

CNR www.cnr.it DSSTTA www.dta.cnr.it

ISMAR - IAS - IRBIM www.ricercamarina.cnr.it

Coupled satellite data assimilation in intermediate complexity coupled model experiments

Andrea Storto¹, Gianluigi Liberti¹, Daniele Ciani¹, Andrea Pisano¹, Anna Lewinschal², Rosalia Santoleri¹

¹ Institute of Marine Sciences, National Research Council, Rome, Italy ² University of Stockholm, Sweden

Contact: andrea.storto@cnr.it

Blue-Action Workshop, 20-22/Sep/2021

The Copernicus Imaging Microwave Radiometer (CIMR) mission

https://cimr.eu

A high priority candidate satellite mission within the European Copernicus Expansion program

٠

٠

	HR SST and SSS from the same platform!					
	ESA CIMR <u>2026+</u> JAXA AMSR2 [A2], <u>today</u>)					
	Beam centre frequency (GHz)	Beam Target resolution, L (km)		NЕ∆Т (К)		
►	1.413	55	(x)	≤0.3	(x)	
►	6.9	15	(48)	≤0.2	(0.3)	
	10.65	15	(33)	≤0.3	(0.6)	
	18.7	5	(18)	≤0.3	(0.7)	
	36.5	5	(9)	≤0.7	(0.7)	

Sea Surface Salinity ~40 km Sea Surface Temperature ~10 km Sea Ice Thickness, Sea Ice Concentration,

Sea Ice Extent, Ocean wind speed, Cloud Liquid Water

"ALL WEATHER", H-V Channels

- It can be foreseen that future DA systems will be fully coupled, in order to:
 - Minimize imbalances and initial shocks
 - Enhance the exploitation of observations through cross-medium propagation
 - Enhance the use of satellite data through coupled observation operators
- T_B from CIMR channels are sensitive to both oceanic (SST, SSS), atmospheric (wind speed, cloud liquid water) and sea-ice (SIC, SIT) parameters
- CIMR is an ideal sensor to test coupled data assimilation algorithm

CNR www.cnr.it DSSTTA www.dta.cnr.it

Motivation: T_B Assimilation

- Most ocean data assimilation systems ingest retrievals (e.g. SST, SSS, L3/L4) rather than T_B observations (L2)
- Long-standing experience in Numerical Weather Prediction proved that this approach is rather suboptimal, because retrieval algorithms:
 - Use several assumptions and requires an additional step
 - Introduce error cross-covariances between background and retrievals
 - Difficulty in estimating retrieval uncertainty
- As CIMR will provide multi-variate oceanic retrievals (SST, SSS), the assimilation of T_B may be particularly advantageous

DSSTTA www.dta.cnr.it

Daily variability (Temperature) 2000 20 15 1500 - 10 1000 5 500 0 Depth (m) ATM -5 14 OCE -20 - 12 - 40 10 - 60 8 - 80 6 -100 20 25 15 Days from ICs

Modelling component: EC-Earth 1D (SCM) coupled model

- NEMO 3.6, 75 depth levels
- OpenIFS Cy40r1, 60 vertical levels
- LIM3 multi-category sea-ice model, 5 categories
- OASIS3-MCT coupler
- Location: PAPA station (Pacific Ocean, 50°N; 145°W)
- Initialization: ERA-Interim and ORAS4 (ECMWF reanalyses)
- Maintained by Univ. of Stockholm within the EC-Earth consortium
- Timestep 900s (both atm and oce), 3-hourly outputs

Hartung, K., Svensson, G., Struthers, H., Deppenmeier, A.-L., and Hazeleger, W.: An EC-Earth coupled atmosphere–ocean single-column model (AOSCM.v1_EC-Earth3) for studying coupled marine and polar processes, Geosci. Model Dev., 11, 4117–4137, https://doi.org/10.5194/gmd-11-4117-2018, 2018.

		•	•	
NR		DSST	ТА	ISMAR - IAS - IRBI
ww.cnr.it		www.d	lta.cnr.it	www.ricercamarina.i

Assimilation component: Coupled 3DVAR

- Incremental 3DVAR scheme with control variable transformation
- State vector seamlessly includes:
 - Atmosphere: U, V, T, Q
 - Ocean: T, S
- Background-errors as multi-variate EOFs, calculated from anomalies w.r.t. the monthly long-term mean, ensemble mean, etc.
- Simple background quality check (observations rejected when their square misfits exceed 3 times the sum of observation and background error variances)
- Vertical super-obbing for in-situ atmospheric and oceanic profiles
- Limited-memory quasi-Newton minimizer L-BFGS. Coded in R.

CNR www.cnr.it DSSTTA www.dta.cnr.it

Physical fields and Tb ensemble spread

Ensemble system:

3 ocean model physics5 atmospheric model physics6 ocean initial conditions11 atmospheric initial conditions

990 members

This ensemble is used for:

- Observation operator formulation
- Hybrid ensemble-variational data assimilation

Variable

Experiments: Configuration of OSSEs

Nature Run Atmospheric ICs from ERA5 ensemble, Oceanic ICs from GLORYS ocean reanalysis Nudging to ERA-Interim T/Q (atmosphere) Nudging to GREP T/S (ocean) and SWR perturb.

Initial experiments performed to assess the impact of different observing networks

Synthetic observations:

Air: T and Q (radiosonde profile) Sea: T and S (Argo float profile) CIMR T_B (all channels) CIMR retrievals (SST, SSS, wind vector 10m)

> 1-month simulations with 12-hourly assimilation time-windows 2 CIMR passeges per day (50°N) 2 observations per day also for in-situ

Observational Errors:

Radiosonde: as in ECMWF/IFS

Argo: as in CNR-ISMAR 3DVAR

CIMR TB: as CIMR ensemble standard dev.

CIMR retrievals: as mission target accuracy at ~50°N (0.3°C|0.55psu|2m/s)

CNR www.cnr.it DSSTTA www.dta.cnr.it

Sets of BECs

BECs setup is particularly relevant for coupled DA

SET1: Differences between CTRL and TRUTH (Nature Run)

SET2: 6-hourly anomalies of CTRL run

Weakly vs Strongly Coupled DA

SEAWATER TEMP. BIAS SEAWATER TEMP. RMSE CTRL05FULL_R RAD_EOF3_CPL 0 0 RAD_EOF3_ATM BAD EOF4 CPL RAD EOF4 ATM 20 20 Model levels Model levels CTRL RADIOS BEC1 CPL 40 40 RADIOS BEC1 ATM RADIOS BEC2 CPL RADIOS BEC2 ATM 60 60 -2.0 -1.0 2.0 0.0 0.0 0.5 1.0 1.5 κ κ

Radiosonde DA	Seawater Tem (0-60m)	Salinity (0-60m)
Weakly DA	~1%	~0%
Strongly DA	20-40%	1-11%

Weakly vs Strongly Coupled DA

U WIND BIAS U WIND RMSE 0 0 10 10 CTRL ARGO BEC1 CPL ARGO BEC1 ATM 20 20 ARGO BEC2 CPL ARGO_BEC2_ATM Model levels Model levels 30 30 40 40 50 50 60 60 0.2 -0.1 0.0 0.1 0

m s–1

m s–1

8

Times

Impact of hybrid BECs

Strongly coupled DA: Verification of seawater Tem after assimilating radiosonde data

Hybrid covariances may particularly benefit Coupled DA

CIMR observation operator: Surrogate model from RTTOV13

- The observation operator for CIMR is taken from RTTOV13, merging T_B forward models from SMOS/MIRAS and Aqua/AMSR-E
- In order to avoid the coupling of the 3DVAR system with RTTOV for this idealized exercise, we formulate a

Beam centre frequency (GHz)	Beam Target resolution, L (km)		NET (К)		
1.413	55	AMSR2	0.3	AMSR2	
6.9	15	(48)	0.2	(0.3)	
10.65	15	(33)	0.3	(0.6)	
18.7	5	(18)	0.3	(0.7)	
36.5	5	(9)	0.7	(0.7)	

- Training data from the large ensemble of SCM fields and RTTOV outputs
- Accuracy of Artifical Neural Network (ANN) and polynomial regression (PR) (order>3) is very high (error < 1% of T_B variability)
- For sake of simplicity 3rd ord. PR will be used

Experiments: Comparing Tb vs Retrieval assimilation

Comparing the impact of brightness temperature DA versus Retrievals DA

- Verification skill scores indicate that TB DA outperforms retrievals DA for ocean parameters and, partly, for wind, while the impact is neutral for atmospheric parameter verification
- Accuracy around the thermocline is particularly benefited by the TB data assimilation

Total column

verification

Experiments: Preliminary results DFS (dHxa / dy)

- Data-denial experiments show that the assimilation of all channels always outperforms the ingestion of any individual • channels
- Some results appear not completely intuitive, due to the role of atm-oce cross-covariances •
- DFS (Degrees of Freedom for Signal) suggest that channels 1,2,3 impact the analysis at most

CNR	DSSTTA
www.cnr.it	www.dta.cnr.it

- The CIMR mission fosters the rethinking of satellite data assimilation in the ocean (TB vs retrievals) and calls for fully coupled (air-sea) data assimilation approaches
- A 1D strongly coupled analysis system based on EC-Earth and an atmosphere-ocean variational scheme has been setup to assess the benefits of strongly coupled DA and CIMR data assimilation
- Skill scores suggest that assimilating CIMR TB outperforms retrieval assimilation in the verification of the ocean parameters (T, S)

Thank you for the attention

Contact: andrea.storto@cnr.it

DSSTTA www.dta.cnr.it