
International Journal of Engineering and Advanced Technology (IJEAT)
 ISSN: 2249-8958 (Online), Volume-10 Issue-5, June 2021

439

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.E28800610521
DOI:10.35940/ijeat.E2880.0610521
Journal Website: www.ijeat.org

Real - Time Trajectory and Velocity Planning for
Autonomous Vehicles

Hrishikesh Dey, Rithika Ranadive, Abhishek Chaudhari

Abstract: Path planning algorithm integrated with a velocity
profile generation-based navigation system is one of the most
important aspects of an autonomous driving system. In this
paper, a real-time path planning solution to obtain a feasible and
collision-free trajectory is proposed for navigating an
autonomous car on a virtual highway. This is achieved by
designing the navigation algorithm to incorporate a path planner
for finding the optimal path, and a velocity planning algorithm
for ensuring a safe and comfortable motion along the obtained
path. The navigation algorithm was validated on the Unity 3D
Highway-Simulated Environment for practical driving while
maintaining velocity and acceleration constraints. The
autonomous vehicle drives at the maximum specified velocity
until interrupted by vehicular traffic, whereas then, the path
planner, based on the various constraints provided by the
simulator using µWebSockets, decides to either decelerate the
vehicle or shift to a more secure lane. Subsequently, a spline-
based trajectory generation for this path results in continuous
and smooth trajectories. The velocity planner employs an
analytical method based on trapezoidal velocity profile to
generate velocities for the vehicle traveling along the pre-
computed path. To provide smooth control, an s-like trapezoidal
profile is considered that uses a cubic spline for generating
velocities for the ramp-up and ramp-down portions of the curve.
The acceleration and velocity constraints, which are derived from
road limitations and physical systems, are explicitly considered.
Depending upon these constraints and higher module
requirements (e.g., maintaining velocity, and stopping), an
appropriate segment of the velocity profile is deployed. The
motion profiles for all the use-cases are generated and verified
graphically.

Keywords: Frenet Coordinate System, Path Planning, Spline
Interpolation, Trapezoidal Velocity Curve, Velocity Profile

I. INTRODUCTION

 Autonomous driving has been predicted to dramatically
enhance driving safety, increase transportation efficiency
and revolutionize the entire automobile industry, where
particularly self-driving cars can offer tremendous benefits
to both individuals and societies [1].

Manuscript received on June 20, 2021.
Revised Manuscript received on June 29, 2021.
Manuscript published on June 30, 2021.
* Correspondence Author

Hrishikesh Dey*, Department of Electronics Engineering, VES
Institute of Technology, Mumbai (Maharashtra), India. Email:
2017.hrishikesh.dey@ves.ac.in

 Rithika Ranadive, Department of Electronics Engineering, VES
Institute of Technology, Mumbai (Maharashtra), India. Email:
2017.rithika.ranadive@ves.ac.in

 Abhishek Chaudhari, Department of Electronics Engineering, VES
Institute of Technology, Mumbai (Maharashtra), India. Email:
abhishek.chaudhari@ves.ac.in

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

With the help of the on-board technologies, self-driving
cars can perform real-time driving tasks without any input
from a human operator by creating an image of the
surroundings to facilitate traffic navigation [1, 2]. Apart
from basic navigation, self-driving vehicles offer increased
road safety, and may unclog road traffic due to their ability
to communicate with each other, thereby optimizing
vehicular routes and thus, resulting in smooth and efficient
traffic flow. This, in turn, results in decreased fuel
consumption, hence, paving the way for a more sustainable
future [3, 4]. For the plethora of advantages these vehicles
offer, they have been subjected to intense research, and thus,
have become a definite reality that may pave the way for
future systems, where robots take over the art of driving [3,
4].

 Autonomous driving cars rely on path planning as it
is the “brain” of the entire system. Path planning and
decision making in urban environments enable self-driving
cars to discover the safest, most convenient, and most
economical routes from source to destination [5, 6]. This
sub-system can reproduce the human thought-process
involved while driving-route planning based on the source
and destination, real-time analysis of the surroundings and
maneuvering any encountered obstacles, and at the same
time adhering to traffic rules and maintaining a safe and
optimal trajectory [7, 8].

 Autonomous on-road driving requires a path planning
algorithm that includes the search for a feasible path by
taking into consideration the dimensions of the vehicle, the
geometry of its surroundings, and the various kinematical
path constraints [9, 10]. The vehicle’s movement is

calculated to fulfill the car’s kinematic constraints based on

its initial and final dynamic configurations. The vehicle
must identify and bypass all the static and maneuverable
obstacles to find a collision-free route. The generated real-
time trajectories are extracted mathematically considering
various path constraints such as restrictions on the size of
the vehicle concerning the road, and restrictions on the
vehicular drive. Each path generated is then associated with
one or many velocity profiles.

 Motion planning highlights various critical challenges
in the development of autonomous driving systems,
including velocity planning. Velocity planning, defined as
the variation in velocity along a predefined path for the
motion control of autonomous vehicles, becomes very
complex due to continuously changing environments [11,
12].

https://www.openaccess.nl/en/open-publications
http://www.ijeat.org/
mailto:2017.hrishikesh.dey@ves.ac.in
mailto:2017.rithika.ranadive@ves.ac.in
mailto:abhishek.chaudhari@ves.ac.in
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijeat.E2880.0610521&domain=www.ijeat.org

Real - Time Trajectory and Velocity Planning for Autonomous Vehicles

440

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.E28800610521
DOI:10.35940/ijeat.E2880.0610521
Journal Website: www.ijeat.org

Therefore, the velocity profile needs to be carefully
assigned along the generated path. By considering both path
planning and motion planning constraints, a velocity profile
is employed that can optimize driving capability while
adhering to the behavior and velocity limits of the vehicles
in a driving scenario, and at the same time avoids any
collisions [13]. Autonomous vehicles should be capable of
assigning appropriate velocity profiles for a selected optimal
path. Velocity planning is a versatile and effective tool for
the motion control of autonomous vehicles. The planning
optimization algorithm should offer an efficient method for
the evaluation of minimum pure-jerk velocity functions. To
ensure smooth driving, a velocity planner uses semantic
information given by the path planner to establish a
continuous velocity profile that considers acceleration and
speed thresholds within the selected optimal path
(trajectory).

In recent years, a significant amount of work has been
dedicated to achieve fast and efficient path and motion
planning algorithms, as it remains one of the most important
aspect of autonomous driving. Zvi Shiller in [14] achieves a
path planning algorithm for vehicles moving on a general
terrain and accounts for obstacles, terrain topography,
vehicle kinematics and dynamics. The mathematical
derivation of the desired torque or velocity signals that act
as an input to the respective torque or speed controllers is
provided by Martin Adams in [15]. In addition to that, it also
defined a trajectory generator which produced constant jerk
profiles in acceleration, velocity and displacement, while
maintaining vehicular constraints of acceleration and
velocity. Tanishtha Nayak in [16], proposed a novel
algorithm to find path between final and destination position
for an intelligent system, which is considered to be a
device/robot having an antenna connected with sensor-
detector system. Cheng Chen in [17] devised a solution to
counter the problem of trajectory generation by producing a
continuous and bounded curvature profile to outline the
trajectory, further optimized by the quartic B´ezier curve. In
[18], A* path planning algorithm has been represented by
Ali Khaleel Mahmood for a mobile robot to be able to
follow a constructed path from its current position to a
specified goal within its environment. An obstacle detection
algorithm has been implemented as a final algorithm which
will be used as a part of the whole system to give the robot
the ability to move from its initial known position to a
specific goal in an optimum way. The autonomous systems
rely on several layers of sensor data. However, at the root is
an A* search algorithm-based navigation system. P E
Teleweck in [19] aims to present an introduction to these
algorithms and use the cases where young roboticists can
develop path finding/ path planning applications to fit their
educational robotics requirements. Jianfang Lian in [20]
proposed a cubic spline interpolation-based path planning
method to maintain the smoothness of moving the robot’s

path.
Previous research has attempted to reduce jerks in

autonomous vehicles by applying various smooth velocity
profiles, such as the s-curve jerk-bounded profile. High-
order polynomial motion profiles enable the vehicle to move
smoothly. The increase in the order of a polynomial
equation results in an equivalent increase in the number of

coefficients for the function of time, resulting in the
generation of smoother shapes of position and velocity
profiles. An algorithm of computational complexity O(n)
has been used by L. Consolini in [21], to provide a time-
optimal velocity planning technique for autonomous
vehicles. Keonyup Chu in [1] described a collision risk
procedure to determine target speed by limiting the value of
lateral acceleration as maintained by the curvature of the
path. Jordi P´erez Talamino and Alberto Sanfeliu’s method

in [11] imposed initial and final acceleration restrictions to
compute the profiles using third order velocity splines in
four unknown variables, considering the fifth unknown to be
the total time required to travel the given trajectory.
Abhiram Rahatgaonkar’s thesis on Velocity Planning

Approach for Autonomous Vehicles [22] concentrates on
velocity planning with familiar environment to avoid
collision with moving obstacles. As demonstrated by
Xiaohui Li in [23], the velocity profile generation is initiated
by the determination of maximum permitted speed by the
behavioural planner, the model constructs the trapezoidal
speed curve, followed by the application of polynomial
splines to ensure continuous acceleration.

This paper provides an overview to safely navigate a car
around a virtual highway with other traffic, without going
over the limit of 50 MPH. The car should be able to drive
the entire 6946 meters length of the gently curved, closed-
loop track maintaining speed limit while navigating traffic
and without any “incidents” which include: driving over the
speed limit, exceeding limits on acceleration and jerk (i.e.,
the change in acceleration over time, which can make for an
uncomfortable and unsafe ride), driving outside the lane,
and, of course, colliding with other cars. The simulator
provides us with the telemetry data for the ego vehicle
(position, heading and velocity) and sensor fusion data for
the nearby traced vehicles on the highway (position,
velocity). In return, the simulator expects a list of map
coordinates from the server, each of which the ego vehicle
will obediently follow at intervals of 20 milliseconds. The
data obtained as inputs from the simulator, undergoes spline
interpolation to generate smooth real-time trajectories. To
ensure a smooth ride, the car should not experience total
acceleration over 10 m/s2 and jerk that is greater than 10
m/s3. This paper also provides an overview to achieve
generation of suitable velocity profiles for an optimal
trajectory, explicitly considering various velocity,
acceleration, path and time constraints. Considering these
constraints help reduce the solution set of the velocity
planning, resulting in the planner to focus on the solution
space where the optimal solution is more likely to exist. The
trapezoidal velocity profile is considered as a reference to
generate a stable velocity profile fulfilling various
constraints and mode of travel such as velocity-keeping,
following, stopping etc. as suggested by higher order
behavioral module. Finally, to obtain smooth and jerk free
motion, the generated velocity profile is replaced with high
order polynomial spline curve maintaining all constraints.

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
 ISSN: 2249-8958 (Online), Volume-10 Issue-5, June 2021

441

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.E28800610521
DOI:10.35940/ijeat.E2880.0610521
Journal Website: www.ijeat.org

 Specifically, the main contributions of this paper are:
• Implementation of a path planner to safely navigate a

car around a virtual highway with other traffic,
considering various constraints provided by the
simulator, maintaining speed limits, not exceeding
limits on acceleration and jerk and, of course,
bypassing all the static and maneuverable obstacles.

• An approach for accurately generating suitable
velocity profiles by employing trapezoidal velocity
curve for an optimal trajectory explicitly considering
various velocity, acceleration, path and time
constraints.

• Demonstration of different jerk minimization
techniques involving generation of smooth s-curve
motion profiles with low associated accelerations,
incorporating high order polynomial spline equations
with the suitably generated trapezoidal velocity
profile sequences for the optimal trajectory.

 The remaining paper is organized as follows. Section II

presents the optimized and efficient approach for the
development of the path planning algorithm. Section III
specifies the techniques involved with formulating the
velocity planning problem in detail. Section IV
demonstrates the effectiveness of our approach on various
simulation profiles and scenarios. Finally, Section V draws
the conclusions and suggests future work.

II. PATH PLANNER

This section on trajectory generation incorporates the
design and application of a path planning decision algorithm
that creates smooth and safe trajectories to navigate a car
around a simulated highway scenario. The path planning
algorithm considers various constraints such as the location
coordinates, speed and deviation angles of ego vehicle along
with the neighboring vehicles in the simulated environment.
The program establishes a TCP connection using
µWebSockets between the Visual Studio IDE (server) and
the Unity 3D Highway-Simulated Environment (client).

The TCP server-client connection supports full-duplex
communication thereby allowing the simulator and the
server to transmit and receive dynamic information of the
ego vehicle and the surrounding vehicles in the simulated
environment. Initially, the ego vehicle is expected to follow
the base frame provided by the simulator until it encounters
an obstacle, wherein in that case, the path planner devises a
new trajectory for the car to proceed further. The yaw angle,
which is the deviation of the car from the central axis of the
highway along with the estimated speed of the vehicles is
provided as an input to the path planner. In addition to this,
the current location of the ego vehicle and the nearby traced
vehicles is also transmitted to the server. The localization
data of the ego vehicle and the nearby traced vehicles are
expressed in the Cartesian and Frenet coordinate systems.

Fig. 1: Representation of a reference path in Cartesian

and Frenet coordinates

 Instead of referring to a fixed axis such as
the x and y in the Cartesian Coordinate System, the Frenet
system employs the road as a reference as shown in Figure
1, and hence, it continuously changes as per the curvatures
of the road. Once the data has been received, spline
calculation requires the application of various transforms to
generate the trajectory. Therefore, the coordinates are
converted from Frenet to the Cartesian system for ease of
calculations.

Once the necessary localization and sensor fusion data
has been received by the server, the path planner proceeds to
analyze the surrounding environment to predict the next
path for the vehicle. It initiates with a check for any
previous path available. In case, it finds a previous path
associated with the ego vehicle, it assigns endpoint
coordinates of the previous trajectory as the starting
reference for the succeeding one. The LiDAR sensors
embedded in the ego vehicle scan up to 30 meters. Hence,
30 meters is assigned as the safe distance to be maintained
between any two vehicles at every instance. The safe
distance is considered as the limiting factor while scanning
for any obstacle vehicles. By considering the safe distance
and the predicted location of surrounding vehicles, the
sensor fusion data alerts the path planner in anticipating a
potential collision and influences in selecting the optimal
path during the generation of the trajectory.

As shown in Algorithm 1, the path planner initially
checks if there is traffic in the middle lane in which the car
is currently

https://www.openaccess.nl/en/open-publications
http://www.ijeat.org/

Real - Time Trajectory and Velocity Planning for Autonomous Vehicles

442

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.E28800610521
DOI:10.35940/ijeat.E2880.0610521
Journal Website: www.ijeat.org

Travelling, and if the safe distance has not been
maintained. In such a situation, it then checks if the right
lane is available with no obstacles within 30 meters. If the
right lane provides a safe path to proceed, it decides to
change to the right lane. Alternatively, if both the conditions
are not being satisfied, it checks for the left lane availability
with no probable collision with any proximate vehicles. Just
like the previous lane checks, if left lane is suitable for
travelling, it decides to change to the left lane. However, if
the checks fail entirely with no switch possible in any
alternate lane, either due to obstacles or the failure in
maintaining a safe distance, the vehicle decelerates
uniformly to avoid a collision with any other vehicle.

The decision made by the path planner is carefully
calculated and executed in the trajectory generation stage.
Like the path planning stage, it runs a check for any existing
paths available and if found, assigns the end coordinates of
the previous path as the starting reference for the next path.
Once the start position has been assigned, it sets up a target
point at a distance of 30 meters from the initial point. The
path of the autonomous vehicle should be smooth to reduce
the energy consumption and hence, cubic spline
interpolation has been used to achieve this goal. Cubic
spline interpolation is used to form a smooth curve through
a series of shape points.

Take (n + 1) nodes on the interval [a, b]:
a < x0 < x1 < … < xn = b

 A function f(x) on [a, b] becomes an interpolated cubic
spline function if the following conditions are met. In each
interval [xi-1, xi], f(x) is a cubic polynomial function.

fi (x) = ai + bi (x – xi) + ci (x – xi)2 + di (x – xi)3
f (x0) = y0, …, f (xn+1) = yn+1

where f(x) is continuous in the interval [a, b].

This spline polynomial equation consists of unknown

variables which requires the substitution of location point
coordinates to calculate the value of the variables. For this
purpose, we utilize the initial point and the target point. In
addition to this, we consider three path nodes situated at

equal distances between the initial and the target point. Once
these points are substituted in the equation, the Band Matrix
Method is used to solve for the unknown variables, helping
to generate a smooth and curved profile for the trajectory.

Path planning and trajectory generation are the most vital
stages in the development of autonomous driving systems. It
requires an accurate prediction of the behaviour of the ego
vehicle as well as the surrounding obstacles. The server and
the client handle the communication of dynamic data and
alert the path planner of any approaching obstacles.
Considering the safe distance constraint along with the lane
availabilities, the planner devises a suitable solution to be
followed by the car to avoid any collisions with its
surroundings. Once the decision-making has been
accomplished, the planner executes various mathematical
formulations to provide a smooth and continuous trajectory
to be followed by the ego vehicle. The entire process repeats
throughout the course of the path thereby maintaining and
adhering to all possible safety constraints.

III. VELOCITY PROFILE FORMULATION

 We designed and implemented an efficient real-time
approach for velocity planning of a known optimal
trajectory within specified constraints as shown in
Algorithm 2. The required velocity and acceleration
constraints can be modified such that the trapezoidal
velocity profile adapts to a linear or a ramp velocity profile.
 Assumptions. Considering the velocity (initial velocity
Vo, maximum velocity Vm and end velocity Ve) and
acceleration (initial acceleration A and deceleration D)
constraints, a velocity profile can be designed for a selected
optimal trajectory (Total path length S).
 Algorithm Phase 1. The initial procedure involves the
generation of a speed curve by employing the trapezoidal
velocity profile. Instead of generating the velocity profile for
the entire path length S, we divide the trajectory into several
minuscule paths of length s to obtain the best fitting curve as
illustrated in Figure 2. The instantaneous changes in velocity
demand the constraints to differ for every minuscule path.
 Algorithm Phase 2. The initial velocity Vo for the first
segment is established in advance by the planner. The
maximum velocity Vm remains constant for every set of
minuscule paths and restricts the vehicle from exceeding the
range. We introduce a new constraint, the time limiting
constant, Tk, which is the least time for which the vehicle is
expected to travel at a constant maximum velocity to avoid
collisions and maintain stability. The final velocity Ve is
dynamically dependent on the velocity of the leading
vehicle to ensure collision free driving. The consecutive
minuscule path segments obtain the final velocity Ve of the
previous set and set it as its initial velocity Vo, while the rest
of the constraints remain the same.

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
 ISSN: 2249-8958 (Online), Volume-10 Issue-5, June 2021

443

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.E28800610521
DOI:10.35940/ijeat.E2880.0610521
Journal Website: www.ijeat.org

Fig. 2: The division of selected optimal trajectory into
minuscule paths for assigning velocity profile.

Velocity v/s Time

Velocity v/s Distance

Fig. 3: Trapezoidal velocity profiles showing different
segments.

As shown in Figure 3, the trapezoidal motion profile is

applied for the velocity profile generation. We assume the
ramp-up and ramp-down profiles with constant acceleration
and deceleration values to attain a solution. The velocity
profile consists of three sections:

1. The initial ramp-up slope T1 / S1 from the initial
velocity Vo till the maximum velocity Vm

2. Constant traversal segment T2 / S2 at the maximum
velocity Vm

3. The ramp-down slope T3 / S3 from the maximum
velocity Vm till the final velocity Ve

 The equations for distance covered by the three sections
S1, S2 and S3 have been formulated using Newton’s Laws of

Motion.

S1 =
𝑉𝑚2 − 𝑉𝑜2

2 × 𝐴
 (1)

 S2 = 𝑉𝑚 × 𝑡𝑠2 (2)

S3 =
𝑉𝑒2 − 𝑉𝑚2

2 × 𝐷
 (3)

s = S1 + S2 + S3 (4)

tS2 =
𝑠 − (𝑆1 + 𝑆3)

𝑉𝑚
 (5)

Fig. 4: Trapezoidal Velocity Profile considering Tk to

vary from 0 to 5 seconds.

𝑛𝑒𝑤𝑉𝑚 =

− 𝑇𝑘+√ 𝑇𝑘
2 − 4 × ((

1

2 × 𝐴
) − (

1

2 × 𝐷
)) × ((

𝑉𝑒2

2 × 𝐷
) − (

𝑉𝑜2

2 × 𝐴
) − 𝑠)

2 × ((
1

2 × 𝐴
) − (

1

2 × 𝐷
))

 (6)

The total distance of the minuscule path s in Equation 4
for which the velocity profile has been generated, is equal to
the sum of the distance covered by three segments of the
profile as specified in Equations 1, 2 and 3. Considering the
total path length to remain constant, and acceleration and
deceleration to be A and D respectively, the time tS2 for
traveling the segment S2 is estimated in Equation 5.

The velocity profile generated in Figure 4 is a special
case as it does not trace zero acceleration or a constant
velocity motion. The abrupt change from acceleration to
deceleration results in a jerky motion. Thus, to ensure a
smooth motion, a new value of maximum velocity, labeled
newVm, specified in Equation 6, replaces Vm while plotting
the velocity curve. For this purpose, we have defined a
constant Tk, which serves as a time limiting constraint and
fulfils the need to generate a non-jerky and smooth velocity
profile for all sets of inputs. The constant, Tk, is the least
time for which the vehicle is expected to travel at a constant
velocity Vm to avoid collisions and maintain stability.
Figure 4 shows that the value of Tk when set to zero, results
in no alteration in the value of Vm as time tS2 evaluated for
segment S2 is equal or greater than the value of Tk.
However, when Tk is set to a higher value, then the value of
the maximum velocity Vm alters itself to a lower value of
newVm to adhere to the vehicle constraints.

Algorithm Phase 3. The trapezoidal velocity profile is
further smoothened to guarantee the continuity of the
acceleration and optimize comfort by providing minimum
jerk. Parameterization of the velocity profile is achieved by
interpolating cubic polynomials.

v(t) = v0 + at + bt2 + ct3 (7)

https://www.openaccess.nl/en/open-publications
http://www.ijeat.org/

Real - Time Trajectory and Velocity Planning for Autonomous Vehicles

444

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.E28800610521
DOI:10.35940/ijeat.E2880.0610521
Journal Website: www.ijeat.org

acc(0) = a = a1 (8)

 v(𝑡𝑓) = v0 + a1 tf + a2 tf
2 + a3 tf

3 = vf (9)

acc(𝑡𝑓) = a1 + 2a2 tf + 3a3 tf
2 = af (10)

Velocity v/s Time

Velocity v/s Distance

Fig. 5: Cubic s-curve velocity profiles showing different
segments.

s(𝑡𝑓) = 𝑣0 𝑡𝑓 +
𝑎1 𝑡𝑓 2

2
 +

𝑎2 𝑡𝑓 3

3
 +

𝑎3 𝑡𝑓 4

4

 = 𝑠𝑓 (11)

 (
𝑎0 − 𝑎𝑓

12
) tf

2 + (
𝑣𝑓 + 𝑣0

2
) tf -- 𝑠𝑓 = 0 (12)

a2 = 3 (
𝑣𝑓 − 𝑣0

𝑡𝑓 2) – (
2𝑎0 + 𝑎𝑓

𝑡𝑓
) (13)

a3 = (
𝑎𝑓 − 𝑎0

3 𝑡𝑓 2) – (
2 𝑎2

3 𝑡𝑓
) (14)

 The cubic expression for velocity v(t) at any given time t
is defined in Equation 7. To smoothen these segments in the
s-curve, the total time tf required by each segment S1 and S3,
is calculated. The equation for path length at tf, ie. s (tf) is
derived in Equation 11, by integrating the velocity
expression in Equation 9. Given the initial velocity v0, initial
acceleration a0, terminal velocity vf, final acceleration af, the
unknown parameters {a1, a2, a3, tf} in Equation 11 could be
analytically solved with the help of Equations 7, 8, 9, 10 and
11. Newton–Raphson method, a root-finding algorithm that
produces successively better approximations to the roots (or
zeroes) of a real-valued function is used for calculating the
value of tf. The value of tf is evaluated at every point on the
trajectory, and the segments, S1 and S3 are smoothened
separately for all values of t from 0 − tf and v(t) has to be
calculated to obtain the velocity v/s time s-curve profile. As
shown in Figure 5, the S-shaped ramp-up and ramp-down
velocity profiles are solved individually, and trajectories are
generated by incorporating the spatial path with the
corresponding velocity profiles.

IV. RESULTS AND DISCUSSION

A. Experimental Setup

 For simulating and verifying results and experimental
evaluation, the entire programming code was developed
using Integrated Development Environment (IDE) i.e.,
Visual Studio with the help of Object-Oriented
Programming Methodology in C++ programming language.
 A real-time path planner was developed in C++ to
navigate a car around a simulated highway scenario,
considering traffic, base frame waypoints, localization data
of the car, and sensor fusion data as inputs, and generating
the desired smooth and safe real-time trajectories as output.
The developed path planner was implemented and validated
for results using the Unity 3D Highway-Simulated
Environment. A TCP (Transmission Control Protocol)
server-client connection was established using
µWebSockets for navigating the car around a simulated
highway scenario.
 In addition to this, a real-time velocity planning
algorithm was developed in C++ to generate velocity
profiles for a vehicle travelling along a predefined path. The
plots of various motion profiles were generated and verified
using MATLAB. To generate various motion profiles, the
final deceleration i.e., acceleration at end velocity Ve has
been considered as 0 m/s2. The limits of the initial
acceleration A and the initial deceleration D are based on the
vehicle, and traffic rules which are pre-decided and taken as
5 m/s2 and – 5 m/s2, respectively. The entire programming
code has been developed and structured exclusively, taking
velocity, acceleration, time, and path constraints as inputs,
and generating the desired velocity profile as output.

B. Path Planning Algorithm

 The trajectory generated by the path planning algorithm
is safe and smooth, assisting the car in avoiding collisions
with other vehicles in the environment. It maintains lane
constraints and drives according to the 50 MPH speed limit.
The path planner controls the car perfectly by directing the
ego vehicle through every map coordinate, at intervals of 20
milliseconds. The vector pointing from one coordinate
towards the other, dictates the yaw angle of the car.
Acceleration, both in the tangential and normal directions, is
measured along with the jerk. The vehicle should not exceed
a total acceleration of 10 m/s2, and the jerk should not
surpass 10 m/s3. The Cartesian coordinates (x, y) are
expressed in meters and when calculated along with the
specified time, help in determining the speed of the car.

Fig. 6: Localization data of the ego vehicle.

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
 ISSN: 2249-8958 (Online), Volume-10 Issue-5, June 2021

445

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.E28800610521
DOI:10.35940/ijeat.E2880.0610521
Journal Website: www.ijeat.org

 Each map waypoint contains values such as [x,y,s,dx,dy].
x and y are the Cartesian coordinates, whereas s represents
the distance along the road in Frenet coordinate system. The
dx and dy values define the unit normal vector pointing
outwards from the highway loop. The waypoints along the
highway comprise of a loop, tracing values for the s
parameter of the Frenet system from 0 to 6946 meters. As
shown in Figure 6, the Localization data of the ego vehicle
includes x and y coordinates in the Cartesian system, s and d
coordinates in the Frenet system, yaw angle in degrees and
speed in m/s. The localization data is responsible for
precisely understanding the position of the ego vehicle on
the map.
 The simulator transmits telemetry information about
surrounding cars in the highway, assisting the ego vehicle to
avoid obstacles and drive maintaining speed limits. The ego
vehicle is equipped with a range of sensors (Lidar, Radar
and Camera) whose outputs are fused to produce more
accurate measurements. The simulator provides Sensor
Fusion data which involves the position and velocity of
surrounding obstacle vehicles detected in the sensors’ range.

As shown in Figure 7, the Sensor Fusion Data is a 2D vector
of the neighboring cars in the highway containing the
information of vehicle’s unique ID, x and y coordinates in
the Cartesian system, s and d coordinates in the Frenet
system and speed in m/s. The distance between the ego
vehicle and other obstacle vehicles on the highway is
computed by using localization data of the ego vehicle and
sensor fusion data of the nearby traced vehicles.
 In the absence of any traffic, the ego vehicle safely drives
along the reference path at maximum velocity i.e., 50 MPH.
If the LiDAR sensors embedded in the ego vehicle sense
any obstacle within the safe distance of 30 meters, the path
planner anticipates it as a potential collision, thereby
influencing it in making a decision. The path planner checks
for the availability and validity of alternate lanes on the
highway for a safer path to proceed. However, if none of the
other lanes is suitable and secure for travelling, the ego
vehicle decelerates uniformly to avoid a collision with any
other vehicle. The commands when the ego vehicle has
changed to the right lane and a snapshot of the ego vehicle
making a change to the right lane is shown in Figure 8 and
9, respectively.

Fig. 7: Sensor Fusion Data (Nearby Traced Vehicles

Data)

Fig. 8: Debugging window commands.

Fig. 9: Unity 3D Highway-Simulated Environment.

 The autonomous vehicle is able to complete the 6946m
highway loop without any collisions with neighboring
obstacles by executing appropriate decisions. It also
maintains the speed constraints of the road with gentle
acceleration and minimum jerk. Also, the car is able to
overtake the slower vehicles when there are suitable
opportunities, for example, when the distance between two
vehicles is greater than 30m and alternate lanes are available
for permitting a lane change.

C. Generating various Velocity Profiles

 For optimizing and minimizing the travel time, velocity
profile must be assigned carefully on each point along the
trajectory. The total length of the given trajectory S was
divided into several minuscule paths each having a distance
s for which the velocity profiles were generated, considering
various path constraints. The path constraints such as the
maximum allowed speed Vm, the acceleration (acceleration
A and deceleration D), the velocity (initial velocity Vo and
end velocity Ve) and the total distance of the minuscule path
s dictated by the path were compulsorily fulfilled to obtain
the desired velocity profile. Depending upon the applied
constraints, the trapezoidal, linear, or ramp velocity profiles
were generated.
 To verify the different types of motion profiles, velocity
v/s time profiles are obtained. In this profile, the velocity for
every given point (time) t, lying on the total time taken to
cover the minuscule path T, has been calculated. The path
constraint s is considered as 150 meters. The distance, time,
velocity, and acceleration equations required for the
generation of various types of velocity profiles have been
formulated using Newton’s Laws of motion.

 =
𝑉𝑚 − 𝑉0

𝐴
 ()

  = ts2 ()

T3 =
𝑉𝑒 − 𝑉𝑚

𝐷
 (17)

https://www.openaccess.nl/en/open-publications
http://www.ijeat.org/

Real - Time Trajectory and Velocity Planning for Autonomous Vehicles

446

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.E28800610521
DOI:10.35940/ijeat.E2880.0610521
Journal Website: www.ijeat.org

Table- I: Velocity and Time constraints considered for
generating various types of Velocity Profiles.

V1 = 𝑉0 + (𝐴 × t) (18)

V2 = Vm (19)
V3 = 𝑉𝑚 + (𝐷 × (𝑡 − (𝑇1 + 𝑇2))) (20)

 Using Equations 15, 16 and 17, the time taken to cover
each segment of the velocity v/s time profile can be
obtained. The total time to travel the minuscule path s is
equal to the sum of the time taken by each individual
segment of the profile. The velocity at any given point
(time) t lying between 0 to T1, T1 to T2 and T2 to T3 on
various velocity curves in a velocity v/s time profile, can be
calculated using Equations 18, 19 and 20, respectively. The
generated trapezoidal, linear and ramp velocity profiles in
Figures 10, 11 and 12, respectively, are obtained by
considering the velocity and time constraints as specified in
Table I. Table II presents the time taken by each segment of
the various generated smooth and non- smooth velocity v/s
time profiles to the considered velocity, acceleration, path,
and time constraints.
 Following the generation of various velocity profiles is
the curve smoothening, which is necessary to provide
smooth control and jerk minimization. The time duration
required to cover the ramp-up and ramp-down segments in
the s-curve profile differ from those obtained in the
trapezoidal curve profile. The total time tf, required to cover
each segment in an s-curve profile, is calculated to produce
a continuous s-curve. In this approach, the ramp-up and
ramp-down segments are smoothened individually using
cubic polynomials for all values

Fig. 10: Non-smooth and smooth s-curve trapezoidal

velocity profile.

Fig. 11: Non-smooth and smooth s-curve linear velocity

profile.

Fig. 12: Non-smooth and smooth s-curve ramp velocity
profile.

of t ranging from 0 − tf in the velocity v/s time s-curve
profile. The generated non-smooth trapezoidal, linear and
ramp velocity profile in Figures 10, 11 and 12, respectively,
are adopted to smoothen the curve using spline equations
considering the velocity and time constraints listed in Table
I.

Table- II: Time taken to cover each segment of various Non-Smooth and Smooth S-curve Velocity Profiles.

Velocity Profile
Velocity Constraints Time Constraint

Vo m/s Vm m/s Ve m/s Tk s

Trapezoidal 0 20 0 0

Linear 20 20 5 0

Ramp 0 20 20 0

Trapezoidal (no S2
Region)

0 20 0 0

Trapezoidal (new
Vstable)

0 20 0 6

Velocity Profile
Non-smooth curve Smooth s-curve

T1 s T2 s T3 s Total T s T1 s T2 s T3 s Total T s

Trapezoidal 4 3.5 4 11.5 3.745 3.5 3.745 10.99

Linear 0 5.625 3 8.625 0 5.625 3 8.625

Ramp 4 5.5 0 9.5 3.49 5.5 0 8.99

Trapezoidal (no S2 Region) 4 0 4 8 3.745 0 3.745 7.49

Trapezoidal (new Vstable) 2 6 2 10 1.87 6 1.87 9.74

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
 ISSN: 2249-8958 (Online), Volume-10 Issue-5, June 2021

447

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.E28800610521
DOI:10.35940/ijeat.E2880.0610521
Journal Website: www.ijeat.org

Fig. 13: Generation of a Trapezoidal Velocity profile
using newVm on introduction of a time limiting constant,

Tk.

 In case the time required to travel segment S2 i.e., tS2
turns out to be lesser than the time limiting constraint Tk, a
new value of maximum velocity newVm is calculated,
considering the given velocity, acceleration, time, and path
constraints. Figure 13 demonstrates the purpose of the time
limiting constraint, Tk. The simulation of the profiles
considers the path constraint, i.e., the total length of the
minuscule path s, to be 80m. The profile generated by
defining constraint, Tk, equal to 0 seconds, is observed to be
extremely unstable due to an abrupt change from an
accelerating to a decelerating region, resulting in a jerky
motion. Hence, a trapezoidal curve is fitted for the given
distance by calculating the new maximum velocity newVm,
lesser than the original, considering the time limiting
constant, Tk. When the value of Tk is considered to be 6
seconds, the value of newVm is estimated to be 10m/s for
generating the trapezoidal profile. The trapezoidal curve is
then smoothened using polynomial splines to generate the
respective s-curve.
 The above section deals with the plotting of smooth and
continuous velocity profile curves within the applied
constraints. The ability of jerk avoidance for the system is
furnished by Tk by altering the maximum velocity to a lower
value for maintaining stability. This ensures that the vehicle
travels at the maximum velocity for the longest time
possible thereby reducing the duration of travel to a
minimum. The generation of an acceleration continuous s-
curve profile further contributes towards greater comfort by
avoiding abrupt changes in the values of velocity and
acceleration. The final acceleration, when assumed to be 0
m/s2, ensures that the vehicle maintains a constant final
velocity Ve. Amongst the three types of curves obtained, the
trapezoidal velocity curve is the most applicable as it
guarantees the employment of the segment S2 which
maintains the vehicle at constant maximum velocity.
Consequently, the interpolation of cubic spline curve is
suitable for the velocity profile algorithm as it acquires an
edge over the non-smooth curve both in terms of minimum
time travel and improved stability.

V. CONCLUSION

 The proposed method in this paper was able to achieve
smooth and safe trajectory planning along with the
incorporation of a velocity planning algorithm. The path
planner programmed in the C++ language, successfully
executed suitable decisions, and implemented them to
generate efficient real-time trajectories to be followed by the
autonomous vehicle while avoiding obstacles in a simulated

highway scenario. Various constraints and specifications
such as the speed limits, localization, and sensor fusion data
were provided as inputs to the planner and significantly
accurate results were observed. On detection of traffic, the
self-driving car senses the surrounding environment and, on
reviewing the behavior of neighboring vehicles on the
highway, executes a decision to either decelerate or switch
to a safer lane. The generated path is acceptably tolerable by
the passenger as it maintains speed limits and minimizes the
jerk.
 The velocity profile algorithm was developed and
implemented to generate an appropriate velocity profile for
an optimal trajectory. After the selection of the optimal
trajectory, the initial, maximum, and final velocities along
with acceleration values assist to trace a perfect velocity
curve along the path. The profiles were obtained by plotting
a curve for the minimum time of travel for the vehicle
through the specified path within given acceleration limits.
The velocity profile ensures safety, efficiency thereby
providing a non-jerky and comfortable motion to self-
driving vehicles. Once tested on a broader range of urban
traffic scenarios, the proposed methods promise to interact
and fit well with the existing systems and evolve with the
entire autonomous driving system.

REFERENCES

1. K. Chu, M. Lee, and M. Sunwoo, “Local path planning for off-road
autonomous driving with avoidance of static obstacles,” IEEE

Transactions on Intelligent Transportation Systems, vol. 13, no. 4,
pp. 1599–1616, 2012.

2. C. L. Bianco, A. Piazzi, and M. Romano, “Velocity planning for

autonomous vehicles,” in IEEE Intelligent Vehicles Symposium,
2004. IEEE, 2004, pp. 413–418.

3. S. Thrun, “Toward robotic cars,” Communications of the ACM, vol.

53, no. 4, pp. 99–106, 2010.
4. L. D. Burns, “A vision of our transport future,” Nature, vol. 497, no.

7448, pp. 181–182, 2013.
5. J. Kim, K. Jo, D. Kim, K. Chu, and M. Sunwoo, “Behavior and path

planning algorithm of autonomous vehicle a1 in structured
environments,” IFAC Proceedings Volumes, vol. 46, no. 10, pp. 36–

41, 2013.
6. V. T. Minh and J. Pumwa, “Feasible path planning for autonomous

vehicles,” Mathematical Problems in Engineering, vol. 2014, 2014.
7. J. Villagra, V. Milanes, J. P. Rastelli, J. Godoy, and E. Onieva, “Path

and ´ speed planning for smooth autonomous navigation,” in IV

2012 - IEEE Intelligent Vehicles Symposium, Jun 2012, Alcala de
Henares, Madrid, Spain, 2012.

8. L. Claussmann, M. Revilloud, D. Gruyer, and S. Glaser, “A review

of motion planning for highway autonomous driving,” IEEE
Transactions on Intelligent Transportation Systems, vol. 21, no. 5,
pp. 1826–1848, 2019.

9. F. Altche, P. Polack, and A. de La Fortelle, “High-speed trajectory
planning for autonomous vehicles using a simple dynamic model,” in

2017 IEEE 20th International Conference on Intelligent
Transportation Systems (ITSC). IEEE, 2017, pp. 1–7.

10. T. Gu and J. M. Dolan, “On-road motion planning for autonomous
vehicles,” in International Conference on Intelligent Robotics and

Applications. Springer, 2012, pp. 588–597.
11. J. P. Talamino and A. Sanfeliu, “Anticipatory kinodynamic motion

planner for computing the best path and velocity trajectory in
autonomous driving,” Robotics and autonomous systems, vol. 114,
pp. 93–105, 2019.

12. Y. Kanayama, Y. Kimura, F. Miyazaki, and T. Noguchi, “A stable

tracking control method for an autonomous mobile robot,” in
Proceedings., IEEE International Conference on Robotics and
Automation. IEEE, 1990, pp. 384–389.

https://www.openaccess.nl/en/open-publications
http://www.ijeat.org/

Real - Time Trajectory and Velocity Planning for Autonomous Vehicles

448

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.E28800610521
DOI:10.35940/ijeat.E2880.0610521
Journal Website: www.ijeat.org

13. R. Solea and U. Nunes, “Trajectory planning with velocity planner
for fully-automated passenger vehicles,” in 2006 IEEE Intelligent

Transportation Systems Conference. IEEE, 2006, pp. 474–480.
14. Y.-R. G. Zvi Shiller, “Dynamic motion planning of autonomous

vehices,” IEEE Transactions on Robotics and Automation, vol. 7, pp.

241–249, 1991.
15. M. Adams and J. Ibanez-Guzman, “Limiting velocity & acceleration

commands for dynamic control of a large vehicle,” in 7th

International Conference on Control, Automation, Robotics and
Vision, 2002. ICARCV 2002., vol. 3. IEEE, 2002, pp. 1475–1480.

16. Dash, Tirtharaj, Goutam Mishra, and Tanistha Nayak, “A novel

approach for intelligent robot path planning,” arXiv preprint
arXiv:1306.4672 (2013).

17. C. Chen, Y. He, C. Bu, J. Han, and X. Zhang, “Quartic bezier curve-
based trajectory generation for autonomous vehicles with curvature
and velocity constraints,” in 2014 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2014, pp. 6108–6113.

18. Mahmood, Ali Khaleel, and Robert Bicker, “Path Planning, Motion

Control and Obstacle Detection of Indoor Mobile Robot,” American
Scientific Research Journal for Engineering, Technology, and
Sciences (ASRJETS) 26, no. 1 (2016): 91-107.

19. Teleweck, P. E., and B. Chandrasekaran, “Path Planning Algorithms
and Their Use in Robotic Navigation Systems,” in Journal of
Physics: Conference Series, vol. 1207, no. 1, p. 012018. IOP
Publishing, 2019.

20. Lian, Jianfang, Wentao Yu, Kui Xiao, and Weirong Liu, “Cubic

Spline Interpolation-Based Robot Path Planning Using a Chaotic
Adaptive Particle Swarm Optimization Algorithm,” Mathematical
Problems in Engineering 2020.

21. L. Consolini, M. Locatelli, A. Minari, and A. Piazzi, “A linear-time
algorithm for minimum-time velocity planning of autonomous
vehicles,” in 2016 24th Mediterranean Conference on Control and

Automation (MED). IEEE, 2016, pp. 490–495.
22. A. Rahatgaonkar, “Velocity planning approach for autonomous

vehicles,” Master’s thesis, 2016.
23. X. Li, Z. Sun, D. Cao, Z. He, and Q. Zhu, “Real-time trajectory

planning for autonomous urban driving: Framework, algorithms, and
verifications,” IEEE/ASME Transactions on mechatronics, vol. 21,

no. 2, pp. 740–753, 2015.

AUTHORS PROFILE

Hrishikesh Dey completed the Bachelor of
Engineering (B.E.) degree in Electronics Engineering
from the Vivekanand Education Society's Institute of
Technology, Mumbai, India, in 2021. He is currently
admitted to the North Carolina State University,
Raleigh, NC, United States for a Master’s in Science
(MS) degree. His research interests include navigation

techniques of autonomous systems, control of robotic systems, interrelated
with image analysis and signal processing of intelligent systems.

Rithika Ranadive completed the Bachelor of
Engineering (B.E.) degree in Electronics Engineering
from the Vivekanand Education Society's Institute of
Technology, Mumbai, India, in 2021. She is currently
admitted to the University of Minnesota, Minneapolis,
MN, United States for a Master’s in Science (MS)

degree. Her research interests include integrated circuits
and VLSI, with a primary focus in digital design and computer-aided
design (CAD) techniques.

Abhishek Chaudhari completed the Bachelor of
Engineering (B.E.) degree in Electronics and
Telecommunication from Prof. Ram Meghe Institute of
Technology, Amravati, India in 2009. He completed
the Masters of Technology (M.Tech) in Digital Image
Processing from Shree Guru Gobind Singhji Institute
of Engineering and Technology, Nanded, India, in

2011. He is currently an Assistant Professor in Vivekanand Education
Society's Institute of Technology, Mumbai, India. His research interest
includes Computer Vision, Image Processing and Machine Learning.

http://www.ijeat.org/

