
International Journal of Engineering and Advanced Technology (IJEAT)
 ISSN: 2249-8958 (Online), Volume-10 Issue-4, April 2021

195

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All Rights Reserved

Retrieval Number: 100.1/ijeat.D24740410421
DOI:10.35940/ijeat.D2474.0410421
Journal Website: www.ijeat.org

Designing Information System for Private Network
using RBAC, FGAC and Micro service Architecture

Arjit Mishra, Surendra Gupta, Swarnim Soni

 Abstract: Microservice architecture is used in developing
enterprise-level applications with the intent to modularise
deployment of the application, this happens by creating an
application as a collection of var-ious smaller applications known
as microservices. An Information system is one such application
that is ever-growing and therefore needs an architectural solution
that addresses this issue. While microservice architecture addresses
this issue by giving low coupling among microservices, future
scalability of the system, and convenience in developing, deploying,
and integrating new microservices.For all it‘s benefits, microservice

architecture complicates the consistent implementation of security
policies in this distributed system. Current industry standards are to
use protocols that delegate the process of authentication and
authorization to a third-party server, e.g. OAuth. Delegating these
processes to be handled by the third party is not suitable for some
web applications that are deployed in a less resourceful
environment, e.g. organization with high internet downtime or an
organization with high traffic of non working personnel e.g. people
giving exams in college or workshops being held. This paper aims
to research proposed solutions, existing frameworks, and
technologies to implement security policies in an Information
system which can be suitable for the above two scenarios.For this,
we use authentication, Role-based access control (RBAC) on every
request, and Fine-grained access control (FGAC) on the
implementation method level, to achieve greater access control and
flex-ibility of adding new microservice without changing whole
security policies. We have also proposed a pre-registration
condition in our system, which allows only certain people, whose
data is already present in the system, to register themselves with the
application. We also discuss the scenario where using a protocol
like OAuth is not suitable. The solution is based on creating a
central single entry point for authentication and implementing an
RBAC policy that will filter every request based on access roles that
the requesting user has. We further use FGAC on method level in
microservices to enforce n even finer restrictions on resources to be
accessed based on requirements. This solution will be implemented
as apart of the Department Information System (DIS) in the
following two-step:
Keywords: (DIS),FGAC,RBAC.

Manuscript received on April 15, 2021.
Revised Manuscript received on April 20, 2021.
Manuscript published on April 30, 2021.
* Correspondence Author

Arjit Mishra*, Research Scholar, Department of Computer
Engineering, Shri G. S. Institute of Technology & Science, Indore.

Surendra Gupta, Associate Professor, Department of Computer
Engineering, Shri G. S. Institute of Technology & Science, Indore.

Swarnim Soni, Assistant Professor, Department of Computer
Engineering, Shri G. S. Institute of Technology & Science, Indore.

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

I. INTRODUCTION

Micro services are the need of the hour for developing

enterprise-level applications. Businesses want ever scaling
applications that are easy to develop, test, integrate, and
deploy while allowing millions of users to access from
different frontends i.e. mobile, computer, systems, etc.
Applications based on monolithic architecture are painful in
incremental development and release environments like agile
but are great for developing policies for entire applications
like security policies. Since most of the development
community is moving towards microservice architecture, the
system, although logically a single entity, is becoming more
and more distributed. As a result, maintaining a single global
policy is more difficult and increases code duplication. To
ensure scalability of web applications and integration of new
microservices with current security protocols implemented we
need a robust way that can help us with authentication,
authorization, and access control.

Traditionally authenticated users are logged in central
databases that other microservices can access. This process of
storing all login information in a central database is not
recommended because it has a single point of failure upon
which the whole application’s operation depends.

Another alternative is to use OAuth and delegate
authentication and authorization of an individual to a third
party like Google or Facebook. This option is also not
acceptable as:

● An organization that has high network downtime or
doesn’t want to expose its application to an outside

network, will suffer greatly as the application is
dependent on the third party of authentication and
authorization.

● In an organization with high traffic of non-working
people like a university, where many seminars,
workshops, and exams are held, one needs a pre-
registration policy to restrict who can register for this
application.

The main objective of this project work is to design and
implement Role-Based Access Control(RBAC) and Fine-
Grained Access Control (FGAC) in an Information System
which is Based on Microservice architecture and intended for
a Private network.

https://www.openaccess.nl/en/open-publications
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijeat.D2474.0410421&domain=www.ijeat.org

Designing Information System for Private Network Using RBAC, FGAC and Micro service Architecture

196

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All Rights Reserved

Retrieval Number: 100.1/ijeat.D24740410421
DOI:10.35940/ijeat.D2474.0410421
Journal Website: www.ijeat.org

To address our needs and solve shortcomings in the existing
system we propose the following solution:

● Introduce a pre-registration condition to control
registration to the system.

● Design a central gateway for authentication,
authorization, and access control (RBAC) and reroute
the request. For this, we will be using spring security
and Netflix's zuul.

● To achieve resource(API) level access control we
introduce FGAC.

II. RELATED WORK AND TECHNOLOGIES

A. Role-Based Access Control(RBAC): RBAC is a
mechanism to provide access control to different users
based on their assigned role(s) [7]. In a large enterprise,
an individual can have access to have different
modules/tasks based on his/her position within the
organization or competency for the task. RBAC allows
developers to allow authorities to play a different role(s)
without hardcoding the restrictions. Modules then can be
allowed access to, based on the assigned role. RBAC
allows us to set privileges, separation of duties, access
control, and abstraction in the system.

B. Fine-Grained Access Control(FGAC): FGAC
implementation depends largely on the requirement. The
basic idea of FGAC is to define access control policy at a
granular level like attribute, methods, object, etc, to
achieve higher access control. FGAC is extensively used
in cloud and database to achieve granularity in access
control. The policy can be anything from allowing access
to a particular time window to analyzing tokens by a
cryptographic function [9][10]. FGAC is being used in
cloud computing for enforcing access control on the
instance level and also in database security by restricting
the type of query a user can execute.

C. OAuth: OAuth is a protocol that enables developers to
delegate the process of authentication and authorization to
a third party [11]. In our case, due to unreliable network
access, we cannot use OAuth as it will increase the
downtime of our application. It also limits the
organization’s control over who can and cannot register to

our system.
D. Spring Security: It’s a powerful and highly customizable

framework that allows developers to integrate
authentication and access-control functionalities in the
application [12]. A web application is usually developed
with the use of a comprehensive framework and common
business problems are implemented out of the box, just
needing configuration from the user end [13].

E. JSON Web Tokens: It’s a form of JSON strings used to

perform authentication and information exchange in the
system [14]. JWT can be signed by the issuing system and
later can be verified while availing services from the
system. Usually, a system with many microservices has
an implementation for processing these JWT tokens and
therefore verify that this user is authenticated or not [15].

JWT string consists of three parts which are separated by two
dots, these three parts are:
 i) Header: It typically consists of two parts:

● Which type of token it's going to be, which in
this case, it’s JWT.

● Signing algorithms like SHA256, RSA, etc.
{

 “alg”:”HS256”,

 “type”:”JWT”

 }

 ii) Payload: it’s the second part of JWT and contains

claims. Claims are information about an object or special
data. Claims can be classified into three types:

● Registered claims: a group of predefined,
recommended yet not compulsory claims. It provides
metadata like iss, exp, sub, aud, etc.

● Public claims: those who will be using this JWT can
define these claims as per their needs eg username,
user type, authorities, etc. These are specific to the
purpose for which JWT is being used.

● Private claims: these types of claims are special case
assertions created as per custom need of application
and can be shared among parties who agreed to use
JWT e.g. privileges, access control, etc.
Following is a demo payload:

{

“sub”:”1234567890”,

“name”:”Arjit Mishra”,

“Admin”: true

 }

 iii) Signature: Signature ensures that message is not
altered during transmission of JWT over the network. To
create a JWT we use base64 encoder to encode header and
payload and then sign it with specified algorithm and secret
key

HMACSHA256(base64UrlEncode(header) + "."

+ base64UrlEncode(payload),my-key)

Final JWT generated form above configuration is:
eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJz

dWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkFyaml0I

E1pc2hyYSIsImlhdCI6MTUxNjIzOTAyMn0.eUqJs9

8gELCCwoy-u1E7k0W8eJKw6XRruElukrJT2Ow
F. Netflix Zuul: Zuul is the first checkpoint for all the

requests from different frontend to backend services. Its
purpose is to enable dynamic routing for incoming
requests, security, and monitoring. Since we have a single
entry gateway for all other microservices, we need zuul
only for dynamic routing to redirect requests to
microservices in our Information system. It can be
configured in the gateway along with spring security so
we can redirect the requests after authentication.

International Journal of Engineering and Advanced Technology (IJEAT)
 ISSN: 2249-8958 (Online), Volume-10 Issue-4, April 2021

197

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All Rights Reserved

Retrieval Number: 100.1/ijeat.D24740410421
DOI:10.35940/ijeat.D2474.0410421
Journal Website: www.ijeat.org

III. DESIGN AND ANALYSIS

We consider four microservices namely Administration
Microservice, Academics Microservice, User Microservice,
and Infrastructure Microservice with their respective
databases. Although there was no freezing of requirements,
the microservices were still discovered and fixed. The
collected requirements were not fixed, and even after
implementation began, they continued to change. Later, any
minor change in requirements or responsibilities was handled
easily but a major change in it forced to redesign
microservices and therefore should be avoided. Overall
components in the Department Information System(DIS) are
shown in a block diagram below:

Fig 1: System Block Diagram

Considering the above block diagram, we have two scenarios,
first is designing pre-registration flow, Fig 2(a), and the second
is designing resource request flow based on RBAC and
FGAC, Fig 2(b).
 Pre-registration conditions are fulfilled by checking
for user data in the database prior to registration, a fraudulent
user’s data will not be available in the database. If we have

used Oauth then anyone with an account of the authenticating
service will be able to log in, also the system will be out of
service if the internet infrastructure is not optimum and
frequent breakdowns, or doesn’t exist at all.

Fig 2(a): Flow Diagram: Registration

Resource request flow is designed by implementing RBAC
using spring security. To implement FGAC we hard code
specific conditions particular to that resource, as every
resource will have unique restrictions.

Fig 2(b): Flow Diagram: Resource request

When someone attempts to register themselves with the
system, their credentials are first checked by the systems.
These credentials are uploaded when the user joins the
institute. If the credential is found then only that person is
registered in the system else an error message is sent.

Fig 3 (a): Sequence diagram for registration.

 When a client logs in with a username and password, after
successful authentication a JSON payload along with
roles/authorities and JWT is returned by the gateway. After
receiving the jwt token, we can pass it into the authorization
header in the HTTP request.

https://www.openaccess.nl/en/open-publications

Designing Information System for Private Network Using RBAC, FGAC and Micro service Architecture

198

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All Rights Reserved

Retrieval Number: 100.1/ijeat.D24740410421
DOI:10.35940/ijeat.D2474.0410421
Journal Website: www.ijeat.org

This JWT can then be used to authenticate yourself during
future requests. When a request comes, role-based access
control (RBAC) can be achieved by filtering URLs based on
roles/authorities in JSON payload in incoming requests. This
is achieved by the spring security framework which is
configured by users as per their requirement.Below is a
sequence diagram showing the authentication process:

Fig 3 (b): Sequence diagram for authentication.

The authorized requests are then rerouted to respective
microservices and an appropriate response is returned.
Following is the zuul configuration for API gateway which is
configured using Netflix’s Zuul, and is to be mentioned in the

application properties file. All the microservices are
configured to accept requests only from the gateway, so when
a request originates (redirected) from the gateway, access is
granted by these microservices. Furthermore, we implemented
fine-grained access control (FGAC) in method, say
/user/addFaculty, which can only be accessed
during a certain time period, to achieve granularity in access
control. Now there can be any condition that can be used to
achieve granular control over a resource, the one mentioned
above is just for reference.Below sequence diagram
demonstrates service request from other microservice:

Fig 4: Sequence diagram for the service request.

 IV. RESULT AND DISCUSSION

All the tests shown below are a part of the Department
Information System being developed for the Department of
Computer Engineering, Shri Govindram Seksaria Institute of
Technology and Science, Indore.

Fig 5: Failed registration.

If a user whose data is not present in the system beforehand
then their registration will fail as shown in Fig 4.We can see
the authentication process in Fig 6(a) and Fig 6(b). A POST
request is sent and after validation, a JSON response along
with an access token is returned from the server. This access
token will be sent in an authorization header to avail of further
services. Any change in this token will result in an
Unauthorized(401) response from the server.

 Fig 6(a): LoginForm object

Fig 6(b): Login Response
 Users can access the APIs available to them as per security
policies and then the appropriate response is received (Fig
7(a)), if the authorization header is empty then the request is
unauthorized as shown below (Fig 7(b)). In the example
shown in Fig 7(a) the resource
/dis/user/staffProfile/getFacultyData is available to all
authenticated users and therefore data is returned when the get
request is made.

International Journal of Engineering and Advanced Technology (IJEAT)
 ISSN: 2249-8958 (Online), Volume-10 Issue-4, April 2021

199

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All Rights Reserved

Retrieval Number: 100.1/ijeat.D24740410421
DOI:10.35940/ijeat.D2474.0410421
Journal Website: www.ijeat.org

Fig 7(a): Request with authorization header.

Fig 7(b): Request with empty authorization header.

 If a user is not authorized to access any resource as per the
policy, then the server responds with Forbidden(403). In the
below figure (Fig 8) we see that the server forbids access to
the resource at
/dis/user/staffProfile/addNewMember based on
role (RBAC).

Fig 8: Forbidding access to a resource based on the role

(RBAC)

Fig 9: Forbidding access based on an attribute’s condition

(FGAC)
 All users have access to /getFacultydata resource,
but let’s say we implement a condition on an attribute that

denies access outside working hours, then that access can be
revoked. Figure (Fig 9) shows the server forbids access to
resources based on security policy on a time attribute that it
should be within working hours.

V. CONCLUSION

 Spring security provides a way to configure a central
gateway for authentication, and role-based access control in an
ever-growing and complex web application. A new
microservice can be easily integrated with the existing system
by doing only minimal configuration as the changes are to be
done only in one place. If there are special requirements for
authorization then these constraints can be coded in method
level, this is called fine-grained access control. We also
successfully implemented pre-registration conditions so that
only intended people can register themselves with the system.

This approach of authentication and authorization
also removes the problem with central logging systems as
there is no need to maintain a log of the authenticated user,
which will result in a single point of failure. By using JWT,
the party who is requesting a service is going to provide a
JWT token, these parties can simply be verified by the
gateway and then redirected to the appropriate microservice. If
a token is expired or changed in any way these requests will
not be authorized. This helps in maintaining a stateless session
between client and server.

REFERENCES

1. FU Yue, “A Study of Student Information Management Software”,

Chongqing Institute of Technology, 2016 IEEE.

https://www.openaccess.nl/en/open-publications

Designing Information System for Private Network Using RBAC, FGAC and Micro service Architecture

200

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All Rights Reserved

Retrieval Number: 100.1/ijeat.D24740410421
DOI:10.35940/ijeat.D2474.0410421
Journal Website: www.ijeat.org

2. Software architecture, [Online]
https://www.tutorialspoint.com/software_architecture_design/index.htm
Accessed on : Nov 29, 2020

3. L. Bass, P. Clements, and R. Kazman. “Software Architecture in

Practice”, 2nd ed.Reading, MA: Addison Wesley, 2003. [E-book]
Available: Safari e-book.

4. N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi, R.
Mustafin,and L. Safina. “Microservices: yesterday, today, and
tomorrow”, arXiv preprintarXiv:1606.04036, 2016.

5. M. Villamizar et al.,“Evaluating the monolithic and the

microservice architecture pattern to deploy web applications in
the cloud,” 2015 10thComputing Colombian Conference (10CCC),

Bogota, 2015, pp. 583-590.
doi:10.1109/ColumbianCC.2015.7333476.

6. P. Siriwardena, “Advanced API Security: OAuth 2.0 and Beyond”,

Second Edition, Apress, Berkeley, CA, 2020 Springer.
7. Tetiana Yarygina, Anya Helene Bagge, “Overcoming Security

Challenges inMicroservice Architectures”, Department of Informatics,

University of Bergen, Norway,2018 IEEE Symposium on Service-
Oriented System Engineering.

8. Ravi S. Sandhu, Edward J. Cope, Hal L. Feinstein, Charles E. Youman,
“Role-Based Access Control Models, SETA Corporation, 1996 IEEE.

9. Antonio Nehme, Vitor Jesus, Khaled Mahbub, and Ali Abdallah, “Fine-
Grained Access Control for Microservices”, School of Computing and

Digital Technologies, Birmingham City University, Birmingham, UK,
Springer Nature Switzerland AG 2019.

10. S. Newman, “Building Microservices: Designing Fine-Grained Systems",
O'Reilly Media (2015), ISBN: 978-1491950357.

11. OAuth 2.0, [Online] https://oauth.net/. Accessed on : Dec 1, 2020
12. Spring projects, “Spring Security”, [Online]

https://spring.io/projects/spring-security#overview. Accessed on : Dec 1,
2020

13. Tetiana Yarygina, Anya Helene Bagge, “Overcoming Security Challenges

in Microservice Architectures”, Department of Informatics, University of
Bergen, Norway, 2018 IEEE Symposium on Service-Oriented System
Engineering.

14. jwt.io, “Introduction to JSON Web Tokens”, [Online]
https://jwt.io/introduction/. Accessed on: Accessed on : Dec 2, 2020

15. RCBJ-ADMIN, "JWT Use Cases," 7 2017. [Online]. Available:
http://rcbj.net/blog01/2017/07/14/jwt-use-cases/. Accessed on :Dec 2,
2020

16. I. I, P. M. R. Anand and V. Bhaskar, "Encrypted Token-based
Authentication with Adapted SAML Technology for Cloud Web
Services," Journal of Network and Computer Applications 99, 2017.

17. Xiuyu He, Xudong Yang,” Authentication and Authorization of End User

in Microservice Architecture”, Department of Computer Science and
Technology, Beijing University of Posts of Telecommunications, Beijing,
China, IOP Conf. Series: Journal of Physics, CTCE2017

AUTHOR’S PROFILE

Arjit Mishra, Research Scholar, Department of
Computer Engineering, Shri G. S. Institute Of
Technology & Science, Indore. Completed Bachelor
of Engineering in Information Technology (Hons)
from the Department of Information Technology,
Technocrats Institute of Technology, Excellence,
Bhopal in 2016 . arjitm786@gmail.com

Surendra Gupta, Associate Professor, Department of
Computer Engineering, Shri G. S. Institute Of
Technology & Science, Indore. Pursuing Ph.D. from
DAVV, Indore. Completed Bachelor of Engineering in
Computer Engineering from Samrat Ashok
Technological Institute, Vidisha 1997. Completed
Masters of Engineering in Computer Engineering from

Shri G. S. Institute of Technology & Science, Indore 2001.
sgupta@sgsits.ac.in

Swarnim Soni, Assistant Professor, Department of
Computer Engineering, Shri G. S. Institute Of
Technology & Science, Indore. Completed B.Tech in
Computer Science and Engineering from the Institute
of Engineering, DAVV, Indore 2009. Completed
M.Tech in Computer Science and Engineering from
the Indian Institute of Technology, Madras 2013.
swarnimsoni@gmail.com

https://oauth.net/
https://spring.io/projects/spring-security#overview
https://jwt.io/introduction/
http://rcbj.net/blog01/2017/07/14/jwt-use-cases/
mailto:arjitm786@gmail.com
mailto:sgupta@sgsits.ac.in
mailto:swarnimsoni@gmail.com

