is a flag defining whether SRSs are transmitted in every even
or odd subcarrier; it also provides the BS with the capability of
multiplexing two UEs by assigning them the same cyclic shift,
frequency and time resources, but different transmissionComb.

B. Dataset

For our study, we collect a dataset of LTE traffic allocations
from multiple BSs located in different areas of Madrid, Spain.
For completeness, we run both the SDR-based LTE sniffer tools
FALCON [11] and OWL [12] on a Linux laptop connected to
a USRP B210 to decode the unencrypted information of the
TTI-level traffic allocation that LTE BSs send to the UEs over

the PDCCH channel. Specifically, we gather the temporary
user ID (C-RNTI), the ID of the frame containing the traffic
allocation for the C-RNTI, and the associated transport block
size (TBS). This information is sufficient to determine the size
and duration of per-user traffic bursts and idle times between
transmissions, i.e., the gaps. From the collected data, we filter
out background traffic by removing RNTIs that have less than
5 active TTIs over the entire activity period; we also discard
RNTIs reserved for random access (RA-RNTI with ID 1-960),
paging and system notification (P-RNTI with ID 65534), and
broadcast system information (SI-RNTI with ID 65535).

Fig. 1 shows our measurement data. The plots illustrate the
number of UEs that are simultaneously connected with active
or inactive RRC states to two BSs. The left plot refers to a BS
monitored for 3 h with OWL, and covering a typically crowded
touristic area. The plot on the right concerns a BS monitored
for over 13.5 h with FALCON, and covering a quiet residential
area. Note that the user count takes into consideration that
the RNTI is a temporary ID: when the time elapsed from the
last transmission exceeds the RNTI refresh timer interval of
10.15 s, the UE1 performs an RRC re-establishment to obtain
a new C-RNTI, without affecting the number of users.

C. Motivation

The scenarios portrayed in Fig. 1 illustrate how scheduling
SRSs periodically can be highly inefficient: in both BSs, the
number of UEs that can be potentially scheduled to transmit
largely exceeds the capacity of the periodic SRS.2 What is
needed is a more sophisticated mechanism to trigger SRSs
at the right moment in time and for the right users, so as to
maximize the usefulness of SRS resources. More precisely, if
a traffic burst starts at frame t, an SRS triggered at t−2 would
be optimal, leaving time for the BS to inform the UE through
control information (t− 2), receive the feedback (t− 1), and
exploit the fresh CSI (t).

However, the bursty and heterogeneous nature of user traffic
patterns at millisecond granularity makes achieving an ideal
SRS schedule particularly difficult. Fig. 2 shows the distribution
of gaps in the traffic generated by individual users during the
3 h dataset in Fig. 1: in 37% of the cases, the gap is lower than
5 LTE frames (i.e., 50 ms), and in 50% of the cases the gap
is less than 27 frames; however, in the remaining 50% of the
cases, the gap sizes can take any value between 27 and 1015
frames (the latter matches the RNTI refresh timer duration).
Such distribution calls for a framework capable of providing
accurate forecasts at the frame level that can steer the decision
mechanism of SRS resource allocation. Our solution tackles
precisely such a problem, using machine learning to anticipate
per-user traffic gaps, and then leveraging such information to
self-configure aperiodic SRSs to the most appropriate users.

1We use the terms user and UE interchangeably.
2For instance, with a cyclic shift of 4, a transmissionComb set to multiplex

2 UEs and a MIMO system with 2 RF chains at the UE and 4 chains at the
BS, the periodic SRS offers 64 signals during each 10-ms frame, which is
much lower than the number of users observed in our measurements.
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Fig. 1. Number of RRC connected UEs over the period of analysis. On the left the 3 h dataset
collected with OWL [12], on the right the 13.5 h dataset collected with FALCON [11].
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Fig. 2. CDF of gaps (i.e., idle times in subsequent
traffic allocations of a user) for the 3 h dataset.
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Fig. 3. Snapshot of 30 ms of traffic generated by 5 UEs. Bursts are colored
according to their normalized size (min 88 Bytes, max 20 kBytes). Per-user
traffic is sporadic and irregular which makes it hard to find patterns. The graph
shows that the per-user time series composed of gaps are not time aligned.

Our approach, which improves scalability and avoids wasting
SRS resources, is detailed next.

III. TRAFFIC PREDICTION AT FRAME GRANULARITY

We start by discussing how to forecast user-level traffic at
single-frame 10-ms resolution.

A. Forecasting Model

Classical network traffic prediction aims at anticipating the
volume of data transmitted in the next time slot(s). However, the
nature of per-user traffic at the very short timescales we target is
inherently hard to forecast: transmissions occur in rapid bursts
that are irregularly spaced in time, as exemplified by Fig. 3
for five users in a sample from our real-world measurements.
Moreover, the motivation set out in § II sets our forecasting
problem apart from traditional traffic prediction: instead, we
aim at learning when the next traffic burst generated by a user
will start. We thus design input features and a neural network
architecture tailored to that specific objective, as follows.
Input features. We use three input features, illustrated in Fig. 3,
that can be easily collected on a per-user basis by analyzing
transmission events for each registered active device.
• A gap (g - measured in ms) represents the time between

two consecutive transmissions of the same user, and
inherently indicates when the next transmission will take
place. Since two frames are enough to trigger an SRS on
the channel, gaps correspond to user silence periods above
20 ms. As users disconnect after 10.15 s of inactivity, gaps
are upper-bounded by this value.

• The burst size (bs - measured in Byte) is obtained by
summing all TBS generated by a user between two
subsequent gaps. The resulting aggregate describes the
total volume of traffic generated by a user, continuously
over time.

• The burst duration (bd - measured in ms) is defined as
the time interval elapsed between the last and the first
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Fig. 4. Diagram illustrating the architecture of the three-stacked LSTM
network employed by TRADER for traffic burst gap forecasting at the user
level considering a history of N <g, bs, bd> past features.

frame with non-zero TBS within the corresponding burst
size, i.e., how long a burst lasts in time.

Neural network architecture. The input features above are
fed to a deep neural network. We experiment with two
configurations. In a first case, we employ hidden Stacked Long
Short-Term Memory (LSTM) layers with multiple memory
cells [13]. The rationale for this design is that LSTM recurrent
neural networks (RNN) are known to perform well with time
series [14], and our prediction problem can be seen as an
instance of (per-user) time series forecasting, where samples
map to gaps, and the goal is anticipating the magnitude of the
next gap. The leaky version of the Rectified Linear Unit (ReLU)
is used as the activation function for neurons in the LSTM
layers, with a negative ReLU slope coefficient of 0.01 to avoid
the dying ReLU phenomenon [15]. As a second option we use
a pure regression model, i.e., a standard feed-forward Multi-
Layer Perceptron (MLP). This neural network has similarly
been widely applied to time series forecasting [16], although
it does not have the memory properties of LSTM. In this case
we use a standard ReLU activation function since no dying
ReLu problem was faced with MLP.

In both LSTM and MLP models, we experiment with
different RNN depths, by stacking LSTM or fully connected
layers on top of each other. Such layers are followed by a
hidden fully connected layer and by an output layer with a
single hidden unit for the actual prediction. We also test various
configurations of the input layer, by varying the number of
hidden units from 32 to 256 and halving the number of neurons
at each subsequent layer.

Dropout layers are interleaved with the last two hidden
layers to avoid overfitting during training [17]. Based on
extensive experiments, we set the dropout layer rates to 0.3.
In fact, an unconventional design choice we make is to keep
dropout layers active also during testing, and perform multiple



concurrent forward passes on the same test data. This returns,
for each forecast instance, a distribution of predicted burst
gaps instead of a single output; the mean (µ) and standard
deviation (σ) of the distribution approximate those obtained
via Bayesian inference in (computationally prohibitive) deep
Gaussian processes, as proven by recent findings in deep
neural network operation [18]. The mean and deviation provide
a richer information than usual univariate prediction, and
we take advantage of them for SRS scheduling. Specifically,
positive errors in the prediction cause the SRS to be delayed
after the start of the user transmission, and hence are not
available to estimate the channel state when needed, which
leads to a substantial performance degradation. This is a much
more severe situation than that entailed by negative errors (of
comparable magnitude), which cause an anticipation of the SRS
with respect to the ideal allocation, and hence a less up-to-date
(but usable) CSI. To minimize the chance of positive errors,
we use the uncertainty expressed by the deviation as a safety
margin: the predictor returns the mean minus the standard
deviation of the predicted next gap for each forecast instance.

Fig. 4 summarizes the architecture for the case of a three-
stacked LSTM that employs 256 neurons in the first layer. The
MLP model can be obtained by replacing the LSTM layers
depicted in Fig. 4 with fully connected layers.
Model training. The deep neural network receives N past
observations of the three input features, i.e., gap, burst size and
burst duration, and aims at forecasting the following gap, so as
to inform TRADER about the expectation (and uncertainty)
of when the next transmission of a given user will take place.

In order to ensure the highest prediction accuracy, we test
and compare different loss functions. We consider the well-
known MAE and MSE, but also the Pinball-Loss (PL) proposed
in [19]. Formally, the three functions are defined as:

MAE =
1

n
·

n∑
i=1

|xi − xi|, (1)

MSE =
1

n
·

n∑
i=1

(xi − xi)2, (2)

PL =

{
(x− x) · κ if x ≥ x,
(x− x) · (1− κ) if x ≤ x, (3)

where x and x are the predicted and observed values respec-
tively and κ is the conditional quantile: for instance, κ = 0.5 is
an estimator of the conditional median. While MAE and MSE
are legacy loss functions used for RNN training, the rationale
for experimenting with a Pinball-Loss function is that we aim
at minimizing overestimation: as explained above, avoiding
positive errors is key for SRS scheduling, hence we set the
Pinball-Loss threshold to κ = 0.2 to favor underestimation.

In all variants, the model is trained using the popular Adam
optimizerwith a learning rate of 0.001 during 120 epochs.

B. Prediction Accuracy

We assess the performance of the proposed deep learning
predictor with the FALCON dataset (see § II-B). We use
a standard 80:20 training-testing ratio to split the data, as

highlighted by the different backgrounds in Fig. 1. We thus use
3, 041, 118 <g, bs, bd> tuples to train and validate the neural
network architecture. Then, we test the model over 760, 280
new observation samples.
Comparative evaluation. We compare the forecast accuracy
in an extensive set of cases, by varying the architecture, loss
function, number of stacked layers, neurons per layer and drop
rates. We start by analyzing the performance of LSTM and
MLP using MAE as the loss function. Fig. 5(a) summarizes
the results, portrayed as the cumulative distribution of the error
ε (with ε = x − x) incurred by each model during testing.
We restrict the error interval to [−300, 300] ms as we are
particularly interested in short-term predictions, and since the
vast majority of the recorded deviations are in that range. A
perfect predictor would yield a step function in ε = 0: the
closer to this ideal performance is the curve, the better the
forecasting model. Also, positive errors should be avoided
as much as possible because, as explained before, they are
particularly problematic for SRS allocation. The legend denotes
LSTM with solid lines and MLP with dashed lines, and in
round brackets the number of neurons followed by the drop
rate. Varying all these settings did not produce a clear winner,
which we ascribe to the extremely noisy nature of the input
data, which does not present easy-to-learn patterns. As a result,
all the predictors produce forecasts that are primarily based on
inference of the statistical distribution of the burst gaps, and
any neural network configuration suffices to that end.

We then analyze the quality of the gap forecast under
different loss functions. In order to provide a reference for
the results obtained with MAE, MSE and PL, we consider
two simple statistical predictors: (i) a static forecast (MED)
corresponding to the median of the gap distribution observed
over the training dataset, and (ii) a naive model that uses the
last value (LV) of observed gap as the prediction for the next
gap. Other than serving as baselines, these benchmarks help us
understand if a deep learning approach is strictly necessary, or
if much simpler options are also valid. Fig. 5(b) summarizes
the results for LSTM with 1 stacked layer, 64 neurons and
drop rate 0.3. We observe that the predictor using MAE as
the loss function outperforms all other predictors including the
simple ones, with 68% of the cases falling within the interval
[−100, 100] ms and 91% of the cases falling within the interval
[−300, 300] ms. This allows to operate sufficiently well in the
regime of interest, i.e., with the small gaps seen in Fig. 2, whose
accurate prediction can inform decisions on whether to trigger
an SRS or not. For longer gaps, such a decision can be revisited
later with lower urgency. MAE is more robust to outliers than
MSE, and this is the reason for its better performance. PL with
κ = 0.2 favors underestimation: this can be appreciated in the
curve, as the incidence of negative values of ε is very small.
However, the error curve is shifted from ε = 0, which means
that the price paid in terms of underestimation is excessive, and
would not be of help for SRS allocation.3 The MED estimator

3This behavior could be partially alleviated by manually shifting the curve,
but this overcomplicates the model, makes it less automated, and still would
not outperform the simpler MAE: see the curve for positive values of ε.
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Fig. 5. Performance of the burst gap prediction, under different (a) LSTM and MLP architectures, (b) loss functions, (c) history sizes, and (d) stacked layers.

drops to zero overestimation for all those gaps bigger than
the observed median, which is desirable, but the accuracy of
underestimations is significantly lower than MAE. As a result,
the gain obtained by preventing overestimation is achieved
at the cost of a lower accuracy in the region for which we
are interested in obtaining accurate predictions. Finally, LV
performs similarly to MAE for positive values of ε, but its
accuracy in overestimation is significantly worse, which justifies
building a learning model for this problem.
Model parametrization. Having confirmed that a simple deep
learning architecture trained with a MAE loss function out-
performs other approaches, we investigate how its parameters
affect the quality of the forecast.

We first evaluate the impact of different input lengths,
considering 20 and 60 previous samples fed to the model. The
minimum number of past observations required by the LSTM
network has been set to 20 since, after several experiments,
such length has proven to be effective in obtaining an accurate
prediction. Furthermore, we decided to increase the history
sequence length up to 60, in order to evaluate the impact of a
larger number of past observations on the prediction accuracy.
Fig. 5(c) shows that the accuracy of MAE is very similar with
20 or 60 samples: there are minor differences in the inter-
quartile range, in favor of a history of 20. We also include the
results for the other predictors, MSE and PL for which the
median of the distribution is not centered in zero.

As a second test, we assess the impact of the depth of
the neural network structure in the forecasting performance.
To this end, we compare LSTM architectures with a varying
number (1, 2 or 3) of stacked layers, and different numbers of
neurons per layer. Fig. 5(d) does not show relevant performance
differences, which makes us favor the simpler variant with 1-
stacked layer and 64 neurons because of the better accuracy
in over-estimation.
Summary. Based on extensive experiments, the gap-burst time
series under analysis do not fall into the category for which
LSTM models perform exceedingly well, most likely because
of the highly irregular timings of transmission bursts at the
LTE frame granularity. Still, a very simple 1-stacked LSTM
model with 64 input neurons can learn the basic statistics
of the gap distribution better than simple predictors, and is
computationally less demanding4 than MLP architectures. In

4In our tests, training of a 1-stacked LSTM network is ∼ 1.16 times faster
than the corresponding MLP model.

the light of these results, we assist the SRS scheduling with
a MAE predictor, configured with a 1-stacked LSTM layered
architecture with 64 neurons, fed with 20 past samples.

IV. THE TRADER RESOURCE ALLOCATION STRATEGY

We now discuss the aperiodic SRS resource allocation
problem. The objective is to minimize the age of the channel
estimate, i.e., the time elapsed between the last SRS that was
scheduled for a user and its next traffic allocation. Call U the
set of RRC connected UEs, where u denotes a UE, u ∈ U .
Let t be the current time (or equivalently the current frame
number) and fu be the (unknown) LTE frame that carries the
next traffic allocation for u (with t < fu). fu occurs after a
gap τu from the last traffic allocation for u that we denote with
zu, i.e., fu = zu + τu. Let R be the amount of SRS resources
available in each TDD frame and let

ru,t =

{
1 if an SRS for u is triggered in t,
0 otherwise.

(4)

The time of the most recent SRS triggered for UE u, lu is:
lu = argmax

j≤t
{j|ru,j = 1}. (5)

At time t, the objective is to allocate SRS resources ru,t to
minimize the maximum age of channel estimate:

min max
u∈U,fu−t=2

(fu − t− lu), (6)

provided that the future allocation is not far ahead in time than
2 frames and without exceeding the R SRS signals available
in each frame:

U∑
u=1

ru,t ≤ R. (7)

At the present time t, the arrival of future traffic fu is
unknown (recall that fu > t). We thus leverage the forecasting
methodology presented in § III to obtain an estimate f̃u of
such time. The term f̃u can not be directly estimated, but our
gap prediction methodology allows to estimate τ̃u and given
that the former traffic allocation zu is known, we can compute
f̃u = zu + τ̃u. We recall that our deep learning model returns
both the expectation (here denoted by τu) and the standard
deviation (σu) of the inter-burst gap, via multiple concurrent
forward passes with active dropout layers. We leverage the
standard deviation as a measure of the uncertainty of the
prediction, and set f̃u = t + τ̃u, where τ̃u = τu − σu: in
this way, a safety margin informed by the model uncertainty
anticipates the SRS, and limits the chances that an incorrect



forecast triggers the SRS too late with respect to the actual
traffic arrival. We then reformulate (6) as:

min max
u∈U,f̃u−t=2

(f̃u − t− lu). (8)

Algorithm 1 summarizes the workflow of TRADER. At time
t, the output of the algorithm is a set of UEs X ⊆ U for which
an SRS is triggered. X depends on the amount of resources R
available each frame. We store in U the information about the
last triggered SRS lu, the corresponding age of estimate au
and the last frame with traffic allocation zu for each active UE.
The latter component allows determining whether the current
UE should be removed from the set of active UEs or not. For
this, we compute the age of last transmission as the difference
between the current frame t and zu, and, if this difference
exceeds T , u is considered not eligible for allocation (line 3).

A new UE joins the system if, during t, there is traffic
allocated for him/her. As no past SRS is available in this case,
lu = ∅ and we include in U a new tuple < au, lu, zu > with
infinite age for the last estimate and last SRS; the current frame
is set as the last frame with traffic allocation (lines 4-5). Then,
u acquires the highest priority to be scheduled in the current
round. For UEs already in the system and for which predictions
are available (i.e., with at least N past samples), we compute
the age of the last estimate as the future allocation f̃u or the
current frame t with traffic. The future allocation is given by
the gap estimate τ computed from the last traffic allocation zu
(lines 8-13). If the future allocation is two frames ahead from
t, the SRS should be scheduled at time t. Otherwise, there is
no urgency and the SRS can be scheduled later on (line 9). We
then sort U in descending order of au (line 19) and schedule
the first UEs in the set until the available R resource units are
used. This builds the schedule X and for these users we update
the information in U by setting the age of estimate to 0 and
the last scheduled SRS as the current frame t (lines 20-24).

We benchmark TRADER against a simpler Round Robin
heuristic which does not make use of predictions. Round
Robin’s workflow is also described in Algorithm 1 with the
exception of the if condition (lines 7-11). During each iteration,
Round Robin computes the age of the estimate of u with respect
to the current frame t and schedules UEs accordingly. When
no predictions are available for the reasons discussed above,
TRADER falls back to Round Robin and blindly triggers SRS
for those UEs that currently have the highest age.

V. PERFORMANCE EVALUATION

A. Methodology and Metrics

We benchmark TRADER by comparing its performance
against both the Round Robin heuristic and an Oracle. The
latter is an omniscient predictor with perfect knowledge on
future traffic allocations, including the gaps and bursts.

For a fair comparison, we evaluate TRADER, Oracle and
Round Robin under the same network conditions, i.e., we do
trace-driven simulation using as input the test sets of the LTE
traces (see § II). For the number of SRS resources for each
10 ms frame we consider 64, 32 and 16 signals. 64 represents
the number of SRS signals at disposal when the TDD system

Algorithm 1 TRADER Resource Allocation Algorithm
Input: T RNTI refresh timer, R SRS resources per frame,

U set of connected UEs
Output: X set of UE with SRS triggered in t
Var: au age of last estimate, lu last SRS, zu last traffic allocation

1: for each u ∈ U do
2: U ← {0}
3: if t− zu < T then . Check RNTI Refresh expiration
4: if lu == ∅ then . New UE with no previous SRS
5: au ←∞, lu ←∞, zu ← t
6: else . Existing active UE
7: if prediction available then
8: f̃u = zu + τu
9: if f̃u − t = 2 then . f̃u requires SRS at t

10: au ← f̃u − lu
11: end if
12: else . No predictions available
13: au ← t− lu
14: end if
15: end if
16: U [u]←< au, lu, zu > . Update UE’s information
17: end if
18: end for
19: sort U in descending order of au
20: for r ← 1 to R do . Schedule SRS
21: X ← X ∪ {U [r]}
22: ar ← 0, lr ← t
23: U [r]←< ar, lr >
24: end for

works with a MIMO configuration of 2T4R (2 Transmitter
and 4 Receiver), transmissionComb equal to 2 and cyclic shift
equal to 4. Such setting allows to assign 8 SRS signals in one
symbol. Within a 10 ms timeframe, the number of symbols
available for SRS is 8, which leads to a total of 64 SRS signals.

For evaluation, we focus on the following three metrics.
Delay: given our objective of obtaining fresh CSI as often as
possible, this metric measures how close an SRS s is with
respect to the frame t that carries actual traffic for the UE. The
best result possible happens when t− s = 2, which means that
the SRS was triggered timely.
Allocation within coherence time: this metric measures how
often the SRS is triggered within the channel coherence time Tc
of data traffic. During Tc, the channel is assumed to be constant,
thus gathering a channel estimation with SRS within Tc yields
the highest utility. Tc can be approximated as Tc = 9/16πfmax,
where fmax is the maximum frequency shift that is proportional
to the velocity v of the UE and the carrier frequency fc:
fmax = v

c · fc, where c is the speed of light [20].
Impact on Received Signal Power (RSP): this metric
quantifies the gain that TRADER provides over Round Robin.

To compute the two last metrics, we employ the well known
QuaDRiGa channel model [21] and set up three different
urban scenarios. For each one, the UE moves for 100 s
with the same sequence of speed variations (the maximum
speed is 10 m/s) and stops in two parts of the trajectory.
We characterize both Line of Sight (LoS) and Non-Line of
Sight (NLoS) propagation by using the 3GPP_3D_UMa_LOS
and 3GPP_3D_UMa_NLOS, where UMa stands for Urban
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Fig. 6. The QuaDRiGa settings
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Fig. 7. Evaluation of delay for different amount of resources for the 3 h long trace

Macrocell deployment. The BS is at a height of 10 m, with a
carrier frequency in the 2 GHz band. Scenario (1) in Fig. 6(b)
is the simplest: the UE moves in a straight line away from
the BS. As a result, its received power (RX) slowly decreases
over time. Scenario (2) in Fig. 6(c) is more complex: the UE
moves on a trajectory with a sequence of turns and encounters
NLoS areas on its way. This makes the RX power profile more
variable. Finally, Scenario (3) in Fig. 6(d) is an elaboration
of Scenario (2) where the BS is closer to the same UE’s
trajectory and the NLoS period corresponding to second 10
of the trace is missing. As a result, the trajectory of Scenario
(3) is characterized by relatively high RX power for the first
part until second 40. We sample the channel coefficients with
a granularity of 10 ms, corresponding to the frame duration.

B. Results

Delay. Fig. 7 compares Oracle, TRADER and Round Robin
and shows CDF curves for the delay for the two datasets
and for different resources reserved for SRS in each 10 ms
frame. Obviously, by lowering the amount of SRS resources,
the UEs obtain SRS on average less frequently, depending on
the number of simultaneously active UEs (see Fig. 1). As a
consequence, the tail of delay assumes the highest values when
the amount of available resources is the lowest. With 64 SRS
per frame (see Fig. 7(a)), TRADER provides intermediate
gains between Round Robin and Oracle. TRADER triggers
more often SRS exactly with 2 frames of delay (in 50% of
the cases) than Round Robin. With 32 SRS each 10 ms (see
Fig. 7(b)), we observe that TRADER obtains higher gains
over Round Robin with respect to the former case: in nearly
50% of the cases the delay is 2 frames for TRADER and 10
frames for Round Robin. However, we note that for a delay
of 15 frames or more, Round Robin marginally outperforms
TRADER. By spending SRS close to when the predictions
occur, TRADER subtracts resources from the one or more
UEs that should have been scheduled according to the principle
of minimization of the age of last estimate. These have to be
re-scheduled later, thus increasing their delay. Such behaviour
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Fig. 8. Evaluation delay for the 13.5 h long trace of TRADER over Round
Robin and comparison among the two traces

becomes even more evident with only 16 SRS signals each
10 ms (see Fig. 7(c)). Here the tradeoff that TRADER enforces
in obtaining a better delay on the short term at the expense of
some degradation at longer delays is more evident.

Fig. 8(a) evaluates the delay of TRADER and Round Robin
for the 13.5 h long dataset. As the results are in line with what
we obtained for the 3-h long trace, we only provide the result
using 64 SRS signals each 10 ms. Fig. 8(b) instead compares
the results obtained with the different traces. Given the different
traffic patterns (see Fig. 1), such a comparison provides an
insight into the gains of TRADER in such different scenarios.
We observe that in the longer trace, TRADER guarantees more
often the lowest delay at the expense of a longer tail (see the
outliers). Vice versa, on the shorter trace, with TRADER the
tail of long delays is considerably reduced.
Allocation within Tc. We set fc = 2 GHz and determine
Tc according to the velocity v shown in Fig. 9(a). Fig. 9(b)
shows the duration of Tc, data traffic and SRS allocation for
TRADER and Round Robin. TRADER triggers SRS during
coherence time more often than Round Robin especially during
mobility when the coherence time is shorten than when the
UE stands still. We crosscheck for all the 9250 UEs of the 3 h
long trace: Fig. 9(c) confirms that this result holds in general.
Impact on RSP. We now assess the channel gains due to the
reduced SRS age. Fig. 10 shows that TRADER outperforms
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Fig. 10. Evaluation of the channel gain TRADER obtains over Round Robin for the 3 h long trace

Round Robin (we include mean and 95% confidence intervals).
Specifically, for the two schemes we use the minimum and
maximum frame delay from the above results for each of the
resources considered (64, 32 and 16 signals for each 10 ms
frame). For example, in Fig. 7(a)) the maximum delay is
3 frames and the minimum is 1 frame. Then we compute
|cTRADER(t)− cRound Robin(t)| for each instant t of the channel
profiles (see Fig. 6(b), 6(c) and 6(d)).

Fig. 10(a), 10(b) and 10(c) show the results for the OWL
dataset. We observe that the average channel gains increase
as the amount of SRS signals available each 10 ms frame
diminish. Fig. 10(a) shows that for a simple scenario with
linear trajectory the variability in channel gain is minimal. The
difference of the means obtained with minimum and maximum
frame delay spans from 0.4 dB to 0.6 dB (for 64 and 16
respectively), while for Scenario (3) the differences are 0.3 dB
to 0.8 dB (for 64 and 16 respectively). The highest gains occurs
for Scenario (2) which is the most complex one.

VI. RELATED WORKS

Relevant to our work are studies on the prediction of mobile
network traffic, and on the allocation of SRS resources. We
discuss hereafter the novelty of TRADER with respect to
previous efforts in those two areas.
Mobile network traffic prediction. Real-time data traffic
forecast are a paramount input to emerging strategies in traffic
engineering and resource management that take advantage of
the increasing virtualization of mobile networks, as repeatedly
demonstrated by many recent studies [22], [23], [24]. In this
context, traditional models relying on information theory [25],
Markovian [26] or autoregressive [27] approaches have been
supplanted by deep learning architectures.

Specifically, a variety of neural networks have been proposed
to predict the traffic demands observed at individual BSs [5],
[28] or antenna sectors [29], possibly over long time hori-
zons [6], and separately across mobile services [30]. All these

solutions aim at estimating traffic volumes over timescales in
the order of minutes, whereas our focus is on much faster
dynamics at the millisecond level.

The literature on network state prediction at the short
timescales we target is much thinner. Previous research has
mostly proposed deep learning predictors that operate on time
steps of seconds or less for physical layer indicators, such as
bandwidth [7], transmission inactivity [31], signal strength [32],
uplink throughput [8], Physical Resource Blocks (PRBs) [33],
or channel state [34].Unlike these works, we are interested in
user-generated traffic, and not physical layer properties.

The study that is the closest to ours in spirit aims at
mobile traffic volume forecasting over time steps of tens of
LTE Transmission Time Intervals (TTI), i.e., tens of ms, by
using LTE Physical Downlink Control CHannel (PDCCH)
information [9]. However, neither this research nor any of
those listed before addresses the problem of anticipating traffic
burst duration or gaps, as done by our forecasting model.
SRS allocation. Standardization bodies are still debating on
the amount of dedicated resources and allocation strategies
for SRS. In the light of such uncertainty, several recent works
have investigated optimizations to the use of SRS when there
is a very large number of users for which channel estimation
must be performed in parallel. The approaches proposed to
date have tackled the problem from different angles.

Some studies have focused on coordinating uplink SRS
allocation across neighboring base stations to mitigate pilot
contamination, by using fractional reuse [35].

A different line of research has considered enhancing
Channel Estimation Capacity from SRS information, e.g., by
using deep learning tools, hence inherently improving the
utilization of SRS sequences [36]. Also, multi-user grouping
has been proposed as a strategy to minimize SRS resource
requirements, by bringing together users based on channel state
information [37], or channel correlation [38].

However, none of the works above addresses the problem of



anticipatory SRS allocation based on per-user traffic prediction.
Further, all the above works use periodic SRS while both
TRADER and Round Robin mechanisms use aperiodic SRS
which makes all previous studies fully orthogonal to ours.

VII. CONCLUSIONS

For future mobile networks, obtaining fresh and accurate CSI
is especially important. Technologies such as massive MIMO
impose a high overhead to acquire CSI, which scales with the
number of antenna elements involved in the measurement. In
this work, we tackle the problem of efficient configuration of
SRS pilots that are used to obtain accurate CSI for downlink
MIMO precoding in TDD systems. Specifically, we design
TRADER, a TRAffic-DrivEn Resource allocation framework
that leverages per-user ms-level traffic forecasts for aperiodic
SRS scheduling. TRADER uses an LSTM network to predict
the idle time between subsequent user traffic allocations that
are essential to determine a good SRS schedule. We extensively
evaluate the performance of the predictor and of TRADER
with real world mobile data. Unlike an aperiodic round robin
heuristic, the trace-driven simulations show that TRADER is
able to trigger more often SRS right before the actual traffic
and performs well in high load scenarios like the ones tested.
The more accurate scheduling of SRSs close to future user
traffic translates into channel gains of up to 2 dB.
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