

EUROPEAN WORKSHOP ON ON-BOARD DATA PROCESING (OBDP2021), 14-17 JUNE 2021

IP TO DETECT AND DIAGNOSE ERRORS IN COTS MICROPROCESSORS THROUGH

THE TRACE INTERFACE

M. Peña-Fernandez(1), A. Lindoso(2), L. Entrena(2)

(1) Arquimea, 28918, Leganés, Spain
(2) Department of Electronic Technology, Universidad Carlos III de Madrid, 28911, Leganés, Spain

ABSTRACT

This work presents an error detection and diagnosis IP

for space applications to enable fault tolerance by error

detection and recovery on COTS processors. Its low-

latency error detection capabilities and richness of trace

information allow to perform effective fault diagnosis.

1. INTRODUCTION

Microprocessors are commonly used in all kinds of

applications, such as commercial appliances, industrial

controllers, communications, and embedded systems.

They are becoming more common also in safety-critical

applications. When operating in harsh environments, as

in presence of radiation, microprocessors can be

affected by faults, which may alter their intended

behavior producing undesirable errors [1].

Nowadays, there are diverse techniques to design or

build integrated circuits and microprocessors to be

intrinsically resilient to radiation-induced errors, as

Radiation Hardening By Design (RHBD) or Radiation

Hardening By Process (RHBP). However, these

hardening techniques usually lead to expensive

solutions which cannot be afforded in cost-constrained

applications. Moreover, by applying such techniques,

resulting systems commonly require higher power and

provide lower performance than commercial

counterparts. In fact, the available rad-hard integrated

circuits lag two or more generations behind commercial

equivalent components [2].

In the last years, the interest in Commercial Off-The-

Shelf (COTS) components for safety critical and even

for space applications has increased, as they are

attractive due to their higher performance and lower

power consumption compared to their hardened

counterparts. Nevertheless, when using COTS

components, is the task of the system designer to assess

the fault tolerance capabilities are at an acceptable level,

transforming the traditional risk avoidance paradigm

into risk management [3].

The use of COTS cutting-edge processing systems in

space applications has received much attention due to an

increasingly competitive commercial space sector. Such

components would increment the processing capabilities

on orbit to unprecedented levels, bringing a great

competitive advantage. However, assuring reliability

under the harsh space conditions is a challenge [4].

Single-event effects (SEEs) are a major concern in

processors [5]. When using COTS components,

available SEE protections are limited and the

knowledge about the behavior of the device under

radiation is poor. Error detection and diagnosis in

modern microprocessors is a challenge, particularly due

to the limited observability of the microprocessor

internal resources. Typically, limited actions can be

performed on the hardware to enhance radiation

hardness. For that reason, COTS processors usually

introduce software-level hardening, by modifying the

code to increment robustness, but paying significant

performance penalties. Moreover, software hardening

can only protect software-accessible resources, but other

processor resources may be left unprotected [6].

To achieve fault tolerance, processing systems based on

COTS must be designed to implement error detection

and recovery capabilities. However, few details are

typically available about the internal architecture or

implementation of COTS components, and the

observability of the processor internal state is usually

low. In addition, different failure modes presented by

complex processing systems may need for diverse

mitigation strategies, especially when considering

different criticality levels [7].

Providing new solutions for COTS processors hardening

may expand their usage in space missions and the

associated on-board processing capabilities. In addition,

subsequent cost and time reductions would make the

space a more accessible market.

In this work we present an IP module to detect and

diagnose errors in microprocessors working under

radiation environments. The IP uses the information

provided by the trace interface of the processor to check

execution flow and data correctness with low latency

and no performance penalty. The IP has been developed

within an industry-academia collaboration as part of a

Ph.D. thesis and is currently available at Arquimea.

The paper is organized as follows. Section 2

summarizes the related work in the field. Section 3

describes the proposed technique. Section 4 illustrates

some application cases. Finally, section 5 presents the

conclusion of this work.

2. MICROPROCESSOR ERROR DETECTION

AND DIAGNOSIS

Hardening techniques for microprocessors are usually

classified into hardware or software techniques. Hybrid

hardening techniques are considered when both

hardware and software are addressed to harden the

device [5]. Such techniques are designed to address

errors that can be classified into two main categories:

those affecting execution flow, called control-flow

errors, and those only affecting program data, called

data errors.

Software data hardening techniques usually rely on data

replication and performing the same computations

independently in each set of replicated data. The results

of different computed data sets are then compared to

stablish whether an error is present or not [8]. Data

duplication techniques can effectively detect errors

although data triplication is needed to perform error

correction. As more data is replicated, associated

performance and memory penalties are more severe, so

tradeoffs must be considered to optimize error coverage

against performance [9].

Software control-flow hardening techniques rely on

signatures or assertions [10] to detect incorrect jumps in

execution. Signatures are invariant results that are

computed and checked during execution time.

Assertions are special statements inserted in the

application code to check the correctness of the

executed code [5]. Extensive computation and checking

of signatures and assertions may introduce significant

performance and memory overheads.

A common problem for all software approaches is that

their coverage is limited to the resources which are

accessible from software. Internal microprocessor

resources, such as the pipeline registers, can exhibit

critical fault modes which may be left unprotected by

software techniques [6].

Hardware techniques commonly modify the architecture

to introduce redundancy, being Triple Modular

Redundancy (TMR) the most representative case.

However, in COTS it is not possible to replicate or even

to modify the hardware. As an alternative, external

hardware can be used to determine the correctness of

the processor behavior. The complexity and operation of

the external hardware ranges from simple watchdog

timers to bigger modules that may become as complex

as the observed processor. Complex observer modules

may increase power consumption and area requirements

and may also introduce new faults on the system [11].

Besides, the connection point for the external hardware

is a critical issue that has impacts on performance, error

detection latency and observability limitations.

An alternative approach for hardware redundancy is the

replication of the entire processor, having two or more

processors within a system. As processors become

increasingly affordable, designers are leveraging the

increasing availability of multicore processors in a

single chip. Several approaches based on COTS

multicore processors have been proposed for space

applications, given that the faults on one processor core

can be isolated from the other cores [12]. Lockstep is an

extension of processor replication in which the

execution of the replicas is synchronized. Simultaneous

and symmetrical execution of the same application code

should provide identical results in the absence of errors.

If results differ, a rollback mechanism is needed to

restore the system back to an error-free state. This

approach is effective to detect data errors by comparing

data results at several checkpoints during execution.

However, in the case of control-flow errors, any of the

processors could miss a checkpoint, resulting in an

unprotected hang of the system. A watchdog timer

could be used to overcome this limitation, but the

associated high latency limits the efficiency of this

solution. In addition, control-flow errors can become

very complex, leading to latent effects that may not be

reverted by system restoration [13].

Radiation testing is the most widely accepted method to

evaluate the suitability of electronic devices for space

applications, including data processing systems.

Radiation testing results may quantify the device

susceptibility to errors and the ability of hardening

techniques to detect them and/or mitigate their effects.

However, common testing approaches do not generally

pay special attention to the causes of such errors and the

associated circuit vulnerabilities. By increasing the

knowledge related to the sources of errors, it could be

possible to protect the circuits in a more effective

manner and improve mitigation techniques.

Additionally, gaining insight about the faults can lead to

assess the criticality of an error, i.e. risk management

[3], to take the corresponding corrective action.

Most existing diagnosis approaches evaluate the effects

of errors and then try to deduct the origin of the fault

using cause-effect analysis. However, the knowledge

about the internal architecture and the observability of

the system are crucial factors to effectively diagnose the

error. A systematic approach is to evaluate the

Architectural Vulnerability Factor (AVF) [14] of each

processor resource to estimate their susceptibility to

errors. Another approach is to perform extensive fault

injection campaigns to create a fault dictionary

associating fault location and observed effects to

diagnose radiation-induced errors [15]. However,

radiation-induced errors may present different

characteristics from the modelled ones, limiting the

effectiveness of such techniques. Moreover, fault

consequences deeply depend on the application in

execution, so it is difficult to develop a generic

association between the errors and their origin. In

addition, there are common errors, such as processor

hangs or crashes, that may have diverse causes,

increasing the complexity of the diagnosis task

regardless of the fault diagnosis approach. The accuracy

of fault diagnosis strongly depends on the quality and

completeness of the gathered information about the

error. Collecting the information immediately after the

event is crucial to avoid losing relevant data that could

be overwritten.

The trace interface is a resource commonly found in

modern microprocessors to support application

development. It is initially intended to support software

debugging and application profiling, by capturing

relevant information concerning processor execution

flow and data for those purposes. Such information is

provided with low latency in a non-intrusive manner.

However, once the application development is

complete, the trace interface is commonly unused, so it

can be reused for a different purpose with no cost.

Trace information is best suited for dealing with

asynchronous events, such as those produced by

radiation. However, the use for error detection and

diagnosis is new and it is not natively supported by the

processor manufacturers or associated tools. In addition,

the use of computer-based tools may not be suitable for

detecting errors in an embedded system while it is in

operation. For this reason, a special infrastructure must

be developed to leverage the information available at

the trace interface for error detection and diagnosis.

The use of the trace infrastructures for processor online

monitoring was first proposed in [16] to observe the

execution of a LEON3 microprocessor and detect faults

by computing signatures and comparing executions.

Later works on this topic focused on soft-core

microprocessors, which can be conveniently adapted or

modified as needed to provide a wide and rich access to

trace information [17]. However, the case of hard-core

microprocessors is different. As the hardware cannot be

modified and the internal resources cannot be accessed,

the trace information must be obtained through hard

macrocells that impose protocols and limit the available

information [18].

ARM processors have achieved large market share in

the commercial sector from the last two decades, and

ARM-based space-oriented initiatives, such as

Nanoxplore FPGAs or NASA HPSC, are becoming

common. A wide range of competitive processor cores

optimized for diverse applications, from low power to

high performance, along with the ease of

implementation in a System-on-Chip (SoC) may be two

key factors for its success. ARM processor cores are

also widely supported by software developers and

libraries in many application fields, providing a huge

knowledge base for new developments. CoreSight [19]

technology is a family of components provided by ARM

to support trace and debug capabilities on its processor

cores. Almost every available ARM processor core is

compatible with CoreSight technology.

3. ERROR DETECTION AND DIAGNOSIS IP

We are presenting a solution to tackle both radiation

hardening and testability challenges regarding COTS

microprocessors. We have developed a lightweight IP

core in HDL that leverages the information available at

the trace interface to detect and diagnose errors in ARM

microprocessors, although the same approach could be

applied to other processor architectures. The presented

IP can oversee the behavior of a microprocessor or a

SoC including more than one processor core, which is

labeled as Processor Under Monitoring (PUM) within

this document. The IP can observe execution flow and

data values of PUM by monitoring the information

provided by the trace interface in real time. It gives to

the user the capability of detecting errors and obtaining

error evidence and traceability with low latency, low

impact on system design and no performance penalty.

The IP is currently compatible with several ARM

CoreSight trace components: Program Trace Macrocell

(PTM), Instrumentation Trace Macrocell (ITM), Trace

Funnel and Trace Port Interface Unit (TPIU) [19]. The

IP is compatible with the trace interface protocol

specification, attending specifically to the trace

information that can be used to detect errors. To that

end, the IP is designed to obtain Program Counter (PC)

values and data values from trace data. The IP has been

designed to require low power and small area to be

embedded in an application with minimum penalties.

Regarding performance, the IP design is optimized to

decode and process trace data in real time to minimize

fault detection latency. The implementation of the IP

can be adapted to multiple scenarios thanks to its

parametric design. Low pin count interface enables

multiple integration schemes. It can be used as a

microprocessor peripheral on a System on Chip, or as

standalone in a multi-chip system.

The IP has been developed and tested using Xilinx

Zynq-7000 APSoC [20], integrating a dual core ARM

Cortex-A9 processor.

3.1. Interface description

The IP can be connected to other devices through a set

of interfaces, each one with a specific purpose within

the intended error detection and diagnosis functionality.

The top-level of the IP architecture is depicted in Fig. 1.

Configuration interface. The IP is configurable

through a set of configuration registers that can be

accessed via the following compatible configuration

interface options.

• Advanced eXtensible Interface (AXI), for memory

mapped SoC integration.

• 4-pin Serial Peripheral Interface (SPI), for multi-

chip integration.

The configuration interface also provides access to

information related to error diagnosis.

Trace interface. The IP trace interface is pin-to-pin

compatible with ARM Trace Port Interface Unit (TPIU)

pinout, which is present in most ARM processor

implementations. The following signals are used:

• TRACE_CLK: clock signal to synchronize trace

data.

• TRACE_CTL: control signal to indicate whether

trace data is valid or not.

• TRACE_DATA (N:0): variable bit width trace data

stream.

The IP is designed with 8-bit trace data port width by

default. To enable compatibility with 1-bit, 2-bit and 4-

bit trace data port widths, an available additional

module must be inserted between the trace port and the

IP.

Warning signal. Warning generator module can be

configured to produce a warning signal upon the

activation of any user-selected signals at error bus. This

is typically used to indicate that an error has appeared

but that the application can continue running, for

example a data corruption that does not need for system

reset, but only to ignore recently computed data.

Frozen signal. Freezer module can be configured to

freeze the entire IP core upon the activation of any user-

selected signals at error bus. Freeze signal is the

resulting OR operation among all user-selected error

signals at error bus. Once Freeze signal is activated,

Frozen signal activates to indicate this situation. Once

the IP is frozen, no further trace data will be processed,

preserving the IP state for the user to gather error

information through the configuration interface. In such

a case, both PUM and the IP must be put back into a

working, known state before continuing the application.

Status Bus. Information about the state of the internal

resources of the IP is provided in this bus.

Error Bus. Every error signal generated by any internal

resource of the IP is provided in this bus.

3.2. Functional description

The core of the IP is responsible of the management of

the trace data supplied by the PUM, which is handled by

a sequence of modules as depicted in Fig. 2. The IP

works according to the following flow:

1. Trace information is generated on the PUM

(Processor Under Monitoring) and exported to the

IP through the TPIU. Inside the IP, it first enters

the Reformatter, which decodes formatted trace

frames and rebuilds the original trace stream from

each source.

2. Depending on the source the trace comes from, it is

sent to the corresponding trace decoder by the ID

demux, which can be configured by the user with

the identification code (ID) corresponding to each

trace source present in the PUM.

o The ITM decoder implemented in the IP can

decode trace information produced by an

Instrumentation Trace Macrocell, and the value

retriever module obtains the values sent through

the trace. Obtained data values can be sent to

different user-configurable data checking

resources, explained in section 3.3.

o The IP can include one or more PTM decoder

modules, each decoding trace information

produced by a Program Trace Macrocell. The

PC follower module obtains traced PC values,

which correspond to a succession of instruction

addresses of the corresponding PUM processor

core. PTM decoder modules do not need a copy

of the executed program to work. Thus, user is

encouraged to enable branch broadcasting

feature on PTM to maximize PC observability.

Obtained PC values are sent to a set of

checking resources, discussed in section 3.3.

3. Checking resources examine the information

received from the trace interface and, according to

Figure 1. Top level view of the IP and interfaces

their configuration, raise a dedicated error signal

upon an error.

4. The event evaluator module can perform logic

operations with error signals to generate further

error signals depending on more complex

conditions.

5. If Freeze signal is activated at any time, all IP core

resources become frozen, preserving their state to

enable error information retrieval by the user.

3.3. Checking resources

The error detection capabilities of the IP are defined by

the integrated checking resources, represented in Fig. 2.

Data checking. Different data checking resources are

available, as data range checking, data dual comparison

checking and data triple comparison checking. When

the data value enters the data checker, it is sent to each

resource according to user configuration. The same data

value can be sent simultaneously to more than one

resource:

• Data range checking resource generates an error

signal whenever the received value is outside the

expected user-configurable bounds. User can

configure this resource to change the behavior and

produce an error if the value is inside bounds.

• Data comparison checking resource can be dual or

triple and generates an error signal whenever the

received values match the corresponding Boolean

operator. Both dual or triple type and Boolean

operator are defined at implementation. User can

also configure this resource to produce an error

whenever the received values do not match the

corresponding operator. Data is received

sequentially, and the comparison is only performed

when the last data value is received. For that reason,

a configurable watchdog timer module is included

in comparison checking resources to detect when a

group remains incomplete for an excessive time.

Program flow checking. PC range checker and PC

loop watchdog resources receive the successive PC

values from a single PUM core to check whether the

execution flow is correct or not.

• PC range checker resource constantly monitors all

received PC values and raise an error signal in the

case a particular value is outside of a set of user-

configurable allowed ranges.

• PC loop watchdog resource is also constantly

monitoring received PC values to check that a

maximum time is elapsed between two consecutive

receptions of a specific PC value. Selected PC value

is commonly the first instruction of the main loop.

In that case, the watchdog can be configured by the

user to accurately detect functional interrupt errors

by configuring the watchdog to raise an error signal

in the case the elapsed time is greater than the

maximum expected main loop execution time.

Unlike traditional watchdog approaches, that rely

on the processor to refresh the watchdog timer

value, this approach does not need any action from

the processor, improving reliability.

Combined resources checking. The IP handles trace

data from different sources simultaneously. For this

reason, additional checking approaches can be designed

to integrate information from more than one resource to

detect and diagnose errors. These features are currently

under development and will appear in the next release

of the IP.

• A lockstep checker could be implemented by

combining PC information from more than one core

running the same application in lockstep. Lockstep

integrity could be checked by the IP in a non-

intrusive manner and with no performance penalty.

Figure 2. Internal architecture view of the IP

• Signature/assertion checking can also be achieved

by combining PC information with data values from

the trace. This way, the IP could check the

correctness of the execution flow not only by

checking the PC value against allowed ranges, but

also by checking the correctness of the associated

signature values online with execution.

3.4. Error diagnosis

The information available at the trace interface is very

rich, and the data rate for a typical application can

exceed 1Gbps. The IP is an independent entity designed

to decode and examine such huge amounts of data to

detect errors. But the IP not only obtains error-related

data, but also trace data related to nominal execution.

Thus, it is possible to go a step further by using such

information to contextualize error appearance. If only

error detection is performed from trace data, most

relevant information about the error would be lost.

However, by gathering such information, a wider view

of each error can be obtained, and error diagnosis can be

achieved. For example, when a faulty PC value is found,

the user could get the previous PC values, that would

give the point in execution where the error took place.

In addition, when a faulty data value is found, the user

could also observe the faulty value and previous ones.

The presented IP has been designed to provide error

diagnosis capabilities, by introducing historical data

record on each checking resource. Once the IP has

detected an error, it becomes frozen for the user to

retrieve such historical information through the

configuration interface.

4. APPLICATIONS

The IP has been developed in HDL, ready to be

implemented in any FPGA platform. The parametric

design of the IP increases flexibility and provides a

wide range of user-configurable resources. Additionally,

pre-implemented ready-to-use typical use case designs

have been developed and can be provided to be used in

commonly available development platforms for a

quicker setup, evaluation, and deployment. Main IP

specifications are listed in Tab. 1. The IP features high

data throughput with small footprint, reduced pin count,

and low latency.

Several development phases are supported by the

provided functionality:

• Design: providing error detection and diagnosis

capabilities during development to identify flaws in

the system and enhance a given application to meet

dependability requirements.

• Device evaluation: detecting and classifying errors

in different devices, allowing severity evaluation to

provide objective criteria on component selection.

Not only for COTS but also for space-oriented

devices, it could help to understand and mitigate

complex failure modes.

• Operation: working side by side with a

microprocessor to check the integrity of the

executed application in real time, raise an alert upon

error, and provide diagnosis information to perform

the necessary corrective action with low latency,

achieving fault tolerance.

The IP can be integrated using two basic system

architectures: binary architecture or ternary architecture,

depending on the number of available processors in the

system.

In a binary architecture, only one processor, PUM

(Processor Under Monitoring), and one IP are present.

The IP is checking PUM execution through its trace

interface and reporting error detection and diagnosis

information to take corrective actions. If the found error

is not recoverable, the IP would trigger a whole system

Table 1. IP specifications

 Condition Min Typ Max Units Comment

Pin count SPI interface option

No error signals

6 10 Each error signal

adds extra pins

Error detection

latency

No nested events in event evaluator 23 TRACE_CLK

clock cycles

Event evaluator

adds one cycle

per each nested

event
140 ns

Operating

frequency

Implemented on Xilinx XC7Z010 166 MHz TRACE_CLK

frequency

LUT count Synthesis for Xilinx Artix 7 series 2500 6000 6-input LUTs

Flip Flop count Synthesis for Xilinx Artix 7 series 2700 7000 D-type FFs

Trace Data

throughput

On-chip XC7Z010 over EMIO

8-bit data width

 1333 Mbps

Off-chip XC7Z010 over MIO

LVCMOS33

4-bit data width

 920 Mbps

Off-chip XC7Z010 over EMIO

TDMS33

4-bit data width

 1200 Mbps

reset to avoid a permanent functional interrupt. A binary

architecture is the minimum fault tolerant system that

can be built around this IP and requires effort from the

designer to assess that the whole system would meet the

dependability requirements. Binary system architecture

is depicted in Fig. 3 a).

In the case of a ternary architecture configuration, the

IP is checking the execution of a processor, PUM,

which is only in charge of performing heavy, non-

critical tasks which require very high performance. An

additional microprocessor, P1, is governing the entire

system without supervision, so it must be expected to

have very low error rate and provide all safety and time

critical tasks to meet dependability requirements.

However, there is probably no need for P1 to be

extremely powerful because it can rely on PUM to

perform all heavy, non-critical tasks. The IP will inform

P1 whenever and error is found on PUM to take a

corrective action. In this case, the designer effort is

lower as the corrective action can be as simple as

ignoring the last data packet or even a PUM reset, since

PUM is not servicing any critical task. Ternary system

architecture is depicted in Fig. 3 b).

Several works have been conducted by the authors

following the described trace monitoring approach using

Xilinx Zynq-7000 AP SoC during the development of

the IP. [21] and [22] demonstrated the feasibility of

using trace information for error detection purposes in

both control-flow and data with several application

benchmarks, reaching up to 95% error coverage. Later

works demonstrated the capability of the IP to be

integrated in a more realistic application and to be

combined with other hardening techniques such as dual

core lockstep [23] and data redundancy acceleration

using SIMD [24], achieving up to 99.9% error coverage.

Most recent works illustrate the error diagnosis

capabilities of the IP under proton and neutron

irradiation [25] and also under laser fault injection [26],

demonstrating fine granularity on discriminating error

types, and the suitability of the recorded information to

perform effective error diagnosis.

5. CONCLUSIONS

Increasingly competitive space industry constantly

seeks for new solutions to enhance spacecraft

processing capabilities on orbit. COTS processors, and

particularly ARM cores, are receiving much attention in

the last years due to their excellent performance and

power consumption features. Despite COTS processors

have been flown on successful missions, several

challenges still prevent COTS processors to be

massively adopted in space missions, as they involve

risks regarding radiation hardness assurance.

a)

b)

Figure 3. IP integrated in a) binary and b) ternary architecture configuration

Providing solutions to ease the safe introduction of

COTS processors on spacecraft may enable

unprecedented computing capabilities on orbit, leading

to a more efficient use of resources. This paper has

presented a new error detection and diagnosis technique

based on trace information monitoring and an IP design

to implement it.

Trace monitoring is a new tool in the designer’s toolbox

to manage risks and improve the reliability of

microprocessor-based space systems. This solution is

currently available at ARQUIMEA as an IP core

compatible with ARM Cortex-A9 processor. It has been

functionally validated in Xilinx Zynq device under

radiation testing (TRL3-4) obtaining high error

detection rate (up to 99.9%) [24] and useful diagnosis

information [25][26]. The IP features low pin count and

parametric design ready to be implemented in any

FPGA with low footprint. Currently, efforts are ongoing

to enhance IP capabilities and compatibility with a

wider range of technologies and processor cores,

including Xilinx Zynq Ultrascale, Microchip rad-

tolerant devices and NanoXplore FPGAs.

ACKNOWLEDGEMENTS

This work has been supported in part by the Spanish

Ministry of Science and Innovation under project

PID2019-106455GB-C21 and by the Community of

Madrid under grant IND2017/TIC-7776. The IP has

been developed in collaboration between Universidad

Carlos III de Madrid and Arquimea, in the framework of

an Industrial Ph.D. program.

REFERENCES

[1] R. C. Baumann, "Radiation-induced soft errors in

advanced semiconductor technologies", IEEE Trans. on

Dev. and Materials Rel., vol. 5, no. 3, pp. 305-316, 2005.

[2] R. Ginosar, "Survey of processors for space", Proc. Int.

Space System Engineering Conf. (DASIA), 1B, 2012.

[3] K. A. LaBel et al., "Emerging Radiation Hardness

Assurance Issues: A NASA Approach for Spaceflight

Programs", IEEE Trans. Nucl. Sci. vol. 45, 2727(1998).

[4] K. A. LaBel, "NEPP Roadmaps, COTS, and Small

Missions", Presented at NEPP Electronics Technology

Workshop (ETW), Jun., 2016.

[5] M. Nicolaidis, "Soft errors in modern electronic

systems", Springer, 2011.

[6] J. R. Azambuja, et al., "Exploring the limitations of

software-only techniques in SEE detection coverage",

Journal of Electronic Testing, no. 27, pp. 541–550, 2011.

[7] H. Quinn, "Challenges in testing complex systems",

IEEE Trans. Nucl. Sci., vol. 61, no. 2, pp. 766-786, Apr.

2014.

[8] P. Cheynet, et al., "Experimentally evaluating an

automatic approach for generating safety-critical

software with respect to transient errors", IEEE Trans.

Nucl. Sci., vol. 47, no. 6, pp. 2231–2236, Dic. 2000.

[9] E. Chielle, et al., "Evaluating Selective Redundancy in

Data-Flow Software-Based Techniques", IEEE Trans.

Nucl. Sci., vol. 60, no. 4, pp. 2768-2775, Aug. 2013.

[10] M. Hiller, "Executable assertions for detecting data

errors in embedded control systems", Proceedings of the

IEEE Intl. Conf. on Dependable Systems and Networks,

pp 24–33, 2000.

[11] A. Benso, et al., "A C/C++ source-to-source compiler for

dependable applications", IEEE Intl. Conf. on

Dependable Systems and Networks, pp. 71-78, 2000.

[12] M. Pignol, "DMT and DT2: Two Fault-Tolerant

Architectures developed by CNES for COTS-based

Spacecraft Supercomputers", Proc. 12th Int. On-Line

Testing Symp. (IOLTS), pp. 203-212, 2006.

[13] A. B. de Oliveira et al., "Lockstep Dual-Core ARM A9:

Implementation and Resilience Analysis Under Heavy

Ion-Induced Soft Errors", IEEE Trans. Nucl. Sci., vol.

65, no. 8, pp. 1783-1790, Aug. 2018.

[14] S. S. Mukherjee, et al., "A systematic methodology to

compute the architectural vulnerability factors for a high-

performance microprocessor", Proc. 36th Annual

IEEE/ACM Intl. Symp. on Microarchitecture (MICRO-

36), pp. 29-40, Dec. 2003.

[15] J. M. Mogollon, et al., "Real Time SEU Detection and

Diagnosis for Safety or Mission-Critical ICs Using

HASH Library-Based Fault Dictionaries". Proc.

RADECS, paper J-3, pp.705-710, Sept. 2011.

[16] M. Grosso, et al., "An on-line fault detection technique

based on embedded debug features", Proc.16th IEEE On-

Line Testing Symp., pp. 167-172, 2010.

[17] A. Lindoso, et al., "A hybrid fault-tolerant LEON3 soft

core processor implemented in low-end SRAM FPGA",

IEEE Trans. Nucl. Sci., vol. 64, no. 1, pp. 374-381, Jan.

2017.

[18] L. Entrena, et al., "Fault-tolerance techniques for soft-

core processors using the Trace Interface". In "FPGAs

and Parallel Architectures for Aerospace Applications.

Soft Errors and Fault-Tolerant Design", Springer, 2016.

[19] "CoreSight Components. Technical Reference Manual",

ARM Ltd., DDI 0314H, 2009.

[20] "Zynq-7000 All Programmable SoC: Technical

Reference Manual", Xilinx Inc., Technical Reference

Manual UG585, Sept. 2016.

[21] M. Peña-Fernandez, et al., "PTM-based hybrid error-

detection architecture for ARM microprocessors",

Microelectronics Reliability, 88, pp. 925-930, 2018.

[22] M. Peña-Fernandez, et al., "Online error detection

through trace infrastructure in ARM microprocessors",

IEEE Trans. Nucl. Sci., vol. 66, no. 7, pp. 1457-1464,

July 2019.

[23] M. Peña-Fernández, et al., "Dual-Core Lockstep

enhanced with redundant multithread support and

control-flow error detection", Microelectronics

Reliability, vol. 100–101, Article No. 113447, Sept.

2019.

[24] M. Peña-Fernandez, et al., "Error Detection and

Mitigation of Data-Intensive Microprocessor

Applications Using SIMD and Trace Monitoring", IEEE

Trans. on Nucl. Sci., vol. 67, no. 7, pp. 1452 - 1460, Jul.

2020.

[25] M. Peña-Fernandez, et al., "The Use of Microprocessor

Trace Infrastructures for Radiation-Induced Fault

Diagnosis", IEEE Trans. on Nucl. Sci., vol. 67, no. 1, pp.

126-134, Jan. 2020.

[26] M. Peña-Fernandez, et al., "Microprocessor Error

Diagnosis by Trace Monitoring under Laser Testing",

IEEE Trans. on Nucl. Sci., (Early Access).

