Super-resolution data assimilation (SRDA)

Sébastien Barthélémy^{1,2}, Julien Brajard^{3,4}, Laurent Bertino³, François Counillon^{1,2,3} September 22, 2021

¹University of Bergen, ²Bjerknes Centre for Climate Research, ³Nansen Environmental and Remote Sensing Centre, ⁴Sorbonne Université

The resolution of observations grows faster than model resolution.

- 1. Emulating a HR EnKF while running the forecast step with a LR model
- 2. Reduction of the computational cost of the EnKF
- 3. Taking advantage of HR observations with a LR model

EnKF - Low Resolution (EnKF-LR)

EnKF - Low Resolution (EnKF-LR)

	EnKF-LR	
Observation error	High✔	
High-resolution processes	Poorly resolved 🗸	
Computational cost	Low	
Ensemble size	Big✔	

EnKF - Low Resolution (EnKF-LR)

EnKF - High Resolution (EnKF-HR)

	EnKF-LR	EnKF-HR	
Observation error	High✔	Low	
High-resolution processes	Poorly resolved🖌	Resolved 🖌	
Computational cost	Low	High, <i>O</i> (<i>n</i> ³)	
Ensemble size	Big✔	Small🖌	

	EnKF-LR	EnKF-HR	SRDA
Observation error	High✔	Low	Low
High-resolution processes	Poorly resolved🖌	Resolved 🖌	Emulated
Computational cost	Low	High, <i>O</i> (<i>n</i> ³)✔	Low
Ensemble size	Big✔	Small	Big✔

Model used: Quasi-geostrophic model[1]

Configuration	State size	Cost
HR	129×129	С
LR	65×65	C/8
ULR	33×33	C/64

Observations:

- True value perturbed by a gaussian noise of standard deviation 2
- \cdot available every $\Delta t =$ 12
- positionned along simulated satellite tracks (black dots on the figures)

Model used: Quasi-geostrophic model[1]

-	Configuration	State size	Cost
	HR	129×129	С
	LR	65×65	C/8
	ULR	33×33	C/64

Observations:

- True value perturbed by a gaussian noise of standard deviation 2
- available every $\Delta t =$ 12
- positionned along simulated satellite tracks (black dots on the figures)

Downscaling operator?

- ► A simple cubic spline interpolation
- A neural network

▶ Running one simulation of the HR model.

 \blacktriangleright Computing a dataset of matching pairs between a (U)LR and a HR state: $(x_{{\rm L},{\it k}},x_{{\rm H},{\it k}})$

U: Upscaling (subsampling operator)

$$\rightarrow \mathcal{M}_{\mathrm{L}} \rightarrow$$

▶ Running one simulation of the HR model.

 \blacktriangleright Computing a dataset of matching pairs between a (U)LR and a HR state: $(x_{{\rm L},{\it k}},x_{{\rm H},{\it k}})$

U: Upscaling (subsampling operator)D: Downscaling (Neural network)

- ► Size of the dataset: 10,000
- ▶ 8000 for training / 2000 for validation
- ► Architecture of the enhanced deep super-resolution network (EDSR) [2]
- ► Training: minimization of the mean absolute error

▶ Illustration with one typical sample

red lines: Contour of the true HR state

Model error correction

Model error correction

- ▶ Eddies move too slow with the LR model
- ▶ NN is smart enough to learn that

Super-resolution data assimilation performance

- ▶ Twin experiments with 500 assimilation cycles
- Sensitivity analysis to tune the optimal localisation and inflation
- Strong improvement irrespective of ensemble size
- Method able to predict uncertainties, same reliability as the EnKF

DA in low-resolution
 SRDA with cubic spline interpolation

SRDA with NN downscalingDA in high-resolution

Formulating the SRDA into a revised EnKF formulation we could disentangle the contribution from:

- 1. the model error correction;
- 2. the super-resolution observation operator.

 Model error correction
 improves performance during challenging events
 Super-resolution obs.
 operator reduces error over the whole period

Standard SRDA SRDA with only the super-res. observation operator

Computing performance - Total CPU time

- ▶ With 25 members sequentially
- Same inflation and localization coefficients

Ultra low resolution

Main results

▶ SRDA has an accuracy close to the EnKF with HR model at a cost close to an EnKF with the LR model,

► The NN can correct systematic differences of eddy propagation caused by the low resolution,

- ▶ The results are stable in time,
- ▶ The reliability of the ensemble system is well preserved.

Main results

▶ SRDA has an accuracy close to the EnKF with HR model at a cost close to an EnKF with the LR model,

► The NN can correct systematic differences of eddy propagation caused by the low resolution,

- ▶ The results are stable in time,
- ▶ The reliability of the ensemble system is well preserved.

Perspectives

- > Application to a more realistic (multivariate) model,
- Application only to local regions of the domain,
- ▶ Use NN-downscaling for the initialization of forecasts.

Paper available on arXiv!

http://arxiv.org/abs/2109.08017

Pavel Sakov and Peter R. Oke.

A deterministic formulation of the ensemble Kalman filter: An alternative to ensemble square root filters. Tellus, Series A: Dynamic Meteorology and Oceanography, 60 A(2):361–371, 2008. doi:10.1111/j.1600-0870.2007.00299.x.

Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung Mu Lee.

Enhanced deep residual networks for single image super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, July 2017.

Sébastien Barthélémy, Julien Brajard, Laurent Bertino, and François Counillon.

Super-resolution data assimilation, 2021.

arXiv:2109.08017.

sebastien.barthelemy@uib.no - julien.brajard@nersc.no

Acknowledgement: NFR project SFE(#2700733)

Setup of the neural network

Architecture of the enhanced deep super-resolution network (EDSR) [2]

Training of the neural network

Minimize the mean absolute error (MAE):

$$L(\mathbf{w}) = \sum_{k=1}^{K} \sum_{i=1}^{S} \left| \mathcal{D}(\mathbf{x}_{\mathrm{L},k})_{i} - X_{\mathrm{H},k,i} \right|,$$

- *i*: the pixel index
- S: size of the state (129×129)
- K: size of the training set (K=8000)
- w: weights of the neural network (\sim 20, 000)

Downscaling performance (2)

Score on the validation dataset

Super-resolution data assimilation performance

Ultra Low-resolution error

- DA in low-resolution
- SRDA with cubic spline interpolation
- SRDA with NN downscaling
- DA in high-resolution

Spread/error of the ensemble

- DA in low-resolution
- SRDA with cubic spline interpolation
- SRDA with NN downscaling
- DA in high-resolution

Qin, Mengjiao, et al. "Remote Sensing Single-Image Resolution Improvement Using A Deep Gradient-Aware Network with Image-Specific Enhancement." *Remote Sensing* 12.5 (2020): 758.