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Objectives

The resolution of observations grows faster than model resolution.

1. Emulating a HR EnKF while running the forecast step with a LR model
2. Reduction of the computational cost of the EnKF
3. Taking advantage of HR observations with a LR model
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Motivation and method
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Motivation and method

EnKF - Super-resolution (SRDA)
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Model used

▶Model used: Quasi-geostrophic model[1]

Configuration State size Cost
HR 129×129 C
LR 65×65 C/8
ULR 33×33 C/64

▶Observations:
• True value perturbed by a gaussian noise
of standard deviation 2

• available every ∆t = 12
• positionned along simulated satellite
tracks (black dots on the figures)

Downscaling operator?
▶A simple cubic spline interpolation
▶A neural network
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Training set for the neural network

▶Running one simulation of the HR model.
▶ Computing a dataset of matching pairs between a (U)LR and a HR state:
(xL,k, xH,k)
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U : Upscaling (subsampling
operator)

D: Downscaling (Neural network)

▶ Size of the dataset: 10,000
▶ 8000 for training / 2000 for
validation
▶Architecture of the enhanced
deep super-resolution network
(EDSR) [2]
▶ Training: minimization of the
mean absolute error
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Downscaling performance

▶ Illustration with one typical sample

red lines: Contour of the true HR state
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Model error correction

▶ Eddies move too slow with the LR model
▶NN is smart enough to learn that
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Super-resolution data assimilation performance

▶ Twin experiments with 500 assimilation cycles
▶ Sensitivity analysis to tune the optimal localisation and inflation
▶ Strong improvement irrespective of ensemble size
▶Method able to predict uncertainties, same reliability as the EnKF
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Super-resolution data assimilation performance

▶ Formulating the SRDA into a revised EnKF formulation we could
disentangle the contribution from:

1. the model error correction;
2. the super-resolution observation operator.
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Computing performance - Total CPU time

▶With 25 members sequentially
▶ Same inflation and localization coefficients
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Conclusions/perspectives

Main results
▶ SRDA has an accuracy close to the EnKF with HR model at a cost close to
an EnKF with the LR model,
▶ The NN can correct systematic differences of eddy propagation caused by
the low resolution,
▶ The results are stable in time,
▶ The reliability of the ensemble system is well preserved.

Perspectives
▶Application to a more realistic (multivariate) model,
▶Application only to local regions of the domain,
▶Use NN-downscaling for the initialization of forecasts.
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Setup of the neural network
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Architecture of the enhanced deep super-resolution network (EDSR) [2]



Training of the neural network

Minimize the mean absolute error (MAE):

L(w) =
K∑
k=1

S∑
i=1

|D(xL,k)i − xH,k,i| ,

i: the pixel index
S: size of the state (129×129)
K: size of the training set (K=8000)
w: weights of the neural network (∼ 20, 000)

Training curve



Downscaling performance (2)

▶ Score on the validation dataset



Super-resolution data assimilation performance

Low-resolution error
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Spread/error of the ensemble

Low-resolution spread/error
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The shuffle operator

Qin, Mengjiao, et al. ”Remote Sensing Single-Image Resolution Improvement Using A Deep
Gradient-Aware Network with Image-Specific Enhancement.” Remote Sensing 12.5 (2020): 758.
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