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Autonomous Vehicles 
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Abstract: Path planning algorithm integrated with a velocity 
profile generation-based navigation system is one of the most 
important aspects of an autonomous driving system. In this 
paper, a real-time path planning solution to obtain a feasible and 
collision-free trajectory is proposed for navigating an 
autonomous car on a virtual highway. This is achieved by 
designing the navigation algorithm to incorporate a path planner 
for finding the optimal path, and a velocity planning algorithm 
for ensuring a safe and comfortable motion along the obtained 
path. The navigation algorithm was validated on the Unity 3D 
Highway-Simulated Environment for practical driving while 
maintaining velocity and acceleration constraints. The 
autonomous vehicle drives at the maximum specified velocity 
until interrupted by vehicular traffic, whereas then, the path 
planner, based on the various constraints provided by the 
simulator using µWebSockets, decides to either decelerate the 
vehicle or shift to a more secure lane. Subsequently, a spline-
based trajectory generation for this path results in continuous 
and smooth trajectories. The velocity planner employs an 
analytical method based on trapezoidal velocity profile to 
generate velocities for the vehicle traveling along the pre-
computed path. To provide smooth control, an s-like trapezoidal 
profile is considered that uses a cubic spline for generating 
velocities for the ramp-up and ramp-down portions of the curve. 
The acceleration and velocity constraints, which are derived from 
road limitations and physical systems, are explicitly considered. 
Depending upon these constraints and higher module 
requirements (e.g., maintaining velocity, and stopping), an 
appropriate segment of the velocity profile is deployed. The 
motion profiles for all the use-cases are generated and verified 
graphically. 

Keywords: Frenet Coordinate System, Path Planning, Spline 
Interpolation, Trapezoidal Velocity Curve, Velocity Profile 

I. INTRODUCTION 

    Autonomous driving has been predicted to dramatically 
enhance driving safety, increase transportation efficiency 
and revolutionize the entire automobile industry, where 
particularly self-driving cars can offer tremendous benefits 
to both individuals and societies [1].  
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With the help of the on-board technologies, self-driving 
cars can perform real-time driving tasks without any input 
from a human operator by creating an image of the 
surroundings to facilitate traffic navigation [1, 2]. Apart 
from basic navigation, self-driving vehicles offer increased 
road safety, and may unclog road traffic due to their ability 
to communicate with each other, thereby optimizing 
vehicular routes and thus, resulting in smooth and efficient 
traffic flow. This, in turn, results in decreased fuel 
consumption, hence, paving the way for a more sustainable 
future [3, 4]. For the plethora of advantages these vehicles 
offer, they have been subjected to intense research, and thus, 
have become a definite reality that may pave the way for 
future systems, where robots take over the art of driving [3, 
4].  

     Autonomous driving cars rely on path planning as it 
is the “brain” of the entire system. Path planning and 
decision making in urban environments enable self-driving 
cars to discover the safest, most convenient, and most 
economical routes from source to destination [5, 6]. This 
sub-system can reproduce the human thought-process 
involved while driving-route planning based on the source 
and destination, real-time analysis of the surroundings and 
maneuvering any encountered obstacles, and at the same 
time adhering to traffic rules and maintaining a safe and 
optimal trajectory [7, 8].  

     Autonomous on-road driving requires a path planning 
algorithm that includes the search for a feasible path by 
taking into consideration the dimensions of the vehicle, the 
geometry of its surroundings, and the various kinematical 
path constraints [9, 10]. The vehicle’s movement is 

calculated to fulfill the car’s kinematic constraints based on 

its initial and final dynamic configurations. The vehicle 
must identify and bypass all the static and maneuverable 
obstacles to find a collision-free route. The generated real-
time trajectories are extracted mathematically considering 
various path constraints such as restrictions on the size of 
the vehicle concerning the road, and restrictions on the 
vehicular drive. Each path generated is then associated with 
one or many velocity profiles. 

     Motion planning highlights various critical challenges 
in the development of autonomous driving systems, 
including velocity planning. Velocity planning, defined as 
the variation in velocity along a predefined path for the 
motion control of autonomous vehicles, becomes very 
complex due to continuously changing environments [11, 
12].  
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Therefore, the velocity profile needs to be carefully 
assigned along the generated path. By considering both path 
planning and motion planning constraints, a velocity profile 
is employed that can optimize driving capability while 
adhering to the behavior and velocity limits of the vehicles 
in a driving scenario, and at the same time avoids any 
collisions [13]. Autonomous vehicles should be capable of 
assigning appropriate velocity profiles for a selected optimal 
path. Velocity planning is a versatile and effective tool for 
the motion control of autonomous vehicles. The planning 
optimization algorithm should offer an efficient method for 
the evaluation of minimum pure-jerk velocity functions. To 
ensure smooth driving, a velocity planner uses semantic 
information given by the path planner to establish a 
continuous velocity profile that considers acceleration and 
speed thresholds within the selected optimal path 
(trajectory).  

In recent years, a significant amount of work has been 
dedicated to achieve fast and efficient path and motion 
planning algorithms, as it remains one of the most important 
aspect of autonomous driving. Zvi Shiller in [14] achieves a 
path planning algorithm for vehicles moving on a general 
terrain and accounts for obstacles, terrain topography, 
vehicle kinematics and dynamics. The mathematical 
derivation of the desired torque or velocity signals that act 
as an input to the respective torque or speed controllers is 
provided by Martin Adams in [15]. In addition to that, it also 
defined a trajectory generator which produced constant jerk 
profiles in acceleration, velocity and displacement, while 
maintaining vehicular constraints of acceleration and 
velocity. Tanishtha Nayak in [16], proposed a novel 
algorithm to find path between final and destination position 
for an intelligent system, which is considered to be a 
device/robot having an antenna connected with sensor-
detector system. Cheng Chen in [17] devised a solution to 
counter the problem of trajectory generation by producing a 
continuous and bounded curvature profile to outline the 
trajectory, further optimized by the quartic B´ezier curve. In 
[18], A* path planning algorithm has been represented by 
Ali Khaleel Mahmood for a mobile robot to be able to 
follow a constructed path from its current position to a 
specified goal within its environment. An obstacle detection 
algorithm has been implemented as a final algorithm which 
will be used as a part of the whole system to give the robot 
the ability to move from its initial known position to a 
specific goal in an optimum way. The autonomous systems 
rely on several layers of sensor data. However, at the root is 
an A* search algorithm-based navigation system. P E 
Teleweck in [19] aims to present an introduction to these 
algorithms and use the cases where young roboticists can 
develop path finding/ path planning applications to fit their 
educational robotics requirements. Jianfang Lian in [20] 
proposed a cubic spline interpolation-based path planning 
method to maintain the smoothness of moving the robot’s 

path. 
Previous research has attempted to reduce jerks in 

autonomous vehicles by applying various smooth velocity 
profiles, such as the s-curve jerk-bounded profile. High-
order polynomial motion profiles enable the vehicle to move 
smoothly. The increase in the order of a polynomial 
equation results in an equivalent increase in the number of 

coefficients for the function of time, resulting in the 
generation of smoother shapes of position and velocity 
profiles. An algorithm of computational complexity O(n) 
has been used by L. Consolini in [21], to provide a time-
optimal velocity planning technique for autonomous 
vehicles. Keonyup Chu in [1] described a collision risk 
procedure to determine target speed by limiting the value of 
lateral acceleration as maintained by the curvature of the 
path. Jordi P´erez Talamino and Alberto Sanfeliu’s method 

in [11] imposed initial and final acceleration restrictions to 
compute the profiles using third order velocity splines in 
four unknown variables, considering the fifth unknown to be 
the total time required to travel the given trajectory. 
Abhiram Rahatgaonkar’s thesis on Velocity Planning 

Approach for Autonomous Vehicles [22] concentrates on 
velocity planning with familiar environment to avoid 
collision with moving obstacles. As demonstrated by 
Xiaohui Li in [23], the velocity profile generation is initiated 
by the determination of maximum permitted speed by the 
behavioural planner, the model constructs the trapezoidal 
speed curve, followed by the application of polynomial 
splines to ensure continuous acceleration. 

This paper provides an overview to safely navigate a car 
around a virtual highway with other traffic, without going 
over the limit of 50 MPH. The car should be able to drive 
the entire 6946 meters length of the gently curved, closed-
loop track maintaining speed limit while navigating traffic 
and without any “incidents” which include: driving over the 
speed limit, exceeding limits on acceleration and jerk (i.e., 
the change in acceleration over time, which can make for an 
uncomfortable and unsafe ride), driving outside the lane, 
and, of course, colliding with other cars. The simulator 
provides us with the telemetry data for the ego vehicle 
(position, heading and velocity) and sensor fusion data for 
the nearby traced vehicles on the highway (position, 
velocity). In return, the simulator expects a list of map 
coordinates from the server, each of which the ego vehicle 
will obediently follow at intervals of 20 milliseconds. The 
data obtained as inputs from the simulator, undergoes spline 
interpolation to generate smooth real-time trajectories. To 
ensure a smooth ride, the car should not experience total 
acceleration over 10 m/s2 and jerk that is greater than 10 
m/s3. This paper also provides an overview to achieve 
generation of suitable velocity profiles for an optimal 
trajectory, explicitly considering various velocity, 
acceleration, path and time constraints. Considering these 
constraints help reduce the solution set of the velocity 
planning, resulting in the planner to focus on the solution 
space where the optimal solution is more likely to exist. The 
trapezoidal velocity profile is considered as a reference to 
generate a stable velocity profile fulfilling various 
constraints and mode of travel such as velocity-keeping, 
following, stopping etc. as suggested by higher order 
behavioral module. Finally, to obtain smooth and jerk free 
motion, the generated velocity profile is replaced with high 
order polynomial spline curve maintaining all constraints. 
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     Specifically, the main contributions of this paper are: 
• Implementation of a path planner to safely navigate a 

car around a virtual highway with other traffic, 
considering various constraints provided by the 
simulator, maintaining speed limits, not exceeding 
limits on acceleration and jerk and, of course, 
bypassing all the static and maneuverable obstacles. 

• An approach for accurately generating suitable 
velocity profiles by employing trapezoidal velocity 
curve for an optimal trajectory explicitly considering 
various velocity, acceleration, path and time 
constraints. 

• Demonstration of different jerk minimization 
techniques involving generation of smooth s-curve 
motion profiles with low associated accelerations, 
incorporating high order polynomial spline equations 
with the suitably generated trapezoidal velocity 
profile sequences for the optimal trajectory. 

   
   The remaining paper is organized as follows. Section II 

presents the optimized and efficient approach for the 
development of the path planning algorithm. Section III 
specifies the techniques involved with formulating the 
velocity planning problem in detail. Section IV 
demonstrates the effectiveness of our approach on various 
simulation profiles and scenarios. Finally, Section V draws 
the conclusions and suggests future work.  

II. PATH PLANNER 

This section on trajectory generation incorporates the 
design and application of a path planning decision algorithm 
that creates smooth and safe trajectories to navigate a car 
around a simulated highway scenario. The path planning 
algorithm considers various constraints such as the location 
coordinates, speed and deviation angles of ego vehicle along 
with the neighboring vehicles in the simulated environment. 
The program establishes a TCP connection using 
µWebSockets between the Visual Studio IDE (server) and 
the Unity 3D Highway-Simulated Environment (client). 

The TCP server-client connection supports full-duplex 
communication thereby allowing the simulator and the 
server to transmit and receive dynamic information of the 
ego vehicle and the surrounding vehicles in the simulated 
environment. Initially, the ego vehicle is expected to follow 
the base frame provided by the simulator until it encounters 
an obstacle, wherein in that case, the path planner devises a 
new trajectory for the car to proceed further. The yaw angle, 
which is the deviation of the car from the central axis of the 
highway along with the estimated speed of the vehicles is 
provided as an input to the path planner. In addition to this, 
the current location of the ego vehicle and the nearby traced 
vehicles is also transmitted to the server. The localization 
data of the ego vehicle and the nearby traced vehicles are 
expressed in the Cartesian and Frenet coordinate systems.  

 
Fig. 1: Representation of a reference path in Cartesian 

and Frenet coordinates 

     Instead of referring to a fixed axis such as 
the x and y in the Cartesian Coordinate System, the Frenet 
system employs the road as a reference as shown in Figure 
1, and hence, it continuously changes as per the curvatures 
of the road. Once the data has been received, spline 
calculation requires the application of various transforms to 
generate the trajectory. Therefore, the coordinates are 
converted from Frenet to the Cartesian system for ease of 
calculations.   

Once the necessary localization and sensor fusion data 
has been received by the server, the path planner proceeds to 
analyze the surrounding environment to predict the next 
path for the vehicle. It initiates with a check for any 
previous path available. In case, it finds a previous path 
associated with the ego vehicle, it assigns endpoint 
coordinates of the previous trajectory as the starting 
reference for the succeeding one. The LiDAR sensors 
embedded in the ego vehicle scan up to 30 meters. Hence, 
30 meters is assigned as the safe distance to be maintained 
between any two vehicles at every instance. The safe 
distance is considered as the limiting factor while scanning 
for any obstacle vehicles. By considering the safe distance 
and the predicted location of surrounding vehicles, the 
sensor fusion data alerts the path planner in anticipating a 
potential collision and influences in selecting the optimal 
path during the generation of the trajectory.  

As shown in Algorithm 1, the path planner initially 
checks if there is traffic in the middle lane in which the car 
is currently  
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Travelling, and if the safe distance has not been 
maintained. In such a situation, it then checks if the right 
lane is available with no obstacles within 30 meters. If the 
right lane provides a safe path to proceed, it decides to 
change to the right lane. Alternatively, if both the conditions 
are not being satisfied, it checks for the left lane availability 
with no probable collision with any proximate vehicles. Just 
like the previous lane checks, if left lane is suitable for 
travelling, it decides to change to the left lane. However, if 
the checks fail entirely with no switch possible in any 
alternate lane, either due to obstacles or the failure in 
maintaining a safe distance, the vehicle decelerates 
uniformly to avoid a collision with any other vehicle. 

The decision made by the path planner is carefully 
calculated and executed in the trajectory generation stage. 
Like the path planning stage, it runs a check for any existing 
paths available and if found, assigns the end coordinates of 
the previous path as the starting reference for the next path. 
Once the start position has been assigned, it sets up a target 
point at a distance of 30 meters from the initial point. The 
path of the autonomous vehicle should be smooth to reduce 
the energy consumption and hence, cubic spline 
interpolation has been used to achieve this goal. Cubic 
spline interpolation is used to form a smooth curve through 
a series of shape points. 
 

Take (n + 1) nodes on the interval [a, b]: 
a < x0 < x1 < … < xn = b 

 
     A function f(x) on [a, b] becomes an interpolated cubic 
spline function if the following conditions are met. In each 
interval [xi-1, xi], f(x) is a cubic polynomial function. 
 

fi (x) = ai + bi (x – xi) + ci (x – xi )2 + di (x – xi )3 
f (x0) = y0, …, f (xn+1) = yn+1 

 
where f(x) is continuous in the interval [a, b]. 

 
This spline polynomial equation consists of unknown 

variables which requires the substitution of location point 
coordinates to calculate the value of the variables. For this 
purpose, we utilize the initial point and the target point. In 
addition to this, we consider three path nodes situated at 

equal distances between the initial and the target point. Once 
these points are substituted in the equation, the Band Matrix 
Method is used to solve for the unknown variables, helping 
to generate a smooth and curved profile for the trajectory. 

Path planning and trajectory generation are the most vital 
stages in the development of autonomous driving systems. It 
requires an accurate prediction of the behaviour of the ego 
vehicle as well as the surrounding obstacles. The server and 
the client handle the communication of dynamic data and 
alert the path planner of any approaching obstacles. 
Considering the safe distance constraint along with the lane 
availabilities, the planner devises a suitable solution to be 
followed by the car to avoid any collisions with its 
surroundings. Once the decision-making has been 
accomplished, the planner executes various mathematical 
formulations to provide a smooth and continuous trajectory 
to be followed by the ego vehicle. The entire process repeats 
throughout the course of the path thereby maintaining and 
adhering to all possible safety constraints. 

III. VELOCITY PROFILE FORMULATION 

     We designed and implemented an efficient real-time 
approach for velocity planning of a known optimal 
trajectory within specified constraints as shown in 
Algorithm 2. The required velocity and acceleration 
constraints can be modified such that the trapezoidal 
velocity profile adapts to a linear or a ramp velocity profile.  
     Assumptions. Considering the velocity (initial velocity 
Vo, maximum velocity Vm and end velocity Ve) and 
acceleration (initial acceleration A and deceleration D) 
constraints, a velocity profile can be designed for a selected 
optimal trajectory (Total path length S). 
     Algorithm Phase 1. The initial procedure involves the 
generation of a speed curve by employing the trapezoidal 
velocity profile. Instead of generating the velocity profile for 
the entire path length S, we divide the trajectory into several 
minuscule paths of length s to obtain the best fitting curve as 
illustrated in Figure 2. The instantaneous changes in velocity 
demand the constraints to differ for every minuscule path.  
     Algorithm Phase 2. The initial velocity Vo for the first 
segment is established in advance by the planner. The 
maximum velocity Vm remains constant for every set of 
minuscule paths and restricts the vehicle from exceeding the 
range. We introduce a new constraint, the time limiting 
constant, Tk, which is the least time for which the vehicle is 
expected to travel at a constant maximum velocity to avoid 
collisions and maintain stability. The final velocity Ve is 
dynamically dependent on the velocity of the leading 
vehicle to ensure collision free driving. The consecutive 
minuscule path segments obtain the final velocity Ve of the 
previous set and set it as its initial velocity Vo, while the rest 
of the constraints remain the same. 
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Fig. 2: The division of selected optimal trajectory into 
minuscule paths for assigning velocity profile. 

 

 
Velocity v/s Time 

 
Velocity v/s Distance 

Fig. 3: Trapezoidal velocity profiles showing different 
segments. 

 
As shown in Figure 3, the trapezoidal motion profile is 

applied for the velocity profile generation. We assume the 
ramp-up and ramp-down profiles with constant acceleration 
and deceleration values to attain a solution. The velocity 
profile consists of three sections:  

1. The initial ramp-up slope T1 / S1 from the initial 
velocity Vo till the maximum velocity Vm 

2. Constant traversal segment T2 / S2 at the maximum 
velocity Vm 

3. The ramp-down slope T3 / S3 from the maximum 
velocity Vm till the final velocity Ve 

     The equations for distance covered by the three sections 
S1, S2 and S3 have been formulated using Newton’s Laws of 

Motion.  

S1 = 
𝑉𝑚2 − 𝑉𝑜2

2 × 𝐴
                          (1) 

       S2 = 𝑉𝑚 ×  𝑡𝑠2                                    (2) 

S3 = 
𝑉𝑒2 − 𝑉𝑚2

2 × 𝐷
                      (3) 

s = S1 + S2 + S3                   (4) 

tS2 = 
𝑠 − (𝑆1 + 𝑆3)

𝑉𝑚
                               (5) 

 
Fig. 4: Trapezoidal Velocity Profile considering Tk to 

vary from 0 to 5 seconds. 
 

𝑛𝑒𝑤𝑉𝑚 =

− 𝑇𝑘+√ 𝑇𝑘
2 − 4 × ((

1

2 × 𝐴
) − (

1

2 × 𝐷
)) ×  ((

𝑉𝑒2

2 × 𝐷
) − (

𝑉𝑜2

2 × 𝐴
) − 𝑠) 

2 × ((
1

2 × 𝐴
) − (

1

2 × 𝐷
))

      (6) 

The total distance of the minuscule path s in Equation 4 
for which the velocity profile has been generated, is equal to 
the sum of the distance covered by three segments of the 
profile as specified in Equations 1, 2 and 3. Considering the 
total path length to remain constant, and acceleration and 
deceleration to be A and D respectively, the time tS2 for 
traveling the segment S2 is estimated in Equation 5. 

The velocity profile generated in Figure 4 is a special 
case as it does not trace zero acceleration or a constant 
velocity motion. The abrupt change from acceleration to 
deceleration results in a jerky motion. Thus, to ensure a 
smooth motion, a new value of maximum velocity, labeled 
newVm, specified in Equation 6, replaces Vm while plotting 
the velocity curve. For this purpose, we have defined a 
constant Tk, which serves as a time limiting constraint and 
fulfils the need to generate a non-jerky and smooth velocity 
profile for all sets of inputs. The constant, Tk, is the least 
time for which the vehicle is expected to travel at a constant 
velocity Vm to avoid collisions and maintain stability. 
Figure 4 shows that the value of Tk when set to zero, results 
in no alteration in the value of Vm as time tS2 evaluated for 
segment S2 is equal or greater than the value of Tk. 
However, when Tk is set to a higher value, then the value of 
the maximum velocity Vm alters itself to a lower value of 
newVm to adhere to the vehicle constraints. 

Algorithm Phase 3. The trapezoidal velocity profile is 
further smoothened to guarantee the continuity of the 
acceleration and optimize comfort by providing minimum 
jerk. Parameterization of the velocity profile is achieved by 
interpolating cubic polynomials. 

 
v(t) = v0 + at + bt2 + ct3                         (7) 
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acc(0) = a = a1                               (8) 

 v(𝑡𝑓)  = v0 + a1 tf + a2 tf 
2 + a3 tf 

3 = vf               (9) 

acc(𝑡𝑓) = a1 + 2a2 tf + 3a3 tf 
2 = af                        (10) 

 
Velocity v/s Time 

 
Velocity v/s Distance 

Fig. 5: Cubic s-curve velocity profiles showing different 
segments. 

 

s(𝑡𝑓) =  𝑣0 𝑡𝑓 +  
𝑎1 𝑡𝑓 2

2
 + 

𝑎2 𝑡𝑓 3

3
 + 

𝑎3 𝑡𝑓 4

4
 
 = 𝑠𝑓        (11) 

     ( 
𝑎0 − 𝑎𝑓

12
 ) tf 

2 + ( 
𝑣𝑓 + 𝑣0

2
 ) tf -- 𝑠𝑓 = 0               (12) 

a2 = 3 ( 
𝑣𝑓 − 𝑣0

𝑡𝑓 2  ) – ( 
2𝑎0 + 𝑎𝑓

𝑡𝑓
 )                  (13) 

a3 = ( 
𝑎𝑓 − 𝑎0

3 𝑡𝑓 2  ) – ( 
2 𝑎2

3 𝑡𝑓
 )                      (14) 

     The cubic expression for velocity v(t) at any given time t 
is defined in Equation 7. To smoothen these segments in the 
s-curve, the total time tf required by each segment S1 and S3, 
is calculated. The equation for path length at tf, ie. s (tf) is 
derived in Equation 11, by integrating the velocity 
expression in Equation 9. Given the initial velocity v0, initial 
acceleration a0, terminal velocity vf, final acceleration af, the 
unknown parameters {a1, a2, a3, tf} in Equation 11 could be 
analytically solved with the help of Equations 7, 8, 9, 10 and 
11. Newton–Raphson method, a root-finding algorithm that 
produces successively better approximations to the roots (or 
zeroes) of a real-valued function is used for calculating the 
value of tf. The value of tf is evaluated at every point on the 
trajectory, and the segments, S1 and S3 are smoothened 
separately for all values of t from 0 − tf and v(t) has to be 
calculated to obtain the velocity v/s time s-curve profile. As 
shown in Figure 5, the S-shaped ramp-up and ramp-down 
velocity profiles are solved individually, and trajectories are 
generated by incorporating the spatial path with the 
corresponding velocity profiles. 

IV. RESULTS AND DISCUSSION 

A. Experimental Setup 

     For simulating and verifying results and experimental 
evaluation, the entire programming code was developed 
using Integrated Development Environment (IDE) i.e., 
Visual Studio with the help of Object-Oriented 
Programming Methodology in C++ programming language.  
     A real-time path planner was developed in C++ to 
navigate a car around a simulated highway scenario, 
considering traffic, base frame waypoints, localization data 
of the car, and sensor fusion data as inputs, and generating 
the desired smooth and safe real-time trajectories as output. 
The developed path planner was implemented and validated 
for results using the Unity 3D Highway-Simulated 
Environment. A TCP (Transmission Control Protocol) 
server-client connection was established using 
µWebSockets for navigating the car around a simulated 
highway scenario. 
     In addition to this, a real-time velocity planning 
algorithm was developed in C++ to generate velocity 
profiles for a vehicle travelling along a predefined path. The 
plots of various motion profiles were generated and verified 
using MATLAB. To generate various motion profiles, the 
final deceleration i.e., acceleration at end velocity Ve has 
been considered as 0 m/s2. The limits of the initial 
acceleration A and the initial deceleration D are based on the 
vehicle, and traffic rules which are pre-decided and taken as 
5 m/s2  and – 5 m/s2, respectively. The entire programming 
code has been developed and structured exclusively, taking 
velocity, acceleration, time, and path constraints as inputs, 
and generating the desired velocity profile as output. 

B. Path Planning Algorithm 

     The trajectory generated by the path planning algorithm 
is safe and smooth, assisting the car in avoiding collisions 
with other vehicles in the environment. It maintains lane 
constraints and drives according to the 50 MPH speed limit. 
The path planner controls the car perfectly by directing the 
ego vehicle through every map coordinate, at intervals of 20 
milliseconds. The vector pointing from one coordinate 
towards the other, dictates the yaw angle of the car. 
Acceleration, both in the tangential and normal directions, is 
measured along with the jerk. The vehicle should not exceed 
a total acceleration of 10 m/s2, and the jerk should not 
surpass 10 m/s3. The Cartesian coordinates (x, y) are 
expressed in meters and when calculated along with the 
specified time, help in determining the speed of the car.  
 

 
Fig. 6: Localization data of the ego vehicle. 
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     Each map waypoint contains values such as [x,y,s,dx,dy]. 
x and y are the Cartesian coordinates, whereas s represents 
the distance along the road in Frenet coordinate system. The 
dx and dy values define the unit normal vector pointing 
outwards from the highway loop. The waypoints along the 
highway comprise of a loop, tracing values for the s 
parameter of the Frenet system from 0 to 6946 meters. As 
shown in Figure 6, the Localization data of the ego vehicle 
includes x and y coordinates in the Cartesian system, s and d 
coordinates in the Frenet system, yaw angle in degrees and 
speed in m/s. The localization data is responsible for 
precisely understanding the position of the ego vehicle on 
the map. 
     The simulator transmits telemetry information about 
surrounding cars in the highway, assisting the ego vehicle to 
avoid obstacles and drive maintaining speed limits. The ego 
vehicle is equipped with a range of sensors (Lidar, Radar 
and Camera) whose outputs are fused to produce more 
accurate measurements. The simulator provides Sensor 
Fusion data which involves the position and velocity of 
surrounding obstacle vehicles detected in the sensors’ range. 

As shown in Figure 7, the Sensor Fusion Data is a 2D vector 
of the neighboring cars in the highway containing the 
information of vehicle’s unique ID, x and y coordinates in 
the Cartesian system, s and d coordinates in the Frenet 
system and speed in m/s. The distance between the ego 
vehicle and other obstacle vehicles on the highway is 
computed by using localization data of the ego vehicle and 
sensor fusion data of the nearby traced vehicles.  
     In the absence of any traffic, the ego vehicle safely drives 
along the reference path at maximum velocity i.e., 50 MPH. 
If the LiDAR sensors embedded in the ego vehicle sense 
any obstacle within the safe distance of 30 meters, the path 
planner anticipates it as a potential collision, thereby 
influencing it in making a decision. The path planner checks 
for the availability and validity of alternate lanes on the 
highway for a safer path to proceed. However, if none of the 
other lanes is suitable and secure for travelling, the ego 
vehicle decelerates uniformly to avoid a collision with any 
other vehicle. The commands when the ego vehicle has 
changed to the right lane and a snapshot of the ego vehicle 
making a change to the right lane is shown in Figure 8 and 
9, respectively.  
 

 
Fig. 7: Sensor Fusion Data (Nearby Traced Vehicles 

Data) 
 

 
Fig. 8: Debugging window commands. 

 
Fig. 9: Unity 3D Highway-Simulated Environment. 

 
     The autonomous vehicle is able to complete the 6946m 
highway loop without any collisions with neighboring 
obstacles by executing appropriate decisions. It also 
maintains the speed constraints of the road with gentle 
acceleration and minimum jerk. Also, the car is able to 
overtake the slower vehicles when there are suitable 
opportunities, for example, when the distance between two 
vehicles is greater than 30m and alternate lanes are available 
for permitting a lane change.  

C. Generating various Velocity Profiles 

     For optimizing and minimizing the travel time, velocity 
profile must be assigned carefully on each point along the 
trajectory. The total length of the given trajectory S was 
divided into several minuscule paths each having a distance 
s for which the velocity profiles were generated, considering 
various path constraints. The path constraints such as the 
maximum allowed speed Vm, the acceleration (acceleration 
A and deceleration D), the velocity (initial velocity Vo and 
end velocity Ve) and the total distance of the minuscule path 
s dictated by the path were compulsorily fulfilled to obtain 
the desired velocity profile. Depending upon the applied 
constraints, the trapezoidal, linear, or ramp velocity profiles 
were generated.  
     To verify the different types of motion profiles, velocity 
v/s time profiles are obtained. In this profile, the velocity for 
every given point (time) t, lying on the total time taken to 
cover the minuscule path T, has been calculated. The path 
constraint s is considered as 150 meters. The distance, time, 
velocity, and acceleration equations required for the 
generation of various types of velocity profiles have been 
formulated using Newton’s Laws of motion.  

 

 = 
𝑉𝑚 − 𝑉0

𝐴
                    () 

   = ts2                        () 

T3 = 
𝑉𝑒 − 𝑉𝑚

𝐷
                   (17) 
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Table- I: Velocity and Time constraints considered for 
generating various types of Velocity Profiles. 

 
V1 = 𝑉0 + (𝐴 × t)  (18) 

V2 = Vm                                             (19) 
V3 = 𝑉𝑚 + (𝐷 × (𝑡 − (𝑇1 +  𝑇2)))      (20) 

 
     Using Equations 15, 16 and 17, the time taken to cover 
each segment of the velocity v/s time profile can be 
obtained. The total time to travel the minuscule path s is 
equal to the sum of the time taken by each individual 
segment of the profile. The velocity at any given point 
(time) t lying between 0 to T1, T1 to T2 and T2 to T3 on 
various velocity curves in a velocity v/s time profile, can be 
calculated using Equations 18, 19 and 20, respectively. The 
generated trapezoidal, linear and ramp velocity profiles in 
Figures 10, 11 and 12, respectively, are obtained by 
considering the velocity and time constraints as specified in 
Table I. Table II presents the time taken by each segment of 
the various generated smooth and non- smooth velocity v/s 
time profiles to the considered velocity, acceleration, path, 
and time constraints. 
     Following the generation of various velocity profiles is 
the curve smoothening, which is necessary to provide 
smooth control and jerk minimization. The time duration 
required to cover the ramp-up and ramp-down segments in 
the s-curve profile differ from those obtained in the 
trapezoidal curve profile. The total time tf, required to cover 
each segment in an s-curve profile, is calculated to produce 
a continuous s-curve. In this approach, the ramp-up and 
ramp-down segments are smoothened individually using 
cubic polynomials for all values 

 
Fig. 10: Non-smooth and smooth s-curve trapezoidal 

velocity profile. 
 

 
Fig. 11: Non-smooth and smooth s-curve linear velocity 

profile. 
 

Fig. 12: Non-smooth and smooth s-curve ramp velocity 
profile. 

of t ranging from 0 − tf in the velocity v/s time s-curve 
profile. The generated non-smooth trapezoidal, linear and 
ramp velocity profile in Figures 10, 11 and 12, respectively, 
are adopted to smoothen the curve using spline equations 
considering the velocity and time constraints listed in Table 
I.

 
Table- II: Time taken to cover each segment of various Non-Smooth and Smooth S-curve Velocity Profiles. 

 

 

 

 

 

 

 

 

 

 

Velocity Profile 
Velocity Constraints Time Constraint 

Vo m/s Vm m/s Ve m/s Tk s 

Trapezoidal 0 20 0 0 

Linear 20 20 5 0 

Ramp 0 20 20 0 

Trapezoidal (no S2 
Region) 

0 20 0 0 

Trapezoidal (new 
Vstable) 

0 20 0 6 

Velocity Profile 
Non-smooth curve Smooth s-curve 

T1 s T2 s T3 s Total T s T1 s T2 s T3 s Total T s 

Trapezoidal  4  3.5  4  11.5 3.745  3.5  3.745   10.99 

Linear  0  5.625  3  8.625  0  5.625 3  8.625 

Ramp  4 5.5   0 9.5   3.49 5.5  0 8.99  

Trapezoidal (no S2 Region)  4  0  4  8  3.745   0   3.745   7.49 

Trapezoidal (new Vstable) 2 6 2 10 1.87 6 1.87 9.74 
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Fig. 13: Generation of a Trapezoidal Velocity profile 
using newVm on introduction of a time limiting constant, 

Tk. 
 

     In case the time required to travel segment S2 i.e., tS2 
turns out to be lesser than the time limiting constraint Tk, a 
new value of maximum velocity newVm is calculated, 
considering the given velocity, acceleration, time, and path 
constraints. Figure 13 demonstrates the purpose of the time 
limiting constraint, Tk. The simulation of the profiles 
considers the path constraint, i.e., the total length of the 
minuscule path s, to be 80m. The profile generated by 
defining constraint, Tk, equal to 0 seconds, is observed to be 
extremely unstable due to an abrupt change from an 
accelerating to a decelerating region, resulting in a jerky 
motion. Hence, a trapezoidal curve is fitted for the given 
distance by calculating the new maximum velocity newVm, 
lesser than the original, considering the time limiting 
constant, Tk. When the value of Tk is considered to be 6 
seconds, the value of newVm is estimated to be 10m/s for 
generating the trapezoidal profile. The trapezoidal curve is 
then smoothened using polynomial splines to generate the 
respective s-curve. 
     The above section deals with the plotting of smooth and 
continuous velocity profile curves within the applied 
constraints. The ability of jerk avoidance for the system is 
furnished by Tk by altering the maximum velocity to a lower 
value for maintaining stability. This ensures that the vehicle 
travels at the maximum velocity for the longest time 
possible thereby reducing the duration of travel to a 
minimum. The generation of an acceleration continuous s-
curve profile further contributes towards greater comfort by 
avoiding abrupt changes in the values of velocity and 
acceleration. The final acceleration, when assumed to be 0 
m/s2, ensures that the vehicle maintains a constant final 
velocity Ve. Amongst the three types of curves obtained, the 
trapezoidal velocity curve is the most applicable as it 
guarantees the employment of the segment S2 which 
maintains the vehicle at constant maximum velocity. 
Consequently, the interpolation of cubic spline curve is 
suitable for the velocity profile algorithm as it acquires an 
edge over the non-smooth curve both in terms of minimum 
time travel and improved stability. 

V. CONCLUSION 

     The proposed method in this paper was able to achieve 
smooth and safe trajectory planning along with the 
incorporation of a velocity planning algorithm. The path 
planner programmed in the C++ language, successfully 
executed suitable decisions, and implemented them to 
generate efficient real-time trajectories to be followed by the 
autonomous vehicle while avoiding obstacles in a simulated 

highway scenario. Various constraints and specifications 
such as the speed limits, localization, and sensor fusion data 
were provided as inputs to the planner and significantly 
accurate results were observed. On detection of traffic, the 
self-driving car senses the surrounding environment and, on 
reviewing the behavior of neighboring vehicles on the 
highway, executes a decision to either decelerate or switch 
to a safer lane. The generated path is acceptably tolerable by 
the passenger as it maintains speed limits and minimizes the 
jerk. 
     The velocity profile algorithm was developed and 
implemented to generate an appropriate velocity profile for 
an optimal trajectory. After the selection of the optimal 
trajectory, the initial, maximum, and final velocities along 
with acceleration values assist to trace a perfect velocity 
curve along the path. The profiles were obtained by plotting 
a curve for the minimum time of travel for the vehicle 
through the specified path within given acceleration limits.  
The velocity profile ensures safety, efficiency thereby 
providing a non-jerky and comfortable motion to self-
driving vehicles. Once tested on a broader range of urban 
traffic scenarios, the proposed methods promise to interact 
and fit well with the existing systems and evolve with the 
entire autonomous driving system. 
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