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Abstract. Hypocoercivity methods are applied to linear kinetic equations without
any space confinement, when local equilibria have a sub-exponential decay. By Nash
type estimates, global rates of decay are obtained, which reflect the behavior of the
heat equation obtained in the diffusion limit. The method applies to Fokker-Planck
and scattering collision operators. The main tools are a weighted Poincaré inequal-
ity (in the Fokker-Planck case) and norms with various weights. The advantage of
weighted Poincaré inequalities compared to the more classical weak Poincaré inequal-
ities is that the description of the convergence rates to the local equilibrium does not
require extra regularity assumptions to cover the transition from super-exponential
and exponential local equilibria to sub-exponential local equilibria.

1. Introduction

This paper is devoted to a hypocoercivity method designed for obtaining decay rates
in weighted L2 norms of the solution to the Cauchy problem

∂tf + v · ∇xf = Lf ,

f(0, x, v) = f in(x, v) ,
(1)

for a distribution function f(t, x, v), with position x ∈ Rd, velocity v ∈ Rd, and time
t ≥ 0. The linear collision operator L acts only on the velocity variable and its null
space is assumed to be one-dimensional and spanned by the local equilibrium F , a
probability density of the form

F (v) = Cα e
−〈v〉α , v ∈ Rd , with C−1

α =
∫
Rd
e−〈v〉

α

dv , (2)

where we use the notation
〈v〉 :=

√
1 + |v|2 .

Our results will be concerned with the sub-exponential case 0 < α < 1, as opposed
to the exponential (α = 1) and super-exponential (α > 1, including the Gaussian
with α = 2) cases. This specific choice of the form of the equilibrium is for nota-
tional convenience in the proofs. The results can easily be extended to more general
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distributions F , satisfying

α := lim
|v|→+∞

log(− logF (v))
log |v| ∈ (0, 1) .

We shall consider two types of collision operators, either the Fokker-Planck operator

L1f = ∇v ·
(
F ∇v

(
F−1 f

))
,

or the scattering operator

L2f =
∫
Rd

b(·, v′)
(
f(v′)F (·)− f(·)F (v′)

)
dv′ .

We assume local mass conservation∫
Rd

Lf dv = 0 ,

which always holds for L = L1, and also for L = L2 under the assumption∫
Rd

(
b(v, v′)− b(v′, v)

)
F (v′) dv′ = 0 . (H1)

Note that micro-reversibility, i.e., the symmetry of b, is not required.

Further assumptions on the cross-section b that will be given below guarantee that
the operators L1 and L2 are responsible for the same type of asymptotic behavior.
As a motivation, the relaxation properties of L1 can be made transparent by the
symmetrizing transformation f = g

√
F , leading to the transformed operator

g 7→ 1√
F
∇v ·

(
F ∇v

g√
F

)
= ∆vg − ν1(v) g

with the collision frequency

ν1(v) = ∆vF

2F −
|∇vF |2

4F 2 ≈ α2

4 |v|
−2 (1−α) as |v| → ∞ . (3)

Partially motivated by this, we assume the existence of constants β, b, b > 0, γ ≥ 0,
with γ ≤ β, γ < d, such that

b 〈v〉−β 〈v′〉−β ≤ b(v, v′) ≤ b min
{
|v − v′|−β, |v − v′|−γ

}
. (H2)

The upper bound with the restriction on the exponent γ is a local integrability as-
sumption. Hypotheses (H1) and (H2) allow for the choice b(v, v′) = 〈v〉−β 〈v′〉−β with
arbitrary β > 0, as well as Boltzmann kernels b(v, v′) = |v − v′|−β with 0 < β < d.

As a consequence of (H2) the collision frequency

ν2(v) =
∫
Rd

b(v, v′)F (v′) dv′
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satisfies

b 〈v〉−β
∫
Rd
〈v′〉−β F (v′) dv′ ≤ ν2(v) ≤ b

∫
|v−v′|<1

|v − v′|−γ F (v′) dv′

+ b
∫
|v−v′|>1

|v − v′|−β F (v′) dv′ .

It is obvious that the last term is O(|v|−β) as |v| → ∞, and the first term on the
right hand side is asymptotically small compared to that as a consequence of the
sub-exponential decay of F . Therefore there exist constants ν ≥ ν > 0 such that

ν 〈v〉−β ≤ ν2(v) ≤ ν 〈v〉−β ∀ v ∈ Rd , (4)

and the behavior for large |v| is as in (3) with β = 2 (1− α).

Since both collision operators are propagators of Markov processes with the same
positive stationary distribution F , they also share the (quadratic) entropy dissipation
property

1
2

d
dt

∫∫
Rd×Rd

f 2 dx dµ =
∫∫

Rd×Rd
(Lf) f dx dµ ≤ 0 , with dµ(v) := dv

F (v) , (5)

where the dissipations are given by

−
∫
Rd

(L1f) f dµ =
∫
Rd

∣∣∣∣∣∇v
f

F

∣∣∣∣∣
2

F dv (6)

and
−
∫
Rd

(L2f) f dµ = 1
2

∫
Rd

∫
Rd

b(v, v′)
(
f ′F − fF ′

)2
dµ dµ′ , (7)

with the prime denoting evaluation at v′. For a derivation of (7) see, e.g., [8, 21].

Our purpose is to consider solutions of (1) with non-negative initial datum f in and
to study their large time behavior. If f in has finite mass, then mass is conserved for
any t ≥ 0. Since there is no stationary state with finite mass, it is expected that
f(t, ·, ·) locally tends to zero as t→ +∞. However, the dissipations (6) and (7) vanish
for arbitrary local equilibria of the form f(t, x, v) = ρ(t, x)F (v), and therefore the
analysis of the decay to zero requires an hypocoercivity method. Our approach relies
on the construction of Lyapunov functionals by modifications of natural entropies or
norm as in [10, 11] (also see [13, Lemma 4.1], [14, Lemma 4.1], [25] and [29] for earlier
contributions).

For the formulation of our main result, we introduce the norms

‖f‖k :=
(∫∫

Rd×Rd
f 2 〈v〉k dx dµ

)1/2
, k ∈ R, (8)

as well as the scalar product 〈f1, f2〉 :=
∫∫

Rd×Rd f1 f2 dx dµ on L2(dx dµ) with the in-
duced norm ‖f‖2 := ‖f‖2

0 = 〈f, f〉. By L1
+(dx dv), we denote the space of nonnegative

Lebesgue integrable functions on Rd×Rd, and by D(Ω) the space of smooth functions
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with compact support in the open domain Ω where, in practice either Ω = Rd or
Ω = Rd × Rd.

Theorem 1. Let α ∈ (0, 1), β > 0, k > 0 and let F be given by (2). Assume
that either L = L1 and β = 2 (1 − α), or L = L2 and (H1), (H2) hold. Then there
exists a constant C > 0 such that any solution f of (1) with initial datum f in ∈
L2(〈v〉k dx dµ) ∩ L1

+(dx dv) satisfies

‖f(t, ·, ·)‖2 ≤ C ‖f in‖2

(1 + κ t) ζ ∀ t ≥ 0

with rate ζ = min {d/2, k/β} and with κ > 0, which is an explicit function of the two
quotients ‖f in‖ / ‖f in‖k and ‖f in‖ / ‖f in‖L1(dxdv).

The proof relies on the L2-hypocoercivity approach of [10, 11]. An important in-
gredient is microscopic coercivity, meaning that the entropy dissipation controls the
distance to the set of local equilibria. For L = L1 and for the exponential and super-
exponential cases α ≥ 1, this control is provided by the Poincaré inequality∫

Rd
|∇vg|2 F dv ≥ CP

∫
Rd

(g − g)2 F dv , (9)

with g =
∫
Rd gF dv and CP > 0 implying, with g = f/F ,

−〈L1f, f〉 ≥ CP ‖f − ρfF‖2 ,

with ρf =
∫
Rd f dv. A result similar to Theorem 1 (with α = 2, k = 0 and ζ = d/2) has

been proven in [5]. In the sub-exponential case of this work, we shall prove a relaxed
version of the above Poincaré inequality.

Lemma 2. Let F be given by (2) with 0 < α < 1. Let either L = L1 and β = 2 (1−α)
or L = L2 assuming (H1), (H2). Then there exists C > 0 such that

−〈Lf, f〉 ≥ C ‖f − ρfF‖2
−β ∀ f ∈ D(Rd × Rd) .

Proof. For L = L1 the result is a consequence of the weighted Poincaré inequality∫
Rd
|∇vg|2F dv ≥ C

∫
Rd

(g − g)2 〈v〉−2 (1−α) F dv ∀ g ∈ D(Rd) , (10)

which will be proved in Appendix A.

For L = L2 we estimate∫
Rd

(f − ρfF )2 〈v〉−β dµ =
∫
Rd

(∫
Rd

(
fF ′ − f ′F

)
F ′ dµ′

)2
〈v〉−β dµ

≤
∫
Rd
F 〈v〉β dv

∫∫
Rd×Rd

(
fF ′ − f ′F

)2
〈v〉−β 〈v′〉−β dµ dµ′ ≤ − 1

C

∫
Rd

(L2f) f dµ

with
C = b

2

(∫
Rd
F 〈v〉β dv

)−1
.
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For the first inequality we have used Cauchy-Schwarz and for the second, (7) and the
hypothesis (H2). Integration with respect to x completes the proof. �

Apart from proving the weighted Poincaré inequality (10), in Appendix A, we shall
also show in Appendix B how it can be used to prove algebraic decay to equilibrium
for the spatially homogeneous equation with L = L1 and 0 < α < 1, i.e. the Fokker-
Planck equation with sub-exponential equilibrium. The loss of information due to the
weight 〈v〉−2(1−α) has to be compensated by a L2-bound for the initial datum with
a weight 〈v〉k, k > 0, as in Theorem 1. For this problem, estimates based on weak
Poincaré inequalities are also very popular in the scientific community of semi-group
theory and Markov processes (see [27], [3, Proposition 7.5.10], [17] and Appendix B).
Estimates based on weak Poincaré inequalities rely on a uniform bound for the initial
data for α < 1 which is not needed for α ≥ 1, while the approach developed in this
paper provides a continuous transition from the range 0 < α < 1 to the range α ≥ 1
since we may choose k ↘ 0 as α ↗ 1. Note that for α = 1, the weighted Poincaré
inequality (10) reduces to the Poincaré inequality (9).

The proof of Theorem 1 goes along the lines of the hypocoercivity approach (with
α ≥ 1) of [10, 11] (also see [13, 14, 25, 29]) and its extension to cases without con-
finement as in [5, 6]. It combines information on the microscopic and the macroscopic
dissipation properties. The core of the microscopic results is given in Lemma 2. Since
the macroscopic limit of (1) is the heat equation on the whole space, it is natural that
for the estimation of the macroscopic dissipation we use Nash’s inequality,

‖u‖2
L2( dx) ≤ CNash ‖u‖

4
d+2
L1( dx) ‖∇u‖

2 d
d+2
L2( dx) , (11)

a tool which has been developed for this purpose. The result of Theorem 1 can be in-
terpreted as giving the weaker of the microscopic decay rate t−k/β and the macroscopic
decay rate t−d/2. Only for k ≥ β d/2, the decay rate of the macroscopic diffusion limit
is recovered.

Related results have been shown in [5, 6, 7]. Results in [7] are somewhat comple-
mentary to this work, as they deal with Gaussian local equilibria in the presence of an
external potential with sub-exponential growth in the variable x. Also see [30, 19, 16]
for various earlier results dealing with external potentials with a growth like 〈x〉γ,
γ < 1, based on weak Poincaré inequalities, spectral techniques, H1 hypocoercivity
methods, etc.

This paper is organized as follows. In Section 2, we prove an hypocoercive estimate
relating a modified entropy, which is equivalent to ‖f‖2, to an entropy production term
involving a microscopic and a macroscopic component. Using weighted L2-estimates
established in Section 3, we obtain a new control by the microscopic component in
Lemma 8 while the macroscopic component is estimated as in [5] using Nash’s in-
equality, see Lemma 7. By collecting these estimates in Section 4, we complete the
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proof of Theorem 1. Two appendices are devoted to L = L1: in Appendix A, we
provide a new proof of (10) and comment on the interplay with weak Poincaré in-
equalities, while the spatially homogeneous version of (1) is dealt with in Appendix B
and rates of relaxation towards the local equilibrium are discussed using weighted
L2-norms, as an alternative approach to the weak Poincaré inequality method of [17].
The main novelty of our approach is that we use new interpolations in order to exploit
the entropy production term. As a consequence, with the appropriate weights, no
other norm is needed than weighted L2-norms. For simplicity, we assume that the
distribution function is nonnegative but the extension to sign changing functions is
straightforward.

2. An entropy–entropy production estimate

We adapt the strategy of [11, 5], denoting by T = v ·∇x the free streaming operator
and by Π the orthogonal projection on Ker(L) in L2(dµ), given by

Πf := ρf F where ρf =
∫
Rd
f dv .

To build a suitable Lyapunov functional, we introduce the operator

A :=
(

Id + (TΠ)∗(TΠ)
)−1

(TΠ)∗

and consider
H[f ] := 1

2 ‖f‖
2 + δ 〈Af, f〉 .

All computations can be done with functions f in D(Rd × Rd) and later extended
by density to natural functional spaces. It is known from [11, Lemma 1] that A is a
bounded operator on L2(dx dµ) with operator norm bounded by 1/2, such that, for
any δ ∈ (0, 1), H[f ] and ‖f‖2 are equivalent in the sense that

1
2 (1− δ) ‖f‖2 ≤ H[f ] ≤ 1

2 (1 + δ) ‖f‖2 . (12)

A direct computation shows that
d
dtH[f ] = −D[f ] (13)

with

D[f ] :=− 〈Lf, f〉+ δ 〈ATΠf,Πf〉
+ δ 〈AT(Id− Π)f,Πf〉 − δ 〈TA(Id− Π)f, (Id− Π)f〉 − δ 〈AL(Id− Π)f,Πf〉

where we have used that 〈Af, Lf〉 = 0. With our notation, the result of Lemma 2
reads

〈Lf, f〉 ≤ −C ‖(Id− Π)f‖2
−β . (14)

It is the essence of the approach of [11] that the second term in D[f ] controls the macro-
scopic contribution ‖Πf‖2 and that the first two terms control the remaining ones.
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Proposition 3. Under the assumptions of Theorem 1 and for small enough δ > 0,
there exists κ > 0 such that, for any f ∈ L2

(
〈v〉−β dx dµ

)
∩ L1(dx dv),

D[f ] ≥ κ
(
‖(Id− Π)f‖2

−β + 〈ATΠf,Πf〉
)
.

Note that κ does not depend on k > 0 (the parameter k appears in the assumptions
of Theorem 1). An estimate of D[f ] in terms of 〈ATΠf,Πf〉 and ‖(Id− Π)f‖2 has
already been derived in [5], but using the weighted norm ‖(Id− Π)f‖−β is a new idea.

Proof. We have to prove that the three last terms in D[f ] are controlled by the first
two. The main difference with [11, 5] is the additional weight 〈v〉−β in the velocity
variable.

• Step 1: rewriting 〈ATΠf,Πf〉. Let u = uf be such that

uF = (Id + (TΠ)∗(TΠ))−1 Πf .

Then u solves (u−Θ ∆u)F = Πf , that is,

u−Θ ∆u = ρf where Θ :=
∫
Rd
|v · e|2 F (v) dv , (15)

for an arbitrary unit vector e. Since

ATΠf = (Id + (TΠ)∗(TΠ))−1 (TΠ)∗(TΠ) Πf

=
(

Id + (TΠ)∗(TΠ)
)−1(

Id + (TΠ)∗(TΠ)− Id
)

Πf

= Πf −
(

Id + (TΠ)∗(TΠ)
)−1

Πf = Πf − uF = (ρf − u)F ,

then by using equation (15), we obtain

〈ATΠf,Πf〉 = 〈Πf − uF ,Πf〉 = 〈−Θ ∆uF , (u−Θ ∆u)F 〉 ,

from which we deduce

〈ATΠf,Πf〉 = Θ ‖∇u‖2
L2( dx) + Θ2 ‖∆u‖2

L2( dx) ≥ 0 . (16)

Both terms on the right hand side are finite, since (15) defines ρf 7→ u as a bounded
map L2(dx)→ H2(dx).

• Step 2: a bound on 〈AT(Id− Π)f,Πf〉. If u solves (15), we use the fact that

A∗Πf = TΠuF = TuF (17)

to compute

〈AT(Id− Π)f,Πf〉 = 〈(Id− Π)f,T∗A∗Πf〉 = 〈(Id− Π)f,T∗TuF 〉 .
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Therefore, since T∗TuF = − v · ∇x (v · ∇xu)F , the Cauchy-Schwarz inequality yields

|〈AT(Id− Π)f,Πf〉| ≤ ‖(Id− Π)f‖−β
∥∥∥∥√F 〈v〉β2 v · ∇x (v · ∇xu)

√
F

∥∥∥∥
L2(dx dv)

≤ Θβ+4 ‖(Id− Π)f‖−β ‖∆u‖L2(dx) ,

hence
|〈AT(Id− Π)f,Πf〉| ≤ C4 ‖(Id− Π)f‖−β 〈ATΠf,Πf〉

1
2 (18)

where we have used identity (16), C4 = Θβ+4/Θ and

Θk :=
∫
Rd
〈v〉k F (v) dv .

With this convention, note that Θ2 = 1 + dΘ.

• Step 3: estimating 〈TA(Id− Π)f, (Id− Π)f〉. As noted in [11, Lemma 1], the
equation g = Πg = Af is equivalent to(

Id + (TΠ)∗(TΠ)
)
g = (TΠ)∗f

which, after multiplying by g and integrating, yields

‖g‖2 + ‖Tg‖2 = 〈g, g + (TΠ)∗(TΠ)g〉
= 〈g, (TΠ)∗f〉 = 〈TΠg, f〉 = 〈TAf, f〉 ≤ ‖(Id− Π)f‖−β ‖TAf‖β

by the Cauchy-Schwarz inequality. We know that (TΠ)∗ = −ΠT, so that Af = g =
wF is determined by the equation

w −Θ ∆w = −∇x ·
∫
Rd
v f dv .

After multiplying by w, now a function in H1(dx) by elliptic regularity of the solution
of the above equation, and integrating in x, we obtain

Θ
∫
Rd
|∇xw|2 dx ≤

∫
Rd
|w|2 dx+ Θ

∫
Rd
|∇xw|2 dx

≤
(∫

Rd
|∇xw|2 dx

) 1
2
(∫

Rd
|
∫
Rd v f dv|2 dx

) 1
2

and note that∫
Rd
|
∫
Rd v f dv|2 dx =

∫
Rd

∣∣∣∣∣
∫
Rd
〈v〉−

β
2

(Id− Π)f√
F

· |v| 〈v〉
β
2
√
F dv

∣∣∣∣∣
2

dx

≤ Θβ+2 ‖(Id− Π)f‖2
−β

by the Cauchy-Schwarz inequality. Hence∫
Rd
|∇xw|2 dx ≤ Θβ+2

Θ2 ‖(Id− Π)f‖2
−β
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and

‖TAf‖2
β =

∥∥∥∇xw · (v 〈v〉β/2 F )
∥∥∥2

= Θβ+2

∫
Rd
|∇xw|2 dx ≤ C2

2 ‖(Id− Π)f‖2
−β

with C2 := Θβ+2/Θ. Since g = Af so that ‖Af‖2 + ‖TAf‖2 = ‖g‖2 + ‖Tg‖2, we obtain

〈TAf, f〉 = 〈TA(Id− Π)f, (Id− Π)f〉 ≤ ‖(Id− Π)f‖−β ‖TAf‖β ≤ C2 ‖(Id− Π)f‖2
−β .

(19)
We also remark that

〈TAf, f〉 = 〈(v · ∇xw)F , f〉 =
∫
Rd
∇xw ·

(∫
Rd
v f dv

)
dx

=
∫
Rd
|w|2 dx+ Θ

∫
Rd
|∇xw|2 dx ≥ 0 .

• Step 4: bound for 〈AL(Id− Π)f,Πf〉. We use again identity (17) to compute

|〈AL(Id− Π)f,Πf〉| = |〈(Id− Π)f, L∗A∗Πf〉| = |〈(Id− Π)f, L∗TuF 〉|
≤ ‖(Id− Π)f‖−β ‖L

∗TuF‖β .

In case L = L1 we remark that

‖L∗1TuF‖2
β =

∫∫
Rd×Rd

∣∣∣∇v ·
(
F ∇v (v · ∇xu)

)∣∣∣2 〈v〉β dx dµ

=
∫∫

Rd×Rd
|∇vF · ∇xu|2 〈v〉β dx dµ ≤ ‖∇vF‖2

L2(〈v〉βdµ) ‖∇xu‖2
L2( dx) .

In case L = L2, note first that

(L∗2TuF )(v) =
(∫

Rd
b(v′, v) (v′ − v)F (v′) dv′

)
· ∇xuF (v) ,

and thus, by the Cauchy-Schwarz inequality,

‖L∗2TuF‖β ≤ B ‖∇xu‖L2( dx) , with B =
∥∥∥∥∫

Rd
b(v′, v) (v′ − v)F ′ F dv′

∥∥∥∥
L2(〈v〉βdµ)

.

For proving finiteness of B we use (H2) in∣∣∣∣∫
Rd

b(v′, v) (v′ − v)F ′ dv′
∣∣∣∣

≤ b
∫
|v′−v|<1

|v′ − v|1−γF ′ dv′ + b
∫
|v′−v|>1

|v′ − v|1−βF ′ dv′ ≤ c
(
1 + 〈v〉1−β

)
,

which implies
B2 ≤ c2

∫
Rd

(
1 + 〈v〉1−β

)2
〈v〉β F dv <∞ .

Combining these estimates with identity (16), we get

|〈AL(Id− Π)f,Πf〉| ≤ CF ‖(Id− Π)f‖−β 〈ATΠf,Πf〉
1
2 (20)

where CF = B/
√

Θ.
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• Step 5: collecting all estimates. Altogether, combining (14) and (18), (19)
and (20), we obtain

d
dtH[f ] ≤ −C ‖(Id− Π)f‖2

−β − δ 〈ATΠf,Πf〉

+ δ (C4 + CF ) ‖(Id− Π)f‖−β 〈ATΠf,Πf〉
1
2 + δ C2 ‖(Id− Π)f‖2

−β

which by Young’s inequality yields the existence of κ > 0 such that
d
dtH[f ] ≤ −κ

(
‖(Id− Π)f‖2

−β + 〈ATΠf,Πf〉
)

for some δ ∈ (0, 1). Indeed, with X := ‖(Id− Π)f‖−β and Y := 〈ATΠf,Πf〉
1
2 , it is

enough to check that the quadratic form

Q(X, Y ) := (C − δ C2)X2 − (C4 + CF )X Y + δ Y 2

is positive, i.e., Q(X, Y ) ≥ κ (X2 + Y 2) for some κ = κ(δ) and δ ∈ (0, 1). �

3. Weighted L2 estimates

In this section, we show the propagation of weighted norms with weights 〈v〉k of
arbitrary positive order k ∈ R+.

Proposition 4. Let k > 0 and f be solution of (1) with f in ∈ L2(〈v〉k dx dµ). Then
there exists a constant Kk > 1 such that

∀ t ≥ 0 ‖f(t, ·, ·)‖k ≤ Kk
∥∥∥f in

∥∥∥
k
.

We recall that ‖f‖k is defined by (8). We shall state a technical lemma (Lemma 5
below) before proving a splitting result in Lemma 6, from which the proof of Propo-
sition 4 easily follows (see Section 3.3).

3.1. A technical lemma.

Lemma 5. If either L = L1 or L = L2, then there exists ` > 0 for which, for any
k ≥ 0, there exist ak, bk, Rk > 0 such that〈

Lf, f 〈v〉k
〉
≤
∫∫

Rd×Rd

(
ak 1|v|<Rk − bk 〈v〉

−`
)
|f |2 〈v〉k dx dµ , (21)

for any f ∈ D(Rd × Rd).



SUB-EXPONENTIAL HYPOCOERCIVITY 11

Proof. In the Fokker-Planck case L = L1, with h := f/F , we have∫
Rd

L1f f 〈v〉k dµ = −
∫
Rd
|∇vh|2 〈v〉k F dv − 1

2

∫
Rd
∇vh

2 · ∇v 〈v〉k F dµ

≤ 1
2

∫
Rd
f 2
(∇vF

F
· ∇v 〈v〉k + ∆v 〈v〉k

)
dµ

= k

2

∫
Rd
f 2 〈v〉k−4

(
2− k + (d+ k − 2) 〈v〉2 + α 〈v〉α − α 〈v〉α+2

)
dµ

≤ k

2

∫
Rd
f 2 〈v〉k−2 (ck − α 〈v〉α) dµ

=
∫
Rd

(
ak 1|v|<Rk − bk 〈v〉

−`
)
|f |2 〈v〉k dµ

+ k

2

∫
Rd
f 2 〈v〉k−2

(
ck
(
1− 1|v|<Rk 〈v〉

2
)
− α

2 〈v〉
α
)

dµ ,

with ck = |k − 2| + |d + k − 2| + α, ak = ck k/2, bk = α k/4, ` = 2 − α. The choice
Rk = (2 ck/α)1/α makes the last term negative, which completes the proof.

In the case of the scattering operator L = L2, with h := f/F , we have

2
∫
Rd
f L2f 〈v〉k dµ = 2

∫∫
Rd×Rd

b(v, v′) (h′ − h)h 〈v〉k F F ′ dv dv′

=
∫∫

Rd×Rd
b(v, v′)

(
2h′h− h2

)
〈v〉k F F ′ dv dv′

−
∫∫

Rd×Rd
b(v′, v)h2 〈v〉k F F ′ dv dv′ ,

where we have used (H1). Swapping v and v′ in the last integral gives

2
∫
Rd
f L2f 〈v〉k dµ =−

∫∫
Rd×Rd

b(v, v′) (h− h′)2 〈v〉k F F ′ dv dv′

+
∫∫

Rd×Rd
b(v, v′) (h′)2

(
〈v〉k − 〈v′〉k

)
F F ′ dv dv′

≤
∫
Rd

(∫
Rd

b(v′, v)
(
〈v′〉k − 〈v〉k

)
F ′ dv′

)
f 2 dµ ,

with another swap v ↔ v′ in the last step. Now we use (H2) and its consequence (4):∫
Rd

b(v′, v)
(
〈v′〉k − 〈v〉k

)
F ′ dv′ =

∫
Rd

b(v′, v) 〈v′〉k F ′ dv′ − 〈v〉k ν2(v)

≤ 2 ak 〈v〉−β − ν 〈v〉k−β ,

where the estimation of the first term is analogous to the derivation of (4). This
implies∫
Rd

L2f f 〈v〉k dµ ≤
∫
Rd

(
ak 1|v|<Rk − bk 〈v〉

−`
)
|f |2 〈v〉k dµ

+
∫
Rd
f 2 〈v〉k

(
ak
(
〈v〉−β−k − 1|v|<Rk

)
+ bk 〈v〉−` −

ν

2 〈v〉
−β
)

dv .

The last term is made negative by the choices ` = β, bk = ν /4, Rk = (4 ak/ν)1/k. �
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3.2. A splitting result. As in [12, 17, 23], we write L − T as a dissipative part C
and a bounded part B such that L− T = B + C.

Lemma 6. With the notation of Lemma 5, let k > 0, k1 > k+ 2 `, a = max{ak, ak1},
R = max{Rk, Rk1}, C = a1|v|<R and B = L− T− C. For any t ≥ 0 we have:

(i) ‖C‖L2(dx dµ)→L2(〈v〉k1 dxdµ) ≤ a 〈R〉k1/2,
(ii) ‖etB‖L2(〈v〉k dxdµ)→L2(〈v〉k dxdµ) ≤ 1,

(iii) ‖etB‖L2(〈v〉k1 dxdµ)→L2(〈v〉k dxdµ) ≤ C (1 + t)−
k1−k

2 ` for some C > 0.

Proof. Property (i) is an obvious consequence of the definition of C. Lemma 5 and∫
Rd f Tf dx = 0 imply∫∫

Rd×Rd
f Bf 〈v〉k dx dµ ≤

∫∫
Rd×Rd

(
ak 1|v|<Rk − a1|v|<R − bk 〈v〉

−`
)
|f |2 〈v〉k dx dµ

≤ − bk ‖f‖2
k−` , (22)

which proves (ii) and, analogously,

‖etB‖L2(〈v〉k1 dx dµ)→L2(〈v〉k1 dxdµ) ≤ 1 . (23)

Now we consider f = etB f in in (22) and use Hölder’s inequality

‖f‖2
k ≤ ‖f‖

2 (k1−k)
k1−k+`
k−` ‖f‖

2 `
k1−k+`
k1

as well as (23):
1
2

d
dt ‖f‖

2
k ≤ − bk ‖f‖

2
(

1+ `
k1−k

)
k

∥∥∥f in
∥∥∥− 2 `

k1−k

k1
.

The Bihari-LaSalle inequality [4, 18], a nonlinear version of Grönwall’s lemma, implies

‖f‖2
k ≤

(∥∥∥f in
∥∥∥− 2 `

k1−k

k
+ 2 ` bk t

k1−k

∥∥∥f in
∥∥∥− 2 `

k1−k

k1

)− k1−k
`

≤
(

k1−k
k1−k+2 ` bk t

) k1−k
`

∥∥∥f in
∥∥∥2

k1
,

thus completing the proof. �

3.3. Proof of Proposition 4. With the notation of Lemma 6, i.e., B = L − T − C,
integration of the identity

d
ds
(
e(t−s)B es(L−T)

)
= e(t−s)B (L− T− B) es(L−T) = e(t−s)B Ces(L−T) ,

gives
et(L−T) = etB +

∫ t

0
e(t−s)B C es(L−T)ds .

The entropy dissipation inequality (5) implies

‖et(L−T)‖L2( dxdµ)→L2( dxdµ) ≤ 1 ,
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and therefore, since k > 0,

‖et(L−T)‖L2(〈v〉k dx dµ)→L2( dx dµ) ≤ 1 .

Combining this with the results of Lemma 6 leads to∥∥∥et(L−T)
∥∥∥

L2(〈v〉k dx dµ)→L2(〈v〉k dxdµ) ≤ 1 + a 〈R〉k1/2C
∫ t

0
(1 + s)−

k1−k
2 ` ds ,

which completes the proof, since the right hand side is bounded uniformly in t by
k1 > k + 2 `. �

4. Proof of Theorem 1

The control of the macroscopic part Πf by 〈ATΠf,Πf〉 is achieved as in [5]. We
sketch a proof for the sake of completeness.

Lemma 7. Under the assumptions of Theorem 1, for any f ∈ L1(dx dµ)∩L2(dx dv),
we have

〈ATΠf,Πf〉 ≥ Φ
(
‖Πf‖2

)
with

Φ−1(y) := 2 y +
(
y

c

) d
d+2

, c = Θ C−
d+2
d

Nash ‖f‖
− 4
d

L1(dxdv) ,

where CNash is the constant in Nash’s inequality (11) and Θ is defined in (15).

Proof. Equations (15), (16), Nash’s inequality (11), and ‖Πf‖ = ‖ρf‖L2(dx) imply

‖Πf‖2 = ‖u‖2
L2( dx) + 2 Θ ‖∇u‖2

L2( dx) + Θ2 ‖∆u‖2
L2( dx) ≤ ‖u‖

2
L2( dx) + 2 〈ATΠf, f〉

≤ CNash ‖u‖
4
d+2
L1( dx) ‖∇u‖

2 d
d+2
L2( dx) + 2 〈ATΠf, f〉 .

Again from (15) and (16), we deduce

‖u‖L1(dx) = ‖ρf‖L1(dx) = ‖f‖L1(dx dv) , ‖∇u‖2
L2(dx) ≤

1
Θ 〈ATΠf, f〉 ,

which completes the proof. �

The control of (Id − Π)f by the entropy production term relies on a simple, new
estimate.

Lemma 8. Under the assumptions of Theorem 1, for any solution f of (1) with initial
datum f in ∈ L2(〈v〉k dx dµ) ∩ L1(dx dv), we have

‖(Id− Π)f(t, ·, ·)‖2
−β ≥ Ψ

(
‖(Id− Π)f(t, ·, ·)‖2

)
for any t ≥ 0, where Kk is as in Proposition 4 and

Ψ(y) := C0 y
1+β/k , C0 :=

(
Kk

(
1 + Θk

)
‖f in‖k

)− 2 β
k

.
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Proof. Hölder’s inequality

‖(Id− Π)f‖ ≤ ‖(Id− Π)f‖
k

k+β
−β ‖(Id− Π)f‖

β
k+β
k

and

‖(Id− Π)f‖k ≤ ‖f‖k + Θk ‖ρ‖L2( dx) ≤ (1 + Θk) ‖f‖k ≤ Kk (1 + Θk)
∥∥∥f in

∥∥∥
k
,

where the last inequality holds by Proposition 4, provide us with the estimate. �

Proof of Theorem 1. Using the estimates of Lemma 7 and Lemma 8, we obtain

‖(Id− Π)f‖2
−β + 〈ATΠf,Πf〉 ≥ Ψ

(
‖(Id− Π)f‖2

)
+ Φ

(
‖Πf‖2

)
.

Using (13) and the fact that D[f ] ≥ 0 by Proposition 3, we know that

‖(Id− Π)f‖2 ≤ z0 and ‖Πf‖2 ≤ z0 where z0 := ‖f in‖2 .

Thus, from

Φ−1(y) = 2 y +
(
y

c

) d
d+2
≤
(
C−1

1 y
) d
d+2 with C1 :=

(
2 Φ(z0)

2
d+2 + c−

d
d+2
)− d+2

d
,

as long as y ≤ Φ(z0), we obtain

Φ
(
‖Πf‖2

)
≥ C1 ‖Πf‖ 2 d+2

d ,

since ‖Πf‖2 ≤ z0. As a consequence,

‖(Id− Π)f‖2
−β + 〈ATΠf,Πf〉 ≥ C0 ‖(Id− Π)f‖ 2 k+β

k + C1 ‖Πf‖ 2 d+2
d

≥ min
{
C0 z

β
k
− 1
ζ

0 , C1 z
2
d
− 1
ζ

0

}
‖f‖ 2+ 2

ζ

where 1/ζ = max {2/d, β/k}, i.e., ζ = min {d/2, k/β}. Collecting terms, we have
d
dtH[f ] ≤ −C ζ H[f ]1+ 1

ζ

using (12), (13) and Proposition 3, with

C := κ

ζ
min

{
C0 z

β
k
− 1
ζ

0 , C1 z
2
d
− 1
ζ

0

} (
2

1+δ

)1+ 1
ζ .

Then the result of Theorem 1 follows from the Bihari-LaSalle estimate

H[f(t, ·, ·)] ≤ H[f in]
(
1 + C H[f in]

1
ζ t
)−ζ

.

The expression of C can be explicitly computed in terms of C0 z
β
k
− 1
ζ

0 H[f in]
1
ζ , which

is proportional to (‖f in‖ / ‖f in‖k)
2 β
k , and in terms of C1 z

2
d
− 1
ζ

0 H[f in]
1
ζ which is a func-

tion of (‖f in‖L1(dxdv) / ‖f in‖)4/(d+2). To see this, one has to take into account the
expressions of C0, C1 and c in terms of the initial datum f in. �
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As a concluding remark, we emphasize that a control of the solution in the space
L2(〈v〉k dx dµ), based on Proposition 4, is enough to prove Theorem 1. In particular,
there is no need of a uniform bound on f . This observation is new in L2 hypocoercive
methods, and consistent with the homogeneous case (see Appendix B).

Appendix A. Weighted Poincaré inequalities

The goal of this appendix is to provide a proof of (10). Inequality (10) is not a
standard weighted Poincaré inequality because the average in the right-hand side of the
inequality involves the measure of the left-hand side, so that the right-hand side cannot
be interpreted as a variance. Section A.1 is devoted to a reformulation of a spectral gap
issue associated with Poincaré inequalities with weights into spectral considerations
for a Schrödinger operator. We establish a criterion for Poincaré inequalities which is
well adapted to the weights in (10). The average, however, corresponds to a standard
variance. In Section A.2, we establish the result for the average which appears in (10).

A.1. Continuous spectrum and weighted Poincaré inequalities. Let us con-
sider two probability measures on Rd

dξ = e−φ dv and dν = ψ dξ ,

where φ and ψ > 0 are two measurable functions, and the weighted Poincaré inequality

∀h ∈ D(Rd) ,
∫
Rd
|∇h|2 dξ ≥ C?

∫
Rd

∣∣∣h− ĥ∣∣∣2 dν (24)

where ĥ =
∫
Rd h dν. The question we address here is: on which conditions on φ and ψ

do we know that (24) holds for some constant C? > 0 ? Our key example is

φ(v) = 〈v〉α + logZα and ψ(v) = c−1
α,β 〈v〉

−β (25)

with α > 0, β > 0, Zα =
∫
Rd e

−〈v〉α dv and cα,β = Z−1
α

∫
Rd 〈v〉

−β e−〈v〉
α dv.

Here we use a spectral property of Schrödinger type operators, which goes as follows.
Let us consider a measurable function Φ on Rd such that

σ = lim
r→+∞

inf
w∈D(Bcr)\{0}

∫
Rd (|∇w|2 + Φ |w|2) dv∫

Rd |w|2 dv > 0 ,

where Bc
r :=

{
v ∈ Rd : |v| > r

}
and D(Bc

r) denotes the space of smooth functions
on Rd with compact support in Bc

r. According to Persson’s result [26, Theorem 2.1],
the lower end σ? of the continuous spectrum of the Schrödinger operator −∆ + Φ is
such that

σ? ≥ σ ≥ lim
r→+∞

ess inf
v∈Bcr

Φ(v) .

If we replace
∫
Rd |w|2 dv by the weighted integral

∫
Rd |w|2 ψ dv for some measurable

function ψ, we have the modified result that the operator L = ψ−1 (−∆ + Φ) on
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L2(Rd, ψ dv), associated with the quadratic form

w 7→
∫
Rd

(
|∇w|2 + Φ |w|2

)
dv

has only discrete eigenvalues in the interval (−∞, σ) where

σ = lim
r→+∞

inf
w∈D(Bcr)\{0}

∫
Rd (|∇w|2 + Φ |w|2) dv∫

Rd |w|2 ψ dv > 0 .

To prove it, it is enough to observe that 0 is the lower end of the continuous spectrum
of L − σ? ψ, where σ? is again defined as the lower end of the continuous spectrum
of L, and to apply [26, Theorem 2.1]. It is also straightforward to check that σ? is
such that

σ? ≥ σ ≥ lim
r→+∞

q(r) =: σ0 where q(r) := ess inf
Bcr

Φ
ψ
. (26)

Note that σ0 is either finite or infinite.

Relating the weighted Poincaré inequality (24) with the spectrum of L is then
classical. With

Φ = 1
4 |∇φ|

2 − 1
2 ∆φ , (27)

the spectral gap of L is equal to the optimal constant in the Poincaré inequality.
Indeed, let h = w eφ/2 and observe that∫

Rd
|∇h|2 dξ =

∫
Rd

(
|∇w|2 + Φ |w|2

)
dv ,∫

Rd

∣∣∣h− ĥ∣∣∣2 dν =
∫
Rd
|w − w̃|2 ψ dv ,

where w̃ = e−φ/2
∫
Rd wψ e

−φ/2 dv is the orthogonal projection of w, with respect to
L2(ψ dv), onto the kernel of L. The kernel of L is generated by the constant functions.
With σ? > 0, we know that the interval (0, σ?) contains only eigenvalues, with finite
dimensional eigenspaces, which may eventually accumulate, but only with σ? as the
adherence value. As a consequence, there is a lowest positive eigenvalue of L, which
is positive and determines the spectral gap.

Proposition 9. Let φ and ψ > 0 be two measurable functions. Let Φ and σ0 be defined
respectively by (27) and (26) and assume that σ0 is nonnegative. Then inequality (24)
holds for some positive, finite, optimal constant C? ≥ σ0 if σ0 is positive. Otherwise,
if σ0 = 0, then inequality (24) does not hold.

Proof. By construction, σ is nonnegative and the infimum of the Rayleigh quotient

w 7→
∫
Rd (|∇w|2 + Φ |w|2) dv∫

Rd |w|2 ψ dv

is achieved by h ≡ ĥ = 1, that is, by w = w̃ = e−φ/2, which moreover generates the
kernel of L. Hence we can interpret C? as the first positive eigenvalue, if there is any
in the interval (0, σ?), or C? = σ? if there is none. Notice that in the latter case σ?
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is finite. If σ0 = 0, it is easy to construct a sequence of functions which shows that
inequality (24) holds only if C? = 0. �

In the case of (25), we have Φ
ψ
∼ 1

4 α
2 cα,β 〈v〉2 (α−1)+β as |v| → ∞. Thus the condition

β ≥ 2 (1−α) is necessary and sufficient for the inequality (24) to hold. The threshold
case β = 2 (1 − α) is remarkable: inequality (24) can be rewritten for any α ∈ (0, 1)
as the following weighted Poincaré inequality :

∀h ∈ D(Rd) ,
∫
Rd
|∇h|2 e−〈v〉

α

dv ≥ C?
∫
Rd

∣∣∣h− ĥ∣∣∣2 e−〈v〉α
(1 + |v|2)1−α dv , (28)

for some constant C? ∈ (0, σ0). The above computation shows that σ0 = α2/4 and

ĥ := 1
zα

∫
Rd

h e−〈v〉
α

(1 + |v|2)1−α dv , zα =
∫
Rd

e−〈v〉
α

(1 + |v|2)1−α dv .

Notice that (28) differs from (10), as the average in the right-hand side is not taken
with respect to the same measure in both inequalities. The purpose of the next
subsection is to deduce (10) from (28).

A.2. A weighted Poincaré inequality with a non-classical average.

Corollary 10. Let the assumptions of Proposition 9 hold with σ0 > 0 and let, ad-
ditionally, ψ be bounded, ψ−1 ∈ L1(dξ) and such that limR→+∞R

2 infB2R ψ = +∞.
Then the inequality

∀h ∈ D(Rd) ,
∫
Rd
|∇h|2 dξ ≥ C

∫
Rd

∣∣∣h− h̃∣∣∣2 dν (29)

holds for some optimal constant C ∈ (0, C?], where h̃ :=
∫
Rd h dξ. Here C? denotes the

optimal constant in (24).

Notice that (29) is similar to (24), except that the average is computed with respect
to the measure of the left-hand side. We emphasize that in (29), the right-hand side
is not the variance of h with respect to the measure dν, as we subtract the average
with respect to the measure dξ. In the case φ(v) = 〈v〉α + logZα, which corresponds
to (25), Inequality (29) is precisely (10). Inequality (10) has been established in [17,
inequality (1.12)] by a different method, based on the strategy of [1, 2]. Also see
Appendix B.1 for further details. As we shall see in the proof, our method provides
an explicit lower bound C in terms of C?.

Proof. Without loss of generality, we can assume that h̃ =
∫
Rd h dξ = 0 up to the

replacement of h by h − h̃. We use the IMS decomposition method (see [24, 28]),
which goes as follows. Let χ be a truncation function on R+ with the following
properties: 0 ≤ χ ≤ 1, χ ≡ 1 on [0, 1], χ ≡ 0 on [2,+∞) and χ′2/ (1− χ2) ≤ κ for
some κ > 0. Next, we define χR(v) = χ

(
|v|/R

)
, h1,R = hχR and h2,R = h

√
1− χ2

R,
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so that h1,R is supported in the ball B2R of radius 2R centered at v = 0 and h2,R is
supported in Bc

R = Rd \BR. Elementary computations show that h2 = h2
1,R+h2

2,R and
|∇h|2 = |∇h1,R|2+|∇h2,R|2−h2 |∇χ|2/ (1− χ2), so that

∣∣∣|∇h|2−|∇h1,R|2−|∇h2,R|2
∣∣∣ ≤

κh2/R2.

Since h2,R is supported in Bc
R, we know that∫

Rd
|∇h2,R|2 dξ ≥ q(R)

∫
Rd
|h2,R|2 dν

for any R > 0, where q is the quotient involved in the definition (26) of σ0. We recall
that limr→+∞ q(r) = σ0 > 0. Using the method of the Holley-Stroock lemma (see [15]
and [9] for a recent presentation), we deduce from inequality (24) that∫

Rd
|∇h1,R|2 dξ ≥ C?

∫
Rd

∣∣∣h1,R − ĥ1,R

∣∣∣2 dν

≥ C?
∫
B2R

∣∣∣h1,R − ĥ1,R

∣∣∣2 ψ dξ

≥ C? inf
B2R

ψ min
c∈R

∫
B2R
|h1,R − c|2 dξ

≥ Q(R)
∫
Rd
|h1,R|2 dν − C?

infB2R ψ

ξ(B2R)

(∫
Rd
h1,R dξ

)2

where Q(R) := C? infB2R ψ/ supB2R
ψ. By the assumption h̃ = 0, we know that∫

BR
h dξ = −

∫
BcR

h dξ ,

from which we deduce that(∫
Rd
h1,R dξ

)2
=
(∫

BR
h dξ +

∫
BcR

χR h dξ
)2

≤
(∫

BcR

|h| dξ
)2

≤
∫
Rd
h2 dν

∫
BcR

ψ−1 dξ

where the last inequality is simply a Cauchy-Schwarz inequality. Let

ε(R) := C?
infB2R ψ

ξ(B2R)

∫
BcR

ψ−1 dξ .

By the assumption that ψ−1 ∈ L1(Rd, dξ), we know that

lim
R→+∞

ε(R) = 0 and lim
R→+∞

ε(R)
Q(R) = 0 .

Collecting all our assumptions, we have∫
Rd
|∇h|2 dξ ≥

∫
Rd

(
|∇h1,R|2 + |∇h2,R|2 −

κ

R2 h
2
)

dξ

≥
(

min
{

Q(R), q(R)
}
− ε(R)− κ

R2

) ∫
Rd
|h|2 dν

where min
{

Q(R), q(R)
}
− ε(R)− κ/R2 is positive for R > 0, large enough, as follows

from the assumptions on ψ.
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Finally, let us notice that, for any c ∈ R, we have∫
Rd
|h− c |2 dν =

∫
Rd
h2 dν − 2 c

∫
Rd
h dν + c2 ≥

∫
Rd

∣∣∣h− ĥ∣∣∣2 dν

with equality if and only if c = ĥ =
∫
Rd h dν. As a special case corresponding to

c = h̃ =
∫
Rd h dξ, we have ∫

Rd

∣∣∣h− h̃∣∣∣2 dν ≥
∫
Rd

∣∣∣h− ĥ∣∣∣2 dν .

This proves that C? ≥ C. �

In the special case of (25), the assumptions of Corollary 10 are not difficult to check.
It is also possible to give a slightly shorter proof using the Poincaré inequality on BR

when (25) holds: see [22, Chapter 6].

Appendix B. Algebraic decay rates for the Fokker-Planck equation

Here we consider simple estimates of the decay rates in the spatially homogeneous
case of equation (1), that is, f(t, x, v) = g(t, v) solving the Fokker-Planck equation

∂tg = L1g . (30)

After summarizing the standard approach based on the weak Poincaré inequality (see
for instance [17]) in Section B.1, we introduce a new method which relies on weighted
L2 estimates. As already mentioned, the advantage of weighted Poincaré inequalities
is that the description of the convergence rates to the local equilibrium does not
require extra regularity assumptions to cover the transition from super-exponential
(α > 1) and exponential (α = 1) local equilibria to sub-exponential local equilibria,
with α ∈ (0, 1).

B.1. Weak Poincaré inequality. We assume α ∈ (0, 1) and η ∈
(
0, β

)
with β =

2 (1− α). By a simple Hölder inequality, with (τ + 1)/τ = β/η, we obtain∫
Rd

∣∣∣h− h̃∣∣∣2 dξ =
∫
Rd

∣∣∣h− h̃∣∣∣2 〈v〉−η 〈v〉η dξ

≤
(∫

Rd

∣∣∣h− h̃∣∣∣2 〈v〉−β dξ
) τ
τ+1

(∫
Rd

∥∥∥h− h̃∥∥∥2

L∞(Rd)
〈v〉β τ dξ

) 1
1+τ

.

We assume that dξ = Z−1
α e−〈v〉

αdv as in (25) and take h̃ :=
∫
Rd h dξ. Using (10), we

end up with

∀h ∈ D(Rd),
∫
Rd

∣∣∣h− h̃∣∣∣2 dξ ≤ Cα,τ
(∫

Rd
|∇h|2 dξ

) τ
1+τ ∥∥∥h− h̃∥∥∥ 2

1+τ

L∞(Rd)
, (31)

for some explicit positive constant Cα,τ . We learn from (6) that
d
dt

∫
Rd

∣∣∣h(t, ·)− h̃
∣∣∣2 dξ = − 2

∫
Rd
|∇vh|2 dξ
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if g = hF solves (30), and we also know that h̃ does not depend on t. By a strategy
that goes back at least to [20, Theorem 2.2] and, according to the author of [20], due
to D. Stroock, we obtain∫

Rd

∣∣∣h(t, ·)− h̃
∣∣∣2 dξ ≤

((∫
Rd

∣∣∣h(0, ·)− h̃
∣∣∣2 dξ

)− 1
τ

+ 2 τ−1

C1+1/τ
α,τ M

t

)−τ

withM = sups∈(0,t) ‖h(s, ·) − h̃‖2/τ
L∞(Rd), where the Bihari-LaSalle inequality has been

employed again. The limitation is of course that we need to restrict the initial condi-
tions in order to haveM uniformly bounded with respect to t. Since η can be chosen
arbitrarily close to β, the exponent τ can be taken arbitrarily large but to the price
of a constant Cα,τ which explodes as η → β−.

Note that, with the denomination used in [27, (1.6)], Formula (31) is equivalent to
the weak Poincaré inequality

∀h ∈ D(Rd) , C−1
α,τ

∫
Rd

∣∣∣h− h̃∣∣∣2 dξ ≤ τ
(1+τ)1+1/τ r

−1/τ
∫
Rd
|∇h|2 dξ + r

∥∥∥h− h̃∥∥∥2

L∞(Rd)
,

for all r > 0. The equivalence of this inequality and (31) is easily recovered by
optimizing on r > 0. It is worth to remark that here we consider ‖h − h̃‖L∞(Rd)
while various other quantities like, e.g., the median can be used in weak Poincaré
inequalities.

B.2. Weighted L2 estimates. As an alternative approach to the weak Poincaré in-
equality method of Appendix B.1, we can consider for some arbitrary k > 0 the
evolution according to equation (30) of

∫
Rd |h(t, v)|2 〈v〉k dξ =

∫
Rd |h(t, v)|2 〈v〉k F dv

where dξ is as in (25) and h := g/F solves

∂th = F−1∇v ·
(
F ∇vh

)
.

Let us compute
d
dt

∫
Rd
|h(t, v)|2 〈v〉k F dv + 2

∫
Rd
|∇vh|2 〈v〉k F dv = −

∫
Rd
∇v(h2) ·

(
∇v 〈v〉k

)
F dv

and observe with ` = 2− α that

∇v ·
(
F ∇v 〈v〉k

)
= k

〈v〉4
(
d+ (k + d− 2) |v|2 − α 〈v〉α |v|2

)
F 〈v〉k

≤
(
a− b 〈v〉−`

)
F 〈v〉k ,

for some a ∈ R, b ∈ (0,+∞). This estimate corresponds to Lemma 5 for the spatially
inhomogeneous equation. From here the same proof as in Proposition 4 shows that
there exists a constant Kk > 0 such that

∀ t ≥ 0 ‖h(t, ·)‖L2(〈v〉k dξ) ≤ Kk
∥∥∥hin

∥∥∥
L2(〈v〉k dξ) .
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Hence, if g = hF solves (30) with initial value hin, we can use (10) to write
d
dt

∫
Rd

∣∣∣h(t, ·)− h̃
∣∣∣2 dξ = − 2

∫
Rd
|∇vh|2 dξ ≤ − 2 C

∫
Rd

∣∣∣h− h̃∣∣∣2 〈v〉−β dξ

with β = 2 (1− α) and h̃ =
∫
Rd h dξ. With θ = k/

(
k + β

)
, Hölder’s inequality∫

Rd

∣∣∣h− h̃∣∣∣2 dξ ≤
(∫

Rd

∣∣∣h− h̃∣∣∣2 〈v〉−β dξ
)θ (∫

Rd

∣∣∣h− h̃∣∣∣2 〈v〉k dξ
)1−θ

allows us to estimate the right hand side and obtain the following result.

Proposition 11. Let α ∈ (0, 1), let gin ∈ L1
+(dµ) ∩ L2(〈v〉k dµ) for some k > 0,

and consider the solution g to (30) with initial datum gin. With C as in (10), if
g = (

∫
Rd g dv)F where F is given by (2), then∫

Rd
|g(t, ·)− g|2 dµ ≤

((∫
Rd

∣∣∣gin − g
∣∣∣2 dµ

)−β/k
+ 2 β C
kKβ/k

t

)−k/β
with β = 2 (1− α) and K := K2

k ‖gin‖2
L2(〈v〉k dµ) + Θk (

∫
Rd g

in dv)2.

We recall that g = hF , g = h̃ F and F dµ = dv = F−1 dξ. We note that arbitrarily
large decay rates can be obtained under the condition that k > 0 is large enough. We
recover that when k < dβ/2, the rate of relaxation to the equilibrium is slower than
(1 + t)−d/2 and responsible for the limitation that appears in Theorem 1. However,
the rate of the heat flow is recovered in Theorem 1 for a weight of order k with an
arbitrarily small but fixed k > 0, if α is taken close enough to 1.

Proof. Using ∫
Rd

∣∣∣h− h̃∣∣∣2 〈v〉k dξ ≤
∫
Rd
|h|2 〈v〉k dξ + Θk h̃

2 = K ,

we obtain that y(t) :=
∫
Rd |g(t, ·)− g|2 dµ obeys to y′ ≤ − 2 C K1−1/θ y1/θ and conclude

by the Bihari-LaSalle inequality. �
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