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Coupled data assimilation - Issues and terminology

IThe scale separation makes difficult to carry out the uncertainty quantification necessary to
propagate the data content across compartments.

I If the scale separation is not very large, one can still rely upon uncoupled DA that operates on
each compartment independently, and then use the full coupled model to forecast between
successive observations =⇒ weakly CDA.

I In wCDA the effect of the coupling manifests
indirectly via the model integration, yet the
cross-compartment correlations (if any) are not exploited
in the analysis update =⇒ wCDA may still be prone to
produce imbalances.

IFull CDA, where the analysis update is across
compartments, is called strongly CDA.
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The nature of the problem (focus on time-scale separation)

dx

dt
= εf(x, z) Ocean

dz

dt
= g(x, z) Atmosphere

(1)

ε� 1 accounts for the temporal scales difference between the processes f and g

We assume that f and g are both bounded from above as O(1), and that the characteristic spatial scales of x
and z are similar.

The model sub-components will grow differently: within the time interval tk − tk−1 = O(1) the slow scale
changes such as O(xk) = xk−1 +O(ε), while the fast scale as O(zk) = zk−1 +O(1).

Remark: In realistic coupled atmosphere-ocean system, x and z may also have different amplitudes bounds
and different spatial scales.

I In order for the observations of the slow scale to monitor its variability, we need to have ∆tx ≤ O(ε−1).

IWhen ∆tz = O(1) (i.e. frequent obs) the solution of the slow system, x(t), is approximately constant in
the interval t ∈ [tk, tk + ∆tz] =⇒ A good scenario for wCDA.
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The nature of the problem (a linear analysis)

The linearised error evolution between two subsequent analyses reads

∆xf
k ≈ εFx∆xa

k−1 + εFz∆zak−1,

∆zfk ≈ Gx∆xa
k−1 + Gz∆zak−1,

(2)

IThe cross terms describe the error impact across compartments: Fz∆zak−1 for the Fast-to-Slow
dependence, Gx∆xa

k−1 for the Slow-to-Fast.

IThey encode, e.g., the Atmosphere-Ocean mechanical transfer of kinetic energy and heat transfer.

IBy inserting the error order in (2) and taking the norm of both sides we have

1-st order error dynamics - Error bounds

O(∆xf
k) ≈ ε[‖Fx + Fz‖]O(1) ≤ ε[‖Fx‖+ ‖Fz‖]O(∆xa

k−1),

O(∆zfk) ≈ [‖Gx + Gz‖]O(1) ≤ [‖Gx‖+ ‖Gz‖]O(∆zak−1).
(3)
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Sensitivity bounds: how to choose where to observe...

I Suppose (very lucky situation!) one wants to have O(∆xf
k) = O(∆xa

k−1) and O(∆zfk) = O(∆zak−1), then

1-st order sensitivity of the Slow Scale

O(‖Fx‖) ≤ O(ε−1) Slow 7→ Slow sensitivity,

O(‖Fz‖) ≤ O(ε−1) Fast 7→ Slow sensitivity,
(4)

1-st order sensitivity of the Fast Scale

O(‖Gx‖) ≤ O(1) Slow 7→ Fast sensitivity,

O(‖Gz‖) ≤ O(1) Fast 7→ Fast sensitivity.
(5)

IThe fast scale bounds are much smaller =⇒ analysis error must be kept within O(1) otherwise a
“locally” large sensitivity ‖Gz‖, beyond O(1), will lead the forecast error to grow over O(1).

IRemark: When doing CDA for state estimate, we do not act on the TLMs directly, but only on the
trajectory upon which the Jacobian is evaluated =⇒

CDA for coupling parameter estimation can be more effective (it acts directly on ‖G‖ and ‖F‖).
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Coupled DA: conclusions from the linear framework

ICross compartments effects are generally
stronger in the direction from the slow to
the fast scale.

IBut, the inter compartments effects are
stronger in the fast scale which requires to be
controlled by observations.

IThe rate at which the fast scale error is bound
to grow (if left uncontrolled) is such that it can
quickly reach high level and thus affecting the slow
scale.

Observing the fast scale is thus of paramount importance.

IRemark: The above is an effect of the temporal scale difference alone.
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Strongly coupled EnKF with atmosphere-ocean model MAOOAM
Observations in the atmosphere
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Atmosphere practically insensitive to the removal
of the ocean observations.
For 1h ≤ ∆tatm ≤ 3d ocean controlled by
atmospheric data only.

Observations in the ocean
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Atmosphere is not controlled by ocean data:
error above the observational level.
Ocean error slightly lower than with only
atmospheric data but not as good as when both
ocean and atmosphere is observed.
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Coupling and instablities: Do they relate?

MAOOAM coupled model LEs spectr Projection of Cov Lyap vectors
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Tondeur, et al, 2020
IThe coupling leads to the appearence of “quasi-neutral” modes.
IUnstable and Stable CLVs show a transition in projections =⇒ Instabilities are either originated in the
atmosphere or in the ocean.
IThe “quasi-neutral” CLVs show comparable projections on both atmosphere and ocean =⇒ They are a
manifestation of the coupling.

Coupled DA should rely on CLVs to propagate information across model components
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Strongly coupled EnKF: instabilities tracking & minimum ensemble

IAngle ensemble span with unstable-neutral (left) and unstable plus quasi-neutral modes (center).
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In coupled DA, all “quasi-neutral” modes – related to
the coupling – must be taken into account

Carrassi et al, 2021
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Combined CDA-ML to infer unresolved scales parametrizations

The objective is to produce a hybrid (physical/data-driven) model

x(t+ δt) =Mϕ[x(t)] +MUN[x(t)],

where:

x(t) is the state of the dynamical system

Mϕ is the physical model (assumed to be known a priori)

MUN is the unresolved component of the dynamics to be inferred from data

δt is the integration time step

MUN is approximated by a data-driven model represented under the form of a neural network whose
parameters are θ: Mθ[x(t)]
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Proposed approach

Simplified description of the algorithm:
1 Estimating the state xa

1:K . At each time tk, we calculate a forecast xf :

xf
k+1 = xf(tk + ∆t) = (Mϕ)Nc(xa

k)

An observation yk+1 is assimilated with strongly coupled EnKF to produce an analysis xa
k+1

2 Determining an estimation of the unknown part of the model. We assume that:

x(t + ∆t) ≈ (Mϕ)Nc(x(t)) + Nc · MUN[x(t)]
x(t) ≈ xa(t)

We consider thatMUN(xk) ≈ zk+1 = 1/Nc ·
(
xa
k+1 − xf

k+1

)
=⇒ The “target” (i.e. the model error)

is estimated using the analysis increments (Carrassi and Vannitsem, 2011).
3 Training a neural networkMθ by minimising the loss L(θ) =

∑K−1
k=0 ||Mθ(xa

k)− zk+1||2

4 Using the hybrid modelMϕ +Mθ to produce new simulations (e.g. to make forecasts).

Brajard et al, 2021
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Experiments with MAOOAM

1 Truth: na = 20 and no = 8 modes for atmosphere and ocean. Total dimension Nx = 56.
2 Truncated: na = 10 and no = 8 modes for atmosphere and ocean. Total dimension Nx = 36.

IThe truncated model is missing 20 high-order atmospheric variables
IThere is not locality in spectral space so the NN is made of 3 layers multi-layer perceptrons

RMSE-f of hybrid and truncated MAOOAM models
RMSE-f(lead time τ) ψo,2(2 years) θo,2(2 years) ψa,1(1 day)
Truncated 0.23 0.21 0.36
Coupled DA-ML hybrid 0.10 0.06 0.28

The hybrid models have superior skill to the truncated model.

The improvement is larger for the ocean that is fully resolved =⇒ Enhanced representation of
the atmosphere-ocean coupling processes thanks to coupled DA.

The atmosphere is improved less: the hybrid is not very good in representing the fast processes.
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Numerical experiments: atmosphere-ocean model MAOOAM

IThe truncated model visits areas of the phase space that are not admitted in the real dynamics.

IDiscrepancies are reduced by the hybrid models.

Brajard et al, 2021
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Conclusions and paths

IWe have deduced the 1-st order dynamical mechanisms for error transmission within and across scales.

ICross-compartments effects are stronger in the Slow-to-Fast direction, but inter-compartment effects are
much larger in the fast scale =⇒ Fast scale error must be controlled before they affect the full system.

IResults confirmed numerically using MAOOAM and a strongly coupled EnKF.

IQuasi-neutral modes are connected to the coupling and must be accounted for in the coupled DA process.

IHow would this picture change in the presence of spatial scale and amplitude difference?

IWe develop a combined DA-ML method to build a hybrid model made of a physics-based +
data-driven surrogate of the unresolved scales.

IThe use of coupled DA is pivotal to the success as the coupled analysis used to learn the NN embodies essential
coupling mechanisms.
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